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Climate change is altering legacies of native insect-caused disturbances and contributing

to non-native invasions globally. Many insect fitness traits are temperature dependent

and projected climatic changes are expected to cause continued alterations in

insect-caused tree mortality, with uncertain consequences for forest ecosystems and

their management. Dendroctonus ponderosae in Pinus habitats of western North

America and Ips typographus in European Picea are among the most significant tree

mortality agents on each continent. Changing climate is influencing both species in

their native habitats, although thermal suitability if they should invade new continents

and novel forest habitats has not been investigated. We assessed thermal suitability

for intra- and inter-continental establishment using physiological models that describe

evolved, temperature-dependent traits of each species. Models were driven by

projections from two Global Climate Models representing RCP 8.5. Simulations suggest

that for both species the common phenological strategy of one generation annually

(univoltine) will shift northward with warming throughout this century. As optimum habitat

for I. typographus univoltinism shifts northward, habitat supporting a 2nd generation,

a historically common strategy in warm European Picea forests, expands on both

continents. In contrast, a 2nd D. ponderosae generation has been historically rare due

to traits that evolved for phenological synchrony in its cool native habitats. As thermal

habitat for D. ponderosae univoltinism shifts northward, suitability for a 2nd generation is

limited to the warmest Pinus forests on both continents. In the near future (2011–2040),

models project extensive thermal suitability for inter-continental establishment of both

species, highlighting the need for effective mitigation policies and continued monitoring
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at ports in an era of climate change and increasing global trade. Throughout the century,

thermal suitability remains high for I. typographus population success on both continents,

for D. ponderosae in warm areas of Europe, and for D. ponderosae expansion into novel

North American Pinus habitats. Portions of the historical D. ponderosae range, however,

are projected to become thermally unsuitable.

Keywords: climate change, voltinism, phenology, bivoltine, invasive, range expansion, mountain pine beetle,

European spruce bark beetle

INTRODUCTION

Living forests are critical components of the earth’s climate
system. Growing trees absorb carbon dioxide (CO2) and can store
it for hundreds to thousands of years. Increasing atmospheric
concentrations of CO2, largely caused by industrial activities,
are contributing to global climate change (IPCC, 2013) and
forest carbon sequestration and storage have become important
mitigation strategies (Dugan et al., 2018; Xu et al., 2018). Multiple
factors affect in situ forest carbon storage capacity including
tree growth and decay rates, management, and tree mortality
due to deforestation and natural disturbances (Breshears and
Allen, 2002 Li et al., 2003; Canadell and Raupach, 2008).
Insects are significant tree mortality agents globally, and bark
beetles (Coleoptera: Curculionidae, Scolytinae) are among the
most important in forest ecosystems (Hicke et al., 2013; Mezei
et al., 2017). Bark beetles are integral ecosystem components
that promote heterogeneity and resilience across multiple scales
(Kulakowski et al., 2017), yet can also impact economic, societal
(Grégoire et al., 2015) and short-term carbon sequestration
(Pfeifer et al., 2011; Hansen et al., 2014) goals. The bark beetle
and forest carbon feedback to climate change highlights the
importance of understanding future climate influences on global
distributions of bark beetle populations (Kurz et al., 2008;
Raffa et al., 2008; Adams et al., 2010). Climatic changes have
already influenced patterns and timing of bark beetle population
outbreaks in their native ecosystems (Buotte et al., 2016; Senf
and Seidl, 2018), in addition to intra- and inter-continental range
expansion and invasion of novel habitats by some species (Liu
et al., 2014; Cooke and Carroll, 2017). Predicting tree-killing
bark beetle population responses, including range expansion
and potential contraction, to future climate projections is
an important component of forest management and carbon
sequestration strategies globally.

The European Ips typographus (L.) and North American (NA)
Dendroctonus ponderosae (Hopkins) are considered among the
most important disturbances affecting tree mortality on each
continent. Due to thermally-dependent fitness traits and positive
responses to drought-induced tree stress, population activity has
increased recently with a changing climate (Weed et al., 2015;
Kolb et al., 2016; Marini et al., 2017; Senf and Seidl, 2018). In
western Canada and the United States (US) recent tree mortality
due to D. ponderosae exceeded 28 Mha (Hicke et al., 2015; Cooke
and Carroll, 2017). In Europe tree mortality caused by bark
beetles, mainly I. typographus, exceeded 2.88 million m3 per year

during the period 1958–2001 and has increased in recent decades
(Schelhaas et al., 2003; Seidl et al., 2011).

