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Université du Québec à Montréal, Montréal, QC, Canada, 12Faculty of Natural Resources
Management, Lakehead University, Thunder Bay, ON, Canada, 13Rosen Center for Advanced
Computing, Purdue University, West Lafayette, IN, United States
Introduction: Mounting evidence suggests that geographic ranges of tree

species worldwide are shifting under global environmental changes. Little is

known, however, about if and how these species’ range shifts may trigger the

range shifts of various types of forests. Markowitz’s portfolio theory of investment

and its broad application in ecology suggest that the range shift of a forest type

could differ substantially from the range shifts of its constituent tree species.

Methods: Here, we tested this hypothesis by comparing the range shifts of forest

types and the mean of their constituent species between 1970–1999 and 2000–

2019 across Alaska, Canada, and the contiguous United States using continent-

wide forest inventory data. We first identified forest types in each period using

autoencoder neural networks and K-means cluster analysis. For each of the 43

forest types that were identified in both periods, we systematically compared

historical range shifts of the forest type and the mean of its constituent tree

species based on the geographic centroids of interpolated distribution maps.

Results:We found that forest types shifted at 86.5 km·decade-1 on average, more

than three times as fast as the average of constituent tree species (28.8

km·decade-1). We showed that a predominantly positive covariance of the

species range and the change of species relative abundance triggers this

marked difference.
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Discussion: Our findings provide an important scientific basis for adaptive forest

management and conservation, which primarily depend on individual species

assessment, in mitigating the impacts of rapid forest transformation under

climate change.
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1 Introduction

Trees – except in the seed life stage – are individually immobile

organisms, but tree species worldwide are found to undergo

substantial changes in geographic distributions through altered

dispersal, growth, and survival patterns under global change.

Drivers of species range shifts include climate change, associated

threats such as insect and disease outbreaks (Anderegg et al., 2015),

and other anthropogenic activities (Vanderwel and Purves, 2014).

In North America, while consistent upward shifts have been widely

observed in recent years along an altitudinal gradient (Kelly and

Goulden, 2008; Lenoir et al., 2008; Chen et al., 2011), more diverse

patterns have been observed in horizontal shifts in the latitudinal

and longitudinal dimensions; Some tree species have moved to

higher latitudes to track increasing temperature (Woodall et al.,

2009, 2010; Boisvert-Marsh et al., 2014; Sittaro et al., 2017), a

smaller proportion of species have moved southward (Woodall

et al., 2010; Zhu et al., 2012), while many species have moved

longitudinally in response to changes in precipitation patterns

(Fei et al., 2017). Little is known, however, about whether and

how this substantial shifting and reshuffling of tree species ranges

may cause an overall type of forest – a distinctive assemblage of tree

species distributed across a wide geographical extent – to shift

its range.

Since certain tree species are often found together in forest

communities, various assemblages of tree species imply different

types of forest communities which support different types of plants,

wildlife (Perry et al., 2022), and microbiomes (Steidinger et al.,

2019). A forest type represents a distinctive assemblage of tree

species distributed across a wide geographical range (Perry et al.,

2022), which in some studies is also referred to as a forest region

(Rowe, 1972; Dyer, 2006), a tree species assemblage (Costanza et al.,

2017), or a forest community (Knott et al., 2020). The classification

of forest types and quantification of their dynamics thus provide

important references for forest management, conservation, climate-

change mitigation, and restoration (Perry et al., 2022). That said, a

lack of consistent classification of forest types at a continental scale

has been a major obstacle to the understanding of the patterns of

forest type range shifts. For over a century, forests have been

classified based on tree species composition and structural

characteristics (Küchler, 1964; Rowe, 1972; Eyre, 1980; Dyer, 2006;
02
Ruefenacht et al., 2008; Costanza et al., 2017; Knott et al., 2020).

With the recent advancement of forest data availability (Liang and

Gamarra, 2020) and computational capacity, new data-driven forest

type classification schemes minimize subjective biases and exhibit

great potential to replace conventional approaches (Dyer, 2006;

Costanza et al., 2017; Knott et al., 2020). With statistical methods

like cluster analysis (Dyer, 2006; Costanza et al., 2017) and allocation

models (Knott et al., 2020), data-driven classification is capable of

effectively identifying forests with similar characteristics of species

relative abundance and dominance.

Although past research has significantly advanced our

understanding of tree species range shifts (Kelly and Goulden,

2008; Lenoir et al., 2008; Woodall et al., 2009, 2010; Zhu et al.,

2012; Boisvert-Marsh et al., 2014; Fei et al., 2017; Sittaro et al., 2017)

and patterns of tree fecundity and recruitment (Sharma et al., 2022),

the range shifts of forest types and how they differ from those of tree

species remain largely unknown. In community ecology, Gleason’s

individualistic viewpoint has gained more acceptance than

Clements’ organismic concept of plant communities (Clements,

1916; Gleason, 1926). Gleason (1926) states that species

distributions are determined by the unique ecological niches and

requirements of each species, and the assemblages they form are

merely a result of chance. Therefore, communities do not behave as

“superorganisms,” as Clements (1916) contends, and could be

highly dynamic (Guisan and Zimmermann, 2000; Cavender-Bares

et al., 2009). As further exemplified in Markowitz’s portfolio theory

of investment (Markowitz, 1952), the change of an ensemble can

differ from the changes of its constituents. An ecological hypothesis

(Chesson et al., 2005; Schindler et al., 2015; Hui et al., 2017), derived

from the portfolio theory (hereafter, portfolio hypothesis),

postulates that the dynamics of an ecological community are not

the same as the dynamics of its constituent species. According to the

portfolio hypothesis, the speed and direction of forest type range

shifts can differ substantially from the average speed and direction

of tree species range shifts. However, this hypothesis has never been

formulated and tested for forest type dynamics.