Both species feed and reproduce in tree phloem, typically
killing the host when at epidemic levels, and they select mature
trees within the appropriate genera that are of sufficient size and
bark/phloem thickness for offspring production. Both species
have relatively large geographic distributions that follow that
of their primary host trees, Picea abies for I. typographus
and Pinus species for D. ponderosae. Across their vast ranges,
phenological plasticity in thermal- and photoperiod-regulated
traits allow for adjustments in lifecycle, and hence generation
timing, depending on year-round available heat, day length,
and timing of cold temperatures that can induce offspring
death (Bentz et al., 2014; Schebeck et al., 2017; Schroeder and
Dalin, 2017). Many of these physiological traits are directly
influenced by climatic changes and can differ between the species
(Bentz and Jönsson, 2015). Moreover, although both species
have adapted to feed and breed in living tree tissues, their
tolerance to active plant defenses and density dependent traits
also differ (Kärvemo and Schroeder, 2010).

The distribution of I. typographus follows the entirety of
its host tree Picea abies which has a continuous range in
Scandinavia, north-eastern Europe and western Russia, and at
higher latitudes in central Europe (Farjon and Filer, 2013).
The current distribution of D. ponderosae, in contrast, is not
as extensive as species within its host genus Pinus, which are
contiguous further north and east in Canada, further east in the
US, and further south in Mexico than the current distribution of
D. ponderosae. Canada was covered in ice 21,000 years BP, and as
glaciers retreated several Pinus species colonized the new habitat
(Godbout et al., 2008; Roberts and Hamann, 2015). Despite the
availability of Pinus host trees, the northernmost areas remained
thermally unsuitable for D. ponderosae (Safranyik, 1978). Recent
warming in western Canada resulted in a rapid northward
expansion of D. ponderosae into Pinus habitat of northern
British Columbia and western Alberta (de le Giroday et al.,
2012). Climate change-induced range expansion ofD. ponderosae
southward has not occurred, despite the availability of known
Pinus hosts. Multiple Pinus species are found at low elevations
in Arizona, Mexico, and Central America, yet the most
southern locations where D. ponderosae has been observed
is high elevation forests of southern Arizona, US, northern
Chihuahua, Mexico, and northern Baja California Norte, Mexico
(Armendáriz-Toledano et al., 2017; Bentz and Hansen, 2017;
Dowle et al., 2017).
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Given the demand and volume of softwood timber products
in the global market there is a risk of inter-continental
introduction of both species, and fitness traits that influence
population success are known to be useful in predicting invasion
potential (Ward and Masters, 2007). Following introduction,
establishment is dependent on (1) propagule pressure, which
may be estimated as frequency of individual interception at
ports, (2) host tree availability, and (3) climate suitability. Ips
typographus has been intercepted almost 500 times in NA ports,
although establishment has not been recorded (Liebhold et al.,
2017). There are no records of D. ponderosae interception in
Europe. Ips typographus and D. ponderosae can successfully
reproduce in Picea and Pinus species not found on their native
continents (Økland et al., 2011; Fries, 2017; Rosenberger et al.,
2017; Flø et al., 2018), suggesting that if introductions were
to occur, suitable trees for reproduction on either continent
would not be a barrier to establishment and spread. A significant
unknown is the climate suitability for I. typographus in NA, and
D. ponderosae in Europe. Evolved, thermally-dependent traits in
both species affect population success and voltinism (i.e., number
of lifecycles or generations in a year), and thereby the potential
for establishment and spread.

Our goal was to describe potential changes in the distribution
and voltinism of I. typographus and D. ponderosae given current
and projected temperatures across NA and Europe. We used
previously published phenology models for predicting lifecycle
timing and number of annual generations based on thermally-
influenced fitness traits specific to each species. By running our
models for each species on each continent we assessed potential
shifts in voltinism and distribution in their native continents,
in addition to thermal suitability for D. ponderosae in Europe
and I. typographus in NA. Model results provide measures
for predicting establishment and persistence of each species if
invasion should occur in non-native habitats and continents.

MATERIALS AND METHODS

Study System: A Comparison of
I. typographus and D. ponderosae Life
History Strategies
Ips typographus and D. ponderosae use aggregation pheromones
during the colonization of live host material which enables a
rapid mass attack (i.e., within days) that can overwhelm host
defenses (Christiansen and Bakke, 1988; Raffa et al., 2008). Male
I. typographus initiate attacks and they are generally accompanied
by 1–3 females (i.e., polygamous), whereas in D. ponderosae
females initiate attacks and both males and females can have
multiple mates (i.e., polyandry and polygyny), at least during
epidemic phases (Janes et al., 2016). Both species have fungal
associates that can assist in compromising host tree defenses
and for D. ponderosae they also provide nutrition for developing
brood (Hofstetter et al., 2015; Krokene, 2015; Zhao et al., 2018).
Dendroctonus ponderosae is obligatory dependent on several
fungal associates that are carried in mycangia, highly specialized
structures of the exoskeleton (Six and Bracewell, 2015). Mycangia
have not been identified in I. typographus and mutualistic fungal

associates are unclear. Although both species are capable of
infesting and reproducing in live standing trees, I. typographus
is commonly found in wind-felled trees with no or weak defenses
(Christiansen and Bakke, 1988; Schroeder, 2010) and storms are
therefore considered an important factor in population outbreaks
(Kärvemo et al., 2014; Marini et al., 2017; Potterf and Bone,
2017). Dendroctonus ponderosae rarely colonizes downed trees
and has evolved semiochemical feedback mechanisms whereby
high population density facilitates high population growth (i.e.,
positive density dependence) when live standing trees are
attacked (Raffa et al., 2008). In live standing trees the average
reproductive success of D. ponderosae is approximately 3 times
higher than for I. typographus, in part due to significantly lower
attack densities and therefore less intraspecific competition in
D. ponderosae relative to I. typographus (Anderbrant et al., 1985;
Kärvemo and Schroeder, 2010; Komonen et al., 2011). Outbreaks
of both species can be initiated when drought stresses large
landscapes of host trees, particularly when associated with warm
temperatures (Kolb et al., 2016; Marini et al., 2017), allowing
smaller numbers of attacking beetles to overcome the weakened
defenses (Mulock and Christiansen, 1986; Raffa et al., 2008).

Following attack and oviposition parent beetles of both species
can emerge to establish an additional cohort, known as a sister
brood, in nearby trees although this trait is more common in
I. typographus (Reid, 1962; Davídková and Doležal, 2017). Ips
typographus is generally univoltine (i.e., one generation annually)
across all of Scandinavia except Denmark, bivoltine (i.e., two
generations annually) in Denmark, and bi- or multivoltine in
areas further south except at high elevations (Christiansen and
Bakke, 1988; Wermelinger, 2004). Dendroctonus ponderosae is
univoltine across the majority of its range in western NA with
semivoltinism (i.e., 2 years for a single generation) at the highest
elevations and rare to no occurrences of bivoltinism (Bentz and
Powell, 2014; Bentz et al., 2014).

Larval stages of I. typographus are not cold tolerant and
the adult stage is the typical overwintering lifestage (Koštál
et al., 2011; Dworschak et al., 2014). In D. ponderosae the
last larval stage is most cold tolerant and also the typical
overwintering lifestage, although other lifestages can survive
warm winters (Bentz and Mullins, 1999; Lester and Irwin,
2012; Rosenberger et al., 2017). Both species have an arrested
development, known as diapause, although the lifestage where
it occurs differs. Diapause in I. typographus occurs in the adult
stage and serves to prevent reproduction in late summer or fall
that would result in larvae during winter (Doležal and Sehnal,
2007). The critical day length for induction of adult reproductive
diapause varies latitudinally with southern populations entering
diapause at shorter day lengths than northern populations
(Schroeder andDalin, 2017). Themost northern populations also
include a considerable proportion of beetles with an obligatory
diapause wherein diapause occurs regardless of environmental
conditions. Dendroctonus ponderosae has a facultative diapause
that occurs in the last larval stage prior to pupation (i.e.,
prepupal) that is induced predominately by low temperatures
and serves to prevent molting to the cold intolerant pupal stage.
Diapause in D. ponderosae also varies latitudinally with a greater
proportion of northern US populations entering diapause at
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warmer temperatures compared to southern US populations
(Bentz and Hansen, 2017).

Climate Data
Climate data used in this study were selected from regionally
downscaled global climate model (GCM) scenarios for NA
and Europe. The data were produced within the CORDEX
project (Giorgi and Gutowski, 2015, http://www.cordex.org/)
on a grid-spacing of 0.44◦× 0.44◦(∼50 × 50 km), covering
the period of 1971–2100 on a daily temporal resolution. To
account for uncertainties in climate model simulations, data
of two GCMs were selected, CCCma-CanESM2 and ICHEC-
EC-EARTH. Projections from these two GCMs are within the
mean temperature and precipitation responses of other GCMs
within CMIP5. Both data sets were downscaled with the regional
model SMHI-RCA4 and bias adjusted using an empirical quantile
mapping method (Themeßl et al., 2011, Wilcke et al., 2013). For
the European domain, bias adjustment was based on high quality
observation data from MESAN-EURO4M (Bärring et al., 2014;
Landelius et al., 2016) for the period 1989–2010. For NA, re-
analysis data from WFDEI for the 1979–2012 period (Weedon
et al., 2014) was used.