Past studies widely vary in their methods to quantify range shifts

(Iverson and McKenzie, 2013). With similar and sufficient sample

distributions between the two time periods across the study area (e.g.,

Boisvert-Marsh et al., 2014; Fei et al., 2017), range shifts can be

quantified without interpolation or extrapolation. However,
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interpolation or extrapolation is necessary for studies with temporally

differing sample distributions (e.g., Iverson et al., 2019a). In this case,

correlational species distribution models are useful for comparing

species ranges over time (Iverson and McKenzie., 2013). While the

former approach provides observational, and thus more realistic,

patterns of range shifts, it is often limited in terms of spatial

resolution (e.g., Fei et al., 2017) and area covered (e.g., Boisvert-

Marsh et al., 2014). In contrast, the latter approach provides larger

spatial and temporal scales, but it is subject to uncertainties associated

with interpolation or extrapolation (e.g., sampling bias, uncertainty in

predictor variables, model assumptions, incorporation of dispersal

ability, etc.; see Araújo et al. (2019) and Beale and Lennon (2012) for

details). Furthermore, range shifts can be represented by shifts in the

centroids (e.g., Fei et al., 2017; Iverson et al., 2019a) or boundaries

(e.g., Boisvert-Marsh et al., 2014). In the context of forest type and its

constituents (i.e., species), forest type boundary shifts simply depict

the minimum of each constituent species’ boundary shift. As such,

they will often reflect the slowest species’ range boundary shift.

Instead, the range centroid of a forest type reflects the distribution

of its most representative and abundant/dominant species, capturing

the primary function and service of this forest type.

Here, we formulated and tested the portfolio hypothesis on the

divergent range shift rates between forest types and constituent tree

species between 1970–1999 and 2000–2019. To do this, we collated a

continental-scale forest inventory database containing in situ

measurements of more than 20 million trees in 596,282 sample

plots located across North America. First, we used autoencoder

neural networks and K-means cluster analysis to group the data

based on similarities in tree species composition for each period. By

modifying established classification algorithms to accommodate

larger datasets, the resulting forest types were comparable to those

described by Costanza et al. (2017) and Dyer (2006). In parallel, we

developed correlative species distribution models to estimate the

range shift of each species based on geographic centroids. Finally,

based on the portfolio hypothesis, we compared the speed of forest

type range shifts and the average of their constituent species.
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2 Materials and methods

We first formulated the portfolio hypothesis, describing the

theoretical relationship between forest type range shift and the

average range shift of its constituent species. To test this hypothesis,

we prepared tree data with an importance value index (IVI) as a

proxy for species relative abundance for periods 1970–1999 and

2000–2019 (Figure 1). We created interpolated maps of species

distribution ranges using a species distribution model based on

predictor variables encompassing climate, topography, soil, and

anthropogenic characteristics. In parallel, we classified forest types

using the same tree data, which were further mapped across the

study area. Finally, for each pair of forest types identified in both

periods, we calculated the forest type range shift and the average

range shift of its constituent species based on species composition

(Figure 1). Species range shift was represented by the geographic

centroid shift of its interpolated distribution range.
2.1 The portfolio hypothesis of range shifts

We derived the following hypothesis from Markowitz’s

portfolio theory of investment (Markowitz, 1952) to quantify the

difference in range shifts between forest types and constituent tree

species. Tree species range shift was represented by the geographic

centroid shift of its modeled distribution range.

Let ai(x) be the relative abundance of species i at spatial location

x (demarcated by coordinates of latitude and longitude). The

cumulative relative abundance of species i over space x isoxai(x) =

Ai, and the geographic centroid of species i’s range can be calculated

as the weighted mean of x, ci =oxx · ai(x)=Ai. The relative

abundance of a forest type at location x is the sum of its

constituent species’ relative abundance at the location, a(x) =

oi∈Gai(x), where G = (1,...,n) represents the set of all species of

this forest type. The cumulative relative abundance of this forest

type can be computed as oxa(x) = A; let pi = Ai=A, and the
FIGURE 1

Overview of the methods. Tree data was prepared for each period at the 0.025° grid level (approximately 3km) with species importance value index
(IVI). Using the tree data, we built species distribution models to create interpolated maps of species distribution ranges and classified forest types.
For each pair of forest types that were identified in both periods, we estimated the range shift of the forest type and the average of constituent
species based on the portfolio hypothesis. Species range shift was represented by the geographic centroid shift of the interpolated
distributions range.
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geographic centroid of the forest type can be calculated as c =

oxx · a(x)=A =oi∈Gci · pi. By the Leibniz product rule of calculus

(see details in Supplementary Text 1.1), we have

Dc =oi∈GDci · pi +oi∈Gci · Dpi (1)

Because oi∈Gpi = 1 and thus oi∈GDpi = 0, the latter term of

Equation 1 equals the covariance between species’ centroids and

the change in their cumulative relative abundance: cov(ci,  Dpi) =
E(ci · Dpi) − E(ci) · E(Dpi) =oi∈Gci · Dpi.

Notably, the shift in a forest type’s centroid (Dc) is driven not

only by the weighted mean of centroid shifts at the species level

(oi∈GDci · pi), but also, counterintuitively, by the covariance

(cov(ci,  Dpi)) that inflates or deflates the centroid shift of the

forest type (Figure 2). This covariance term, which we call the

portfolio effect, can be attributed to a difference between forest type

range shift and the range shift of its constituent tree species. We

therefore made the following hypothesis: when the range shift of a

forest type and its constituent tree species are measured along a

given direction, a positive covariance (cov(ci,  Dpi)) will inflate the
magnitude and velocity of the forest type range shift along this

direction, while a negative covariance will reduce the magnitude

and velocity along this direction (Figure 2). In most cases, portfolio

effects are expected to be positive because species at the front of a

forest type range (i.e., in the direction of forest type range shift)

often have increasing abundances due to preferential allocation to

dispersal and reproduction, while species at the rear of forest type

range are decreasing in abundance, reflecting the compounded

effect of constituent species’ mortality and recruitment on the

centroid shift (Burton et al., 2010; Rumpf et al., 2018).
2.2 Data integration

For this study, we compiled and integrated in situ forest-tree data

from independent and standard forest inventories. Data for the

United States came from the Forest Inventory and Analysis (FIA)

(Burrill et al., 2021) and the Cooperative Alaska Forest Inventory
Frontiers in Ecology and Evolution 04
(CAFI) (Malone et al., 2009). Data for Canada came from two

independent sources: permanent sample plot networks (Paquette

and Messier, 2011; Chen et al., 2016) and Canada’s National Forest

Inventory ground plot network (National Forest Inventory, 2011;

Zhang et al., 2017). See Supplementary Text 1.2 for a detailed

description of each data.

We derived the following data integration protocol to

harmonize the different forest inventory datasets described above

into consistent continental data frames. From each dataset, we

obtained tree-level information for all the trees with a minimum

diameter at breast height (DBH) of 1 cm. We grouped these tree-

level records by the year of inventory and compiled one data frame

for 2000–2019 and another data frame for 1970–1999. For each

period, we summarized tree-level information into a plot-level

species abundance matrix. We calculated, for each sample plot,

the importance value index (IVI hereafter) for a species, which is the

sum of the percent number of stems and the percent basal area for

the species. Frequently used in forestry research as a typical measure

of species abundance (Dyer, 2006; Costanza et al., 2017; Iverson

et al., 2019a), IVI equally weighs the number of stems and basal area

of a particular species, and ranges from 0 to 200.

The final continental data frames consisted of plot identification

and coordinates, as well as the IVIs of all tree species present on

each plot. The plots were widely distributed across the forested areas

of the continent (Supplementary Figure 1). For the 1970–1999 data

frame, because some trees in the genera of Aesculus, Amelanchier,

Carya, Crataegus, Halesia, Malus, and Salix were recorded only to

the genus level, we also calculated the IVIs of these genera

(Supplementary Table 1). To mitigate the impact of sampling bias

(Araújo et al., 2019), we derived the average species IVI of all plots

located within a 0.025° by 0.025° (approximately 3 by 3 km) grid cell

in each past and present plot-level dataset, which is a reasonable

aggregation regardless of the distribution of species IVI (see

Supplementary Text 1.3).

We also compiled 38 predictor variables for the supervised

learning of species and forest type distributions, consisting of 17

climate variables (Fick and Hijmans, 2017; Karger et al., 2017;
BA

FIGURE 2

Range shift dynamics of forest type and constituent tree species based on the portfolio effect. Forest type shift is controlled by constituent species
centroid shifts (Δci) and changes in cumulative relative abundance (Dpi). The covariance between a species’ centroid and the change in its cumulative
relative abundance (cov(ci,Δpi)) determines whether forest type shift outpaces or lags tree species shifts. (A) In this simple scenario where tree species
and forest type shift along the same direction, if covariance > 0, forest type shift outpaces tree species shifts, but (B) if covariance< 0, forest shift is
outpaced by tree species shifts.
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Trabucco and Zomer, 2019; Karger et al., 2022), 13 topographic

variables (Amatulli et al., 2018), seven soil variables (Batjes, 2016),

and human footprint (Venter et al., 2016). These predictor variables

were derived from open-access satellite-based remote sensing and

ground-based survey data layers, all of which have a nominal

resolution of 1 km. Detailed information on the predictor variables

is available in Supplementary Table 2. Different climate and human

footprint data were used for past and present periods to match the

represented years (see Supplementary Table 2).