We selected climate model runs based on the representative
concentration pathway, RCP 8.5, that characterizes a future with
relatively high greenhouse gas emissions (Moss et al., 2010; IPCC,
2013). RCP 8.5 represents the highest increase in global mean
temperature by the end of the century. Temperatures expected
under RCP 2.6 at the end of the century are similar to present
day climate and RCP 4.5 and 6.0 expected temperatures by
the end of the century are similar to mid-century RCP 8.5
temperatures. Patterns resulting from all RCPs can therefore
be extracted from runs based on RCP 8.5 by examining
output at multiple time frames. Daily maximum and minimum
temperature climate simulation data from 1981 to 2100 were used
to run I. typographus and D. ponderosae physiological models,
and output from multiple time periods throughout the century
therefore represent multiple RCP scenarios.

Ips typographus Physiological Model
Thermal response of I. typographus was modeled using a
previously published phenology model that was developed
to simulate large-scale trends of swarming (i.e., adult host-
seeking and dispersal) and lifecycle development based on
gridded climate data with low spatial resolution (50 × 50 km)
(Jönsson et al., 2011; Figure 1). Therefore, the model is more
generalized than concepts developed to simulate local and
fine-scale topoclimatic conditions (Baier et al., 2007). Thermal
sums are expressed as degree-days (dd) above a developmental
threshold of +5◦C for all developmental stages (Annila, 1969),
and emergence from winter hibernation was set to 120 dd. Flight
in search of suitable breeding material is related to a temperature
threshold, calibrated to +16◦C using data on pheromone
trap catches in combination with gridded temperature data
(Jönsson et al., 2011). Egg development was assumed to start
on the seventh day after swarming, accounting for a pre-
oviposition period and sufficient time to oviposit 50% of eggs
(Jönsson et al., 2009). Variation in microclimate within forest

stands, in particular differences caused by sun exposure on
tree boles, creates a continuum of breeding conditions. Because
I. typographus prefers sun-exposed over shaded substrates, model
parameters included in this study were originally derived from
field data using exposed boles, with developmental time from
egg to mature adult corresponding to a thermal sum of 625
dd (Harding and Ravn, 1985; Jönsson et al., 2007). Populations
are strongly regulated by availability of weakened and downed
host trees following storms and sanitary and salvage logging,
and the phenology model does not explicitly consider factors
such as availability of brood material and reproductive success
(Jönsson et al., 2012). Furthermore, as I. typographus adults are
cold hardy to −20 to −22◦C (Koštál et al., 2011), cold-induced
mortality is not considered to be a factor that could influence
I. typographus distribution.

Reproductive diapause of the first generation was modeled
to occur after fulfillment of day length and temperature (daily
mean<15◦C) requirements (Jönsson et al., 2011). The day length
setting was based on threshold values that vary geographically
and accounts for local adaptation to cold autumn temperatures.
The gridcell-specific threshold corresponds to the day length
of the earliest date during a climate reference period (1961–
1990) when I. typographus were not able to reach the adult
lifestage required for winter survival. This parameterization,
evaluated against independent field monitoring data (Jönsson
et al., 2011), follows a latitudinal gradient from approximately
15–16 h in central Europe to 20–22 h in the northern part of
Scandinavia. The model captures the day length threshold below
which individuals are responsive to lower temperatures that
trigger diapause induction. We did not evaluate the potential
for a third generation, and therefore reproductive diapause of
the second generation was not modeled. Ips typographus model
output is summarized as the number of years projected to have
one and two generations annually for 30 year periods (1981–
2010, 2011–2040, 2041–2070, 2071–2100).

Dendroctonus ponderosae

Physiological Models
Thermal response of D. ponderosae was simulated with the
integration of three models (Figure 1). A demographic model,
MPB-R (Powell and Bentz, 2009), describes annual univoltine
population growth (R) as a function of thermally-driven
phenology, MPB-Phen (Régnière et al., 2012), which is then
modified by predicted larval survival based on a cold tolerance
model, MPB-Cold (Régnière and Bentz, 2007). MPB-R indirectly
incorporates the role of tree defense in population success by
connecting brood adult emergence timing, predicted usingMPB-
Phen, with population consequences based on adult emergence
synchrony required for successful mass attacks on a tree. Live
standing trees are the primary host type and defenses are
overwhelmed by large numbers of conspecifics attacking in
a short period of time (Logan and Bentz, 1999). Thermal
regimes across a generation result in a predicted brood adult
emergence distribution that is “effective” when emergence
between 30 June and 1 September exceeds a daily threshold
of 250 attacking beetles required to successfully mass attack