We extracted predictor variables to the centroid of each grid cell

using the “sf” or “raster” packages (Pebesma, 2018; Hijmans, 2023;

Hijmans and Van Etten, 2022) in R (R Core Team, 2021) and used

the “Hmisc” package in R to impute missing data in those predictor

variables (Harrell, 2023). Our final training data encompassed more

than 114,000 grid cells for the present period and 97,000 grid cells for

the past period containing species IVI and 38 predictor variables.

For mapping purposes, we prepared another 0.025° by 0.025°

grid, covering forest extent across North America with all predictor

variables. Each grid cell had a minimum 10% canopy cover based on

the global forest range map (Hansen et al., 2013), in accordance

with FAO’s definition of “forest” (FAO, 2020). Species or forest type

distributions were predicted for each grid cell of this mapping grid.

Our study region encompassed 1,004,358 grid cells of forested area

across North America, with a total of ~5 million km2. The tropical

regions of North America, i.e., Mexico, Central America, and the

Caribbean, were not included in this analysis due to a lack of

remeasured in situ data.

Our study region covered 92 terrestrial ecoregions (Olson et al.,

2001) across the United States and Canada. These ecoregions were

grouped into three distinct arch-biomes based on the definition of

the eastern United States in previous studies (e.g., Knott et al., 2020)

and biome map (Olson et al., 2001): West (39 ecoregions), East (33

ecoregions), and Boreal (20 ecoregions, Supplementary Figure 1).

For each arch-biome and time frame (2000–2019 and 1970–1999),

we classified forest type (see 2.4 Forest type classification) and

quantified distribution ranges of forest types and constituent tree

species separately.
2.3 Range shifts of tree species

Following the formulation of the portfolio hypothesis, the first

step to quantify forest type range shifts is to determine constituent

species’ range shift patterns, which consisted of two steps: creating a

spatially continuous map of species i‘s relative abundance (ai(x)) at

location x (i.e., grid latitude and longitude) across the continent and

quantifying its geographic centroid shift (Dci). To estimate a species’

relative abundance, we first created interpolated maps of species IVI

across the 4.9 million-km2 study region using random forests model

and 38 predictor variables, which took similar steps as correlative

species distribution models (Araújo et al., 2019; Iverson et al.,

2019a). Since we do not have sufficient samples in some areas,

we used interpolated relative abundance map instead of

observations. For each arch-biome (West, East, and Boreal)

and time frame (2000–2019 and 1970–1999), only species with

sufficient sample size (≥60 grid cells where species IVI > 0) in
Frontiers in Ecology and Evolution 05
both time periods were included (van Proosdij et al., 2016;

Supplementary Table 1).

Random forests are a non-parametric ensemble learning

approach (Breiman, 2001), which combines a variant of decision

trees and an additional level of randomness by bootstrapping sub-

data and different sets of predictor variables. Random forests are

commonly used in species distribution models (Araújo et al., 2019)

as it mitigates the multicollinearity issues that most statistical

models face (James et al., 2013). We used the “randomForest”

package in R (version 4.0.4) (Liaw and Wiener, 2002) to train a

separate model for each species, period, and arch-biome. Following

Iverson et al. (2019a), we reported the mean predicted IVI of all

decision trees for each species or zero for species with zero median

and a coefficient of variation no less than 2.75 among all predicted

values of decision trees. For each species, we built 20 random forests

models to calculate an average IVI in each grid cell in the

mapping grid.

Based on the estimated species IVI, we calculated species

relative abundance (ai(x)) along each latitudinal and longitudinal

gradient by calculating percent IVI for each species in each grid cell.

We then calculated the cumulative relative abundance

(Ai =oxai(x)) and geographic centroid (ci =oxx · ai(x)=Ai) for

each species. The direction and velocity of species range shift (Dci)
were calculated based on the displacement between the past and

present geographic centroids using the “sp” and “sfsmisc” packages

in R (Pebesma and Bivand, 2005; Maechler et al., 2023). In this

study, the direction was measured in azimuth, the angle between

past and present geographic centroids around the same horizon

(i.e., altitude was not considered), ranging from 0 to 360° measured

from the North direction. We also determined the total area of each

species’ range as the sum of the grid cell area weighted by the

species’ relative abundance. Grid cell area was estimated using the

“raster” package in R (Hijmans and Van Etten, 2022).
2.4 Forest type classification

We modified the existing forest type classification algorithm

(Dyer, 2006; Costanza et al., 2017) to determine forest type

definition in each arch-biome and period. Specifically, instead of

hierarchical cluster analysis used in previous research (Dyer, 2006;

Costanza et al., 2017), we used K-means cluster analysis due to the

size of the data. We first used an autoencoder neural network to

calculate a latent space representation of the original grid tree IVI

data, which is often more suitable for K-means cluster analysis than

the original data (Song et al., 2014). Instead of the interpolated maps

of species IVI, we used the grid-level observational data to maximize

the performance of cluster analysis. See Supplementary Text 1.4 for a

detailed description of autoencoder neural networks and the

architecture used in this study. To avoid potential bias caused by

insufficient sample sizes, we excluded the species that are present in

less than 60 grid cells (where IVI > 0) (Supplementary Table 1).

Based on the reduced dimensional representation, we then

conducted a K-means cluster analysis using the built-in function

“kmeans” in R (R Core Team, 2021). We set the number of starts to

50 and the maximum iterations to 100. To fine-tune hyperparameters
frontiersin.org
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for the autoencoder neural networks (the number of dimensions) and

K-means cluster analysis (the number of clusters; Supplementary

Figure 2), we calculated the silhouette width using the “cluster”

package in R (Maechler, 2018). Silhouette width is an indicator of

between-cluster heterogeneity; With a range between −1 and 1,

positive silhouette width values indicate that a given member of a

cluster is closer to its own cluster’s centroid than to the nearest

cluster’s centroid. Negative values indicate that a given member is

closer to the nearest cluster’s centroid than to the centroid of its own

cluster. Generally, higher silhouette width values indicate greater

between-cluster heterogeneity.

With the optimal hyperparameter values, we conducted K-means

cluster analysis 20 times to derive the final classification results due to

the random nature of the analysis. Since forest types (i.e., clusters)

were defined independently in each of the 20 repetitions, wemanually

matched the same forest type based on similarities in mean species

IVI (i.e., species composition for each forest type) between all the

combinations of forest types generated from the 20 repetitions. When

10 or more repetitions identified the given forest type, we recognized

the forest type as a final forest type. Moreover, since we classified

forest types for three arch-biomes separately (West, East, and Boreal),

there were potential overlaps of forest types between them. To

identify and merge potential overlaps, we calculated the Euclidean

distance of all combinations of the final forest types in terms of mean

species IVI. If an Euclidean distance was less than 60, forest types

across arch-biomes were merged. One exception was that western

aspen–mixed conifer (W‐J) and boreal quaking aspen–spruce (B-A)

remained separated due to the large expanse of quaking aspen

(Populus tremuloides).

Finally, with the final set of forest types for each period, we

identified forest types that were present in both periods. To do this,

we calculated the Euclidean distance of all combinations between

past and present forest types in terms of mean species IVI. Pairs

were considered matching when the forest type of minimum

distance was the same between the past-and-present pair. For

example, if and only if present forest type X’s closest past forest

type is Y, and past forest type Y’s closest present forest type is also X,

they were considered matching. Finally, we manually grouped final

forest types into larger forest biome categories based on Eyre (1980).
2.5 Forest type mapping

We predicted the distribution ranges of forest types by first

considering two candidate imputation models: random forests and

support-vector machines. Support-vector machines are supervised

learning models which construct a hyperplane or set of hyperplanes

in a high- or infinite-dimensional space to help analyze data for

classification and regression analysis (Vanpik and Cortes, 1995).

We used the “e1071” package in R with the default hyperparameter

setting (Meyer et al., 2019). For random forests, we used the default

hyperparameter setting of the “randomForest” package in R (Liaw

and Wiener, 2002) and the same set of predictor variables as

described in 2.2. Data integration.

To assess the performance of the imputation model in mapping

forest types across the continent, we conducted a rigorous 80/20
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cross-validation using bootstrapping. In each iteration, we used

stratified sampling to split the entire dataset into the training (80%)

and testing (20%) sets and conducted the combination of under-

sampling and oversampling of the training set for both random

forests and support-vector machines to balance the sample size for

all classes (i.e., forest types). Stratified sampling was conducted

using the “caret” package in R (Kuhn et al., 2020), and under-

sampling and oversampling were conducted using the “UBL”

package (Branco et al., 2016). Based on five random iterations

with sample replacement in each of the 20 repetitions, we calculated

the 95% confidence interval of classification accuracy, the Kappa

statistic, and elements of the confusion matrix. For each candidate

imputation model, the output was a matrix of class probability from

five iterations. We chose the forest type of majority vote from the

five iterations, and thus, our final output was a matrix of class

probability from the 20 repetitions. Based on how many repetitions,

out of 20, returned the given forest type, we calculated percent forest

type in each grid cell. Every grid cell has a sum of 100 for all forest

types, with the forest type with the highest percentage being the

final assigned forest type. (e.g., The final forest type assigned to a

grid cell consisting of 20% forest type A, 30% forest type B, and 50%

forest type C is forest type C). The percent forest type was used to

visualize the geographic patterns of forest type range shifts, species-

level range shifts, and the difference between them.
2.6 Range shifts of forest types

Following the formulation of the portfolio hypothesis, we

calculated the weighted sum of species-level shifts (oi∈GDci · pi),
the covariance (the portfolio effect, cov(ci,  Dpi)), and the sum of the

two (i.e., forest type-level shift (Dc)) for each forest type that was

present in both periods along the latitudinal and longitudinal

gradient. For each forest type, G represents the set of all species

present in the forest type (mean species IVI > 0). Along each

respective gradient, Dci represents the centroid shift of species i, D
pi represents the change in pi from past to present periods, and pi and

ci take the mean values of past and present periods. Thus, we have the

species-level shifts, covariance, and forest type-level shift for each

latitudinal and longitudinal gradient for each forest type, where the

weighted sum of species range shifts (oi∈GDci · pi) and covariance

term (cov(ci,  Dpi)) precisely matches a forest type range shift (Dc).
In a two-dimensional space with latitude and longitude