Frontiers in Forests and Global Change | www.frontiersin.org 4 March 2019 | Volume 2 | Article 1

http://www.cordex.org/
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Bentz et al. Bark Beetle Inter-Continental Establishment

FIGURE 1 | (A) Three Dendroctonus ponderosae models were integrated to simulate population response to temperature for individual climate grid cells. The

phenology model (MPB-Phen) (Régnière et al., 2012) describes temperature-dependent lifestage development and adult emergence timing from a brood tree. The

cold-induced mortality model (MPB-Cold) (Régnière and Bentz, 2007) predicts survival as a function of annual temperatures and their effects on larval supercooling.

Both models were driven by daily maximum and minimum temperatures projected by two Global Climate Models for each year between 1981 and 2099. MPB-Phen

produces a temporal distribution of adult emergence that was used by the demographic model (MPB-R) (Powell and Bentz, 2009) to predict univoltine population

growth (R). MPB-R assumes that adult emergence timing is critical in the acquisition of breeding material and that emergence must be synchronous and appropriately

timed in the summer. Synchronous emergence is quantified as the number of emerged adults that exceed a threshold (A) required to overwhelm host tree defenses.

Adults that emerge on a given day between 30 June and 1 September in sufficient numbers to exceed A are considered effective (E). Parameters α, β, and H were

estimated using field-collected temperatures and data on hectares killed by D. ponderosae (Powell and Bentz, 2009, 2013). Univoltine population growth (R) was

modified by predicted larval survival based on MPB-Cold. MPB-Phen was also used to evaluate if temperatures across a given year were sufficient to produce two

generations in a single year (bivoltine). (B) The Ips typographus phenology model (Jönsson et al., 2012) uses daily maximum and mean temperatures to predict the

occurrence of adult diapause, which dictates either the univoltine or bivoltine lifecycle. Ips typographus population growth is highly dependent on the stochastic

occurrence of storm felled and drought-stressed trees, which are also regulated by forest management. Population growth of I. typographus was therefore not

modelled for this analyses.

non-stressed host trees (Powell and Bentz, 2009). Emergence
during this time window is considered seasonally optimal for
development to an appropriate overwintering stage (Logan and
Bentz, 1999). High R values >1 signify thermal conditions
that support highly synchronized and seasonally appropriate
adult emergence. Low R values <1 occur when simulated adult
emergence occurs either outside the window of 30 June and 1
September or is unsynchronized.

MPB-Phen predicts development and adult emergence timing
as a non-linear function of temperature with upper and
lower developmental thresholds that vary among lifestages and
lognormal genetic variability among individuals.Mechanistically,
MPB-Phen is based on the cohort approach and predicts the
probability that an individual in a given lifestage will complete
development within a given time interval. Prepupal diapause
is currently implemented as a high temperature threshold for
pupation. Following initiation with a distribution of attacks on
a tree, described by a normal distribution with a mean on 24
July and standard deviation of 2 days, hourly temperature inputs
drive development through eight lifestages, culminating with an

emergence distribution of brood adults which is then used by
MPB-R to predict population growth for that year (Figure 1).

As described in Powell and Bentz (2009), unknown
parameters in MPB-R were estimated based on non-linear
regression between annual aerially-observed D. ponderosae-
caused tree mortality in central Idaho, US, and brood adult
emergence predictions from MPB-Phen. Observed hourly air
temperatures taken from within the impacted stands were used
to drive MPB-Phen. MPB-R successfully described 92% of the
variance in observed population growth rates when applied to
the same stands in central Idaho where parameters were derived,
and >90% of variance in novel stands in northern Washington,
US (Powell and Bentz, 2013). In a separate study in Montana,
US, model-predicted increasing trends in population growth
were significant in explaining observed increasing trends in
D. ponderosae-caused tree mortality (Bentz et al., 2016).

Successful bivoltinism has not been observed for
D. ponderosae in the field (Bentz and Powell, 2014; Bentz
et al., 2014; but see Mitton and Ferrenberg, 2012), and conditions
that would support this phenological strategy are unclear. Here,
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we assume that completion of two generations in a year requires
similar conditions as for a univoltine lifecycle, and we used
MPB-Phen to evaluate potential bivoltinism in a future climate
and in Pinus habitat outside the current range of D. ponderosae.
MPB-Phen was run over sufficient time to complete two
generations for each grid cell of climate simulation data and
year, with tests for temperatures that cause mortality of the
cold-sensitive egg and pupal lifestages (Logan and Bentz, 1999;
Bleiker et al., 2017), resulting in a binary response of thermally
unsuitable (0) or thermally suitable (1) for bivoltinism. Because
bivoltine populations have not been observed, an MPB-R model
for bivoltine populations has not been developed and model
predictions have not been field-evaluated.