combined, we also derived the velocity of a forest type range shift

in kilometers per decade and azimuth angle by calculating the

distance between past and present forest type centroids using “sp”

and “sfsmisc” packages in R (Pebesma and Bivand, 2005; Maechler

et al., 2023). This forest type range shift can be visualized as a vector

in a two-dimensional space of latitude and longitude, as a resultant

of two composing vectors: species-level vector and covariance

vector. Quantifying the length of these two vectors (i.e., velocity)

is not practical due to the earth’s curvature, yet we aimed to

approximate it by calculating the distance between past forest

type centroid and the point to where the vector heads, both in

degrees and kilometers (see Supplementary Figure 3 for a visualized

example). Finally, to expand the velocity of forest type and species
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range shifts to a grid level for visualization purposes, we weighted

the velocity of each forest type by the percent forest type in each grid

cell. Average percentage of past and present forest types was used.
3 Results

Our forest type classification identified eight forest biomes and 43

forest types across North America (Figure 3, Supplementary Figures 4–

11, Supplementary Table 3). The mean silhouette widths from our K-

means cluster analyses were significantly greater than zero for all forest

types (p< 0.001) in the West for the present dataset (Supplementary

Table 4). Eighteen out of 19 forest types in theWest, 22 out of 26 in the

East, and all six forest types in the Boreal region were significantly

greater than zero in the mean silhouette width. In summary, 90% of the

forest types classified here were significantly distinct from one another

in terms of species composition (Supplementary Table 4).
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For mapping the ranges of classified forest types, the random

forests model was 10–17% and 11–20% more accurate in terms of

overall accuracy and the Kappa statistic, respectively, compared

with the support vector machine model (Supplementary Figure 12).

Therefore, we selected random forests as the final imputation

model. The confusion matrices based on random forests models

were based on the number of cases in class prediction, standardized

in percentage (Supplementary Figures 13, 14). For the present

dataset, the coastal redwood–tanoak forest (W-P) had the highest

classification accuracy (88%; Supplementary Figure 13), and the red

maple–hardwood forest (E-F) had the lowest one (18%;

Supplementary Figure 13) among all forest types.

At the individual species level, Sitka spruce (Picea sitchensis) had

the greatest velocity in range shifts (480.4 km·decade-1), followed by

balsam fir (Abies balsamea; 438.6 km·decade-1) and gray alder (Alnus

incana; 354.6 km·decade-1) (Figure 4A, Supplementary Table 1). In

contrast, pond cypress (Taxodium ascendens) had the lowest velocity
FIGURE 3

We classified forested areas across North America into 43 forest types in eight forest biomes and three arch-biomes (East, West, and Boreal)
following the existing algorithms. See Supplementary Table 3 for the definition of forest types and constituent tree species. Colors in the circular
dendrogram corresponds to those in the map of forest type distribution range. Here, we show a map of forest types for the present period, based on
the distribution of forest types estimated by random forests (see 2.5 Forest type mapping).
BA

FIGURE 4

The velocity of (A) tree species range shifts and (B) forest type range shifts. Velocity of shifts (here in logarithmic scale) is defined as the distance
between past and present centroids of range in kilometers per decade (km·decade-1). See Supplementary Table 3 for the definition of forest types
and constituent tree species.
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of all (1.5 km·decade-1), followed by water-elm (Planera aquatica;

4.5 km·decade-1) and sweetgum (Liquidambar styraciflua;

4.5 km·decade-1). The velocities of temperate tree species range

shifts found in our study are consistent with those reported in the

previous studies (Supplementary Table 5). Few boreal tree species

have ever been assessed in terms of shifting velocity, and here, we

found that boreal tree species’ ranges are shifting much faster than

temperate ones. In terms of direction, 36 out of 150 species shifted

northwards, 34 eastwards, 27 southwards, and 53 westwards during

the studied period (Supplementary Table 1).

At the forest type level, we found that the range of Sitka spruce–

western hemlock forest (W-A) shifted with the highest velocity at

327.8 km·decade-1 (Figure 4B). Among the top six fast-shifting forest

types, three were in the boreal forest biome (B-A, B-B, and B-D, see

Supplementary Table 3 for forest type names), two were in the eastern

mixed forest biome (E-A and E-K), and one was in the Pacific-coastal

forest biome (W-B) (Supplementary Table 4). The remaining forest

types shifted at a velocity lower than 100 km·decade-1. In terms of the

direction of shift, nine out of 43 forest types shifted westwards, 16

eastwards, 11 southwards, and seven northwards during the studied

period (Supplementary Table 4).

Overall, forest type range shifts differed substantially from tree

species range shifts (i.e., the average range shift of constituent tree

species) in terms of velocity (Figures 5, 6). On average, forest type

ranges shifted at 86.5 km·decade-1, more than three times as fast as

the weighted average of their constituent tree species (28.8

km·decade-1) across the continent at the grid level (Figures 5B, 6C).

For more than 75% of forest types, the range shifts at the forest type

level substantially outpaced the average range shifts of constituent

tree species, and only 10 out of 43 forest types moved more slowly

than their constituent tree species in terms of range shifts (Figure 6C,

Supplementary Table 4). In the boreal and Great Lakes regions, the

velocity of forest type range shifts exceeded that of tree species range

shifts by 200 km·decade-1 or more (Figure 5B). Along the Rocky and

Appalachian Mountains, forest type ranges shifted with a lower

velocity than the ranges of their constituent tree species (Figure 5B).
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4 Discussion

While existing forest type classifications for North America are

limited to either Canada or the United States (Rowe, 1972; Dyer,

2006; Ruefenacht et al., 2008; Costanza et al., 2017; Knott et al.,

2020), our study supports ongoing and future international

collaborations in forest management and climate actions (FAO

and UNEP, 2020), with a consistent continental-wide data-driven

forest type classification scheme. Nevertheless, our classified forest

types are generally compatible with existing forest type

classifications for the North American continent (Rowe, 1972;

Dyer, 2006; Ruefenacht et al., 2008; Costanza et al., 2017; Knott

et al., 2020).

Our findings provide strong support for the portfolio

hypothesis. The marked difference in the range shift velocity

between forest type and constituent tree species is mainly

attributable to the covariance term (cov(ci,  Dpi)), which we call

the portfolio effect. Positive portfolio effects provide a mechanistic

underpinning of our finding that, across the North American

continent, forest type range shifts generally outpaced tree species

range shifts (Figures 5B, 6C). In some cases, negative covariance

terms pervade, leading to reduced forest type range shift, such as in

some forests across the Rocky and Appalachian Mountains

(Figure 5B). In these montane forest types, constituent species

increase their relative abundances in the rear edge, where

investments in competitive traits are likely to dominate, even if

the species centroids drift towards the front edge (Figure 2).

Various factors in complex interactions are attributable to

species abundance dynamics, leading to positive or negative

portfolio effects. While climate change (e.g. , increasing

temperature and precipitation changes) is commonly considered

the major driver of species abundance dynamics and associated

range shifts (Boisvert-Marsh et al., 2014; Fei et al., 2017; Sittaro

et al., 2017), climate change-induced disturbances (e.g., fires and

disease outbreaks), human disturbances (e.g., logging and land use

changes), and biotic interactions influencing the dispersal and
BA

FIGURE 5

The velocity of forest type range shift and the difference in velocity between forest types and the weighted mean of their constituent species across
the continent, mapped at a 0.025° resolution. (A) The velocity of forest type at the grid level. (B) The difference in shift velocity between forest types
and the weighted mean of their constituent species at the grid level, with warm colors representing areas where forest type range shifts outpaced
species range shifts, and cold colors representing areas where species range shifts outpaced forest type range shifts. Forest type range shift and the
weighted mean of its constituent species were first quantified for each forest type. Here, we used interpolated maps of forest types to visualize them
based on percent forest type in each grid cell.
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survival rates can further exacerbate the dynamics of species

abundance (Vanderwel and Purves, 2014; Anderegg et al., 2015;

Gauthier et al., 2015; Brice et al., 2019, 2020; Seidl et al., 2020).

Although it is out of the scope of this study to assess the

determinants behind species abundance dynamics, we utilized

non-climate predictor variables, including human footprint

(Venter et al., 2016) (Supplementary Table 2), to account for the

impacts of potential human disturbances.

There are profound impacts of forest type range shifts on forest

biodiversity and associated ecosystem functioning, food, water,

energy security (Gitay et al., 2002; Neilson et al., 2005; Wellstead

and Howlett, 2017; Kremen and Merenlender, 2018), human well-

being (IPBES, 2018), and socioeconomic value (Hanewinkel et al.,

2013). Forest type range shifts can jeopardize the sustainability of

local forest industries, making themmore vulnerable to timber price

fluctuations (Zhou, 2021). It can also inflate timber procurement

ranges and increase transportation costs, causing significant

downstream financial implications with serious welfare and

economic consequences comparable to the impact of COVID-19
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on transportation and logistics (Polzin and Choi, 2021).

Furthermore, the collective human experiences of rural

communities embedded within these forested landscapes

have strong ties to surrounding forest types. From the Sitka

spruce–western hemlock forests in the Pacific Northwest to the

oak–pine forests along the Appalachians (Supplementary Table 4),

the change in native forest ecosystems may be threatening the

customs, identities, and culture of indigenous (Chamberlain et al.,

2018) and other local communities while jeopardizing non-timber

forest products supply and overall environmental justice

(Fleetwood, 2020). The rapid shift of forest types may

place urgency on human communities, especially rural

populations, to adapt their cultural norms and relationships with

surrounding forests.