Cold temperature is considered a significant mortality factor
in D. ponderosae population success and a critical limiting
factor of the species’ distribution (Weed et al., 2015). We used
a mechanistic model (MPB-Cold) (Régnière and Bentz, 2007)
derived from laboratory estimates of supercooling points of
individual larvae that were field-collected during fall, winter
and spring (Bentz and Mullins, 1999). Annual probability
of population survival was predicted as a function of daily
maximum and minimum temperatures at each grid cell. We
assumed population growth to be most affected when a cold
event results in high mortality and very low offspring survival.
If the predicted annual probability of larval cold survival
from the MPB-Cold model was <20%, MPB-R predicted
population growth was multiplied by the probability of survival,
effectively reducing population growth. No effect due to cold was
implemented when predicted survival was >20%.

For each grid cell of climate simulation data in NA and
Europe, MPB-Phen and MPB-Cold were simulated using hourly
temperatures derived from sinusoidal interpolation of daily
extrema and Simpson’s rule for rate curve integration using five
steps per day (Bentz et al., 2016). Daily extrema came from two
GCM temperature simulations (CCCma-CanESM2 and ICHEC-
EC-EARTH; see Climate Data) for each year from 1981 to 2100.
EachD. ponderosaemodel was run separately for each GCM, and
annual MPB-R output was as an average of model output based
on the two GCMs. Based on observed and model-predicted R
values we considered a threshold value of R > 1 as indicative
of positive trends in univoltine population growth (Powell and
Bentz, 2009). The number of years in each 30-years period
(1981–2010, 2011–2040, 2041–2070, 2071–2100) with R > 1 and
bivoltinism = 1 were summed to describe thermal suitability for
univoltine population growth and potential for a successful 2nd
generation, respectively.

Study Areas and Vegetation Masks
The NA study area included northern Mexico and all of
Canada and the US (∼20 to 68◦N latitude). In Europe the
study boundary extended west of Russia from ∼35 to 69◦N
latitude. Outputs of the physiological models were restricted
to grid cells of the climate simulations (∼50 × 50 km) on
both continents estimated as having at least 5% of the grid
cell containing either Pinus species for D. ponderosae or Picea
species for I. typographus. Areas (1 km resolution) with host
tree species were extracted from the North America Land Cover

Characteristics spatial database (https://lta.cr.usgs.gov/glcc/na_
int.), and from the European Atlas of Forest Tree Species (de
Rigo et al., 2016; 1 km resolution). The rotated climate simulation
grid cells for the NA and Europe domains (www.cordex.org) were
converted into vector polygons, un-rotated and subsequently
transformed into the same spatial reference as the two land
cover datasets, respectively. For each polygon representing one
climate simulation grid cell, the number of land cover grid
cells classified as Pinus or Picea were extracted and recalculated
into a percentage of the respective polygon area. Elevation was
extracted for each grid cell for both climate models by host tree
species ranging from ∼2 to 2,019m in Europe (1,634 grid cells)
and ∼1 to 3,281m in NA (3,447 grid cells) for Pinus species, and
∼2 to 2,170m in Europe (1,040 grid cells) and ∼1 to 3,281m in
NA (3,794 grid cells) for Picea species (Figure 2).

RESULTS

Trends in Climate
In the historical 30-years period (1981–2010), Pinus habitats in
the Europe study area were on average 2.6 and 6.6◦C warmer
in summer and winter, respectively, than Pinus habitats within
the current range of D. ponderosae in NA (Figures 3C,D).
During this same time period, Picea habitats in Europe were
on average 2.5◦C warmer in summer and 14.2◦C warmer in
winter than Picea in NA (Figures 3A,B). To assess habitat on each
continent projected to experience the greatest thermal change, we
calculated climate anomalies that describe the change in mean
summer and winter temperature from historical (1981–2010) to
the near future (2011–2040) (Figure 4) and end of the century
(Figure S1). According to RCP 8.5, by 2011–2040 summer
temperatures in Pinus and Picea habitats on both continents
will warm the greatest at the highest elevations, and winter
temperatures at the highest latitudes (Figure 4; see also Figure 2).
In the near future, warming in Picea habitat is projected to be
on average 1◦C greater in NA than Europe in the winter and
0.3◦C greater in the summer months (Figures 4A,B). Warming
in Pinus habitats will also be slightly greater in NA compared
to Europe (Figures 4C,D). Trends in warming at the end of
the century (2071–2100) are spatially similar to the near future
(2011–40) but a greater magnitude (Figure S1). Degree days
from 1 January, calculated using 6◦C as a lower development
threshold, also highlights warming in Pinus and Picea habitats
on both continents by the end of the century that is specific to
development of each beetle species (Figure S2).

Trends in I. typographus

population success
During the historical period (1981–2010) the calculated pattern
of thermal suitability for I. typographus univoltinism in European
Picea habitats was similar to the bimodal pattern across latitude
predicted for D. ponderosae univoltinism in European Pinus
habitats (Figures 5, 6A,C). Picea habitats in the Europe study
area between ∼42 and 48◦N (representing high elevation areas
with cool climates) and 55 and 65◦N were predicted to have
the greatest proportion of years with univoltinism (Figure 6C).
This estimate is in agreement with observed historical patterns
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FIGURE 2 | Spatial variation in elevation (m) of (A) Pinus and (B) Picea habitats in North America and the Europe study area based on the North America Land Cover

Characteristics spatial database and European Atlas of Forest Tree Species.

FIGURE 3 | Distribution and mean (A) summer temperatures (◦C) in Picea habitats (i.e., grid cells of climate simulation data), (B) winter temperatures in Picea

habitats, (C) summer temperatures in Pinus habitats, and (D) winter temperatures in Pinus habitats in North America and the Europe study area during 1981–2010.

Temperature projections are an average of two Global Climate Models for RCP 8.5. Overlaps between North America and Europe are represented by the darkest color.

of voltinism (Christiansen and Bakke, 1988; Wermelinger, 2004).
In a warming climate, thermal suitability for univoltinism
was projected to shift northward (Figures 5a–d, 6C), and the
proportion years with univolitism at latitudes lower than ∼65◦N
was less in 2071–2100 than in all earlier time periods (Figure 6C).
Between 2041–2070 and 2071–2100 simulated univoltinism
decreased even at the highest latitudes. The projected decline
of univoltinism in a warming climate was associated with an
increasing proportion of a 2nd generation (Figures 5e,f). 1981–
2010 model simulations suggest that 45% of Picea habitat in
the Europe study area was suitable for a 2nd I. typographus
generation, and this was projected to increase to 69% by the

end of the century. The majority of Picea habitat in the Europe
study area suitable for I. typographus in 1981–2010 remained
suitable throughout the century for either one or two generations
annually Figure 5).

Model simulations suggest high thermal suitability for
I. typographus establishment in NA. During 1981–2010, Picea
habitats in NA between ∼40 and 60◦N were projected to have
relatively high probability of univoltinism (> 50% of years in
the 30-years period) with much of the boreal forest in Canada
exceeding 80% of years with univoltinism (Figures 5a, 6D). As
projected temperatures warmed in the near future and through
mid-century, the proportion years with univoltinism decreased
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FIGURE 4 | Projected mean temperature change between the historical period (1981–2010) and near future (2011–2040) (◦C) in North America and the Europe study

area according to two Global Climate Models representing RCP 8.5 for (A) Picea habitats in summer, (B) Picea habitats in winter, (C) Pinus habitats in summer, and

(D) Pinus habitats in winter.

at lower latitudes and increased at higher latitudes including
Picea forests in Alaska, US and eastern Canada (Figures 5b,c
6D). During the historical period (1981–2010), a relatively low
probability of a 2nd I. typographus generation was predicted for
Picea habitats in NA between ∼45 and 55◦N (Figure 5e). By the
end of the century, thermal suitability for a 2nd generation was
predicted to be the highest at any time, including Picea habitats in
Alaska andmuch of the boreal forest in Canada (Figures 5h, 6D).
In the near future (2011–2040) and throughout the century, all
Picea habitats in NA will be thermally suitable for I. typographus.