Our finding that a majority of forest types shifted faster than

their constituent tree species due to positive portfolio effects

suggests that the impacts of tree species’ range shifts under global

change on forest ecosystem functioning and services may be

underestimated. Forest ecosystem functioning (Loreau, 2000;
B

C

A

FIGURE 6

The difference between forest type range shifts and tree species range shifts. Scatter plots show the velocity of forest type vs. tree species range shift
velocity, in terms of latitudinal (A) and longitudinal (B) shift of geographic centroids, with positive values representing northward (A) and eastward
(B) shifts and negative values southward (A) and westward (B) shifts. Vertical line segments represent the difference between the velocity of forest type range
shifts and tree species range shifts, along latitude (A) and longitude (B). The length of these segments is identical to the portfolio effect. (C) A comparison
between the velocity of forest type and tree species range shift velocity, regardless of the direction. The horizontal dotted lines represent the mean velocity
of forest type and tree species shists in pink and blue, respectively. The mean velocity represents a grid-level velocity (i.e., Figure 5A for forest type). To ease
identification of various forest types, axis text colors of the Panel (C) are consistent with Figures 3, 4B.
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Cardinale et al., 2011), productivity (Liang et al., 2016), phenology,

and population turnover (Zhu et al., 2014; Pecl et al., 2017) are

directly related to tree species composition and other forest

characteristics (Loreau, 2000; Cardinale et al., 2011; Paquette and

Messier, 2011; Liang et al., 2016). Therefore, existing adaptive forest

management regimes, which are based primarily on individual

species range projections and associated environmental and social

aspects (Millar et al., 2007; Iverson et al., 2019b), may have

underestimated the impacts of global change (including climate

change, land use change, invasive species regimes, habitat

fragmentation, and forest degradation). Compositional changes of

species into novel forest types imply that forest managers may need

to address effects on forest ecosystems that are unique in space and

time (Iverson and McKenzie, 2013), pursuant to a need for more

dynamic silvicultural practices. For instance, in the central United

States, a diminishing supply of various white oak species, such as

white oak (Quercus alba) and bur oak (Q. macrocarpa), is

threatening the bourbon industry (Conrad et al., 2019), a staple

of American culture and tradition. These oak species are supported

by a variety of co-existing tree species; For example, deep roots of

hickory species (Carya spp.) improve soil structure (Smith, 2024),

eastern redbud (Cercis canadensis) enhance soil nutrient availability

through nitrogen fixation, pine species (Pinus spp.) co-exist without

intense competition (Nowacki and Abrams, 2008), and species like

black cherry (Prunus serotina) support a wide range of wildlife

species, which play a critical role in acorn dispersal. Shifts and

contracting ranges of these co-existing species communities can

negatively affect the quality and volume of oak species for local

industry. As forest type-level change (25% reduction in

Appalachian oak–pine forest range, Supplementary Table 4) was

far more apparent than species-level change (e.g., 12.5% reduction

in Q. alba range and 6% increase in Q. macrocarpa range,

Supplementary Table 1), missing the forest for the trees for their

range shift patterns may reduce the capability and preparedness of

local forest industry and communities to face global change through

disruptions in timber supply chains and ecosystem benefits.

Positive portfolio effects enable us to scale global change-induced

range shifts up to the levels where decision-making processes often

take place. Because of the portfolio effect, climate change and other

factors of global change, such as anthropogenic effects, land use

change, as well as associated insects/disease outbreaks and invasive

species regimes, will result not only in the migration of forest types,

but also in the emergence of new forest types (Williams and Jackson,

2007). Due to unequal changes in relative abundance among species,

new assemblages of species (i.e., new forest types that are unknown

today) may appear. To this end, additional research could outline the

relative importance of various global change factors on forest

migration and tree species range shift patterns. Further spatial

analyses could also disentangle directional and non-directional

factors influencing the absolute difference in range shift velocity

between forest types and constituent tree species.

In this study, we quantified the velocity of range shifts using

interpolated maps over a large geographic area to best assess the

difference between forest type range shifts and constituent species

range shifts. As such, some species in our results exhibited higher

velocities than previously reported. This is especially prominent in
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the boreal region, where sample density is limited (Supplementary

Figure 1) and no previous studies have ever assessed at this spatial

scale. The contrast between our reported velocities and previous

studies mainly results from three sources: uncertainty associated

with interpolation, limitations in incorporating biotic factors into

species distribution, and the spatial scale of this study. While

estimating the distributions of species or similar entities through

interpolation or extrapolation has been a popular method in

ecology (Araújo et al., 2019), predictions are subject to various

uncertainties (Beale and Lennon, 2012), which could affect the

reported velocities. Nevertheless, we minimized the uncertainty

associated with sampling bias through grid aggregation, model

selection by considering several candidate models, and

extrapolation by analyzing three arch-biomes separately.

However, the incorporation of biotic interactions (competition,

dispersal ability, etc.) remains an enormous challenge in

correlative distribution modeling (Araújo et al., 2019), and thus,

the interpolated maps do not reflect realized niche but rather

suitable areas for species or forest types in terms of climate,

topography, and soil characteristics. Our study also covers a

larger geographic area than previous studies, and we were able to

capture the entire range of species or forest types without being

limited by political boundaries. Nevertheless, our main objective

was the comparison between forest type range shifts and constituent

species range shifts, and the use of interpolated maps enabled an

effective comparison at a large geographic scale.

The divergent range shift patterns between forest types and tree

species observed here represent only a snapshot of a more

prominent trend seen in geological time scales. Forests, because of

their sensitivity to changes in tree species compositions, have over

the millennia exhibited shorter life spans than individual species

(Williams et al., 2004). Positive portfolio effects may provide a

critical scientific basis for adaptive forest management and

conservation in mitigating the impacts of rapid forest

transformation under climate change.
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