Trends in D. ponderosae

Population Success
Aerial observations during the historical (1981–2010) period
indicate that D. ponderosae population activity occurred in the
western US and Canada generally from ∼31 to 60◦N (Meddens
et al., 2012). Based on ground observations, population activity
was recorded to be low at the lowest latitudes in this range, except
at the highest elevations (Bentz et al., 2014). Our coupledMPB-R,
MPB-Phen, and MPB-Cold models estimated positive univoltine
population growth (R> 1) in the same general area between∼40
and 60◦N latitude in the western US and Canada (Figure 7a). The
overlap in distributions of observed D. ponderoase population
activity during 1981–2010 and modeled univoltine population
growth during the same time period highlights the predictive
ability of our models, particularly at the southern US range extent
(Figure S3). During 1981–2010 the highest thermal suitability
was modeled to be along the Rocky and Cascade Mountains
from ∼41 to 52◦N (Figures 6B, 7a). Although the range of
D. ponderosae does not currently extend across the boreal forest
in central and eastern Canada, Pinus does occur and model
simulations suggest positive univoltine suitability in these areas
during 1981–2010. Although thermal conditions were conducive

to a univoltine lifecycle, low projected population growth in
central Canada was due to low cold survival (<20% survival
predicted by the MPB-Cold model) (Figure S4a). By the middle
of the century (2041–2070), >50% overwintering survival of
D. ponderosae was projected across the majority of Pinus habitat
in Canada (Figures S4b,c), and by the end of the century even
the highest elevations and latitudes in NA were projected to
have high overwintering survival (>70%) (Figure S4d). Despite
increasing overwintering survival, predicted population growth
of univoltine cohorts declined throughout the century across
Canada and the western US, and by the end of the century
univoltine cohort probability was the greatest at the highest
latitudes (> ∼60◦N) (Figures 6B, 7d). In the near future (2011–
2040) 20% of the habitat that supported univoltine cohorts in
1981–2010 was estimated to no longer be thermally suitable for
this strategy (Figure 7b), and by the end of the century 77%
of habitat that previously supported high univoltine population
growth (R) was no longer thermally suitable (Figure 7d). Based
on MPB-R model assumptions (Figure 1), simulated univoltine
population growth rates (R) are low when thermal conditions are
either too warm or too cool for a phenological pathway that leads
to synchronous adult emergence that occurs between 30 June and
1 September. The shift north and loss of thermal suitability for
univoltinism occured as summer temperatures in NA increased
up to 9◦C by the end of the century (Figures 4C,D, Figure S1c).
During all time periods, Pinus habitats in the eastern US, which
are lower elevation than western US forests at the same latitudes
(Figure 2A) and where D. ponderosae is not currently found,
were estimated to be thermally unsuitable for successful growth
of univoltine cohorts (Figures 7a–d).

Although D. ponderosae is not currently found in Europe,
thermal suitability for univoltine population growth during
the 1981–2010 period would have occurred in Pinus habitats
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FIGURE 5 | Proportion of years in each 30-years period projected to have one I. typographus generation annually in (a) 1981–2010, (b) 2011–2040, (c) 2041–2070,

and (d) 2071–2100 for Picea habitats in North America and the Europe study area. Proportion of years where thermal conditions were suitable for a 2nd generation in

(e) 1981–2010, (f) 2011–2040, (g) 2041–2070, and (h) 2071–2100 are also shown.

> ∼41◦N, with the highest thermal suitability between ∼55
and 65◦N in parts of Sweden and Finland (Figures 6A, 7a).
MPB-Cold predicted moderate to high probability of survival
across Europe during 1981–2010, with very few locations
experiencing low (i.e., <20%) survival events, and by 2071–
2100 very high winter survival was simulated in even the most
northern locations (Figure S4d). In the near future (2011–2040)
thermal conditions that promote univoltine population growth
(R) was projected to be elevated at the highest elevations and
latitudes in the Europe study area (Figures 6A, 7b). A continual
shift northward was projected, and by the end of the century
D. ponderosae univoltinism in Pinus habitat in the Europe study
area diminished across all latitudes < ∼65◦N. Between 1981–
2010 and 2071–2100, climatic conditions in Pinus habitat in
Europe that was conducive to univoltine population growth (R)
was projected to decline by 85% (Figure 7d).

Because bivoltine D. ponderosae populations have been rarely
observed, an R model that is based on field observations

and comparable to that developed for univoltine poulations
(MPB-R) has not been developed for bivoltine populations.
We used MPB-Phen, developed for univoltine populations, to
describe years and habitats where thermal conditions support
two generations in a single year. Modeling suggests that thermal
suitability for seasonally appropriate 2nd generations (bivoltine)
of D. ponderosae occurred during the 1981–2010 period in
Pinus habitat further south into Mexico and further east in
the southern US than the current D. ponderosae range in NA
(Figure 7e). During this same time period in Europe, a high
probability of a 2nd D. ponderosae generation was predicted for
Pinus in Spain and Portugal and other low latitudes of the study
area (Figure 7e). As temperatures warm in the near future, and
throughout the century, the probability of a 2nd generation was
projected to increase, but remained low in Pinus habitats located
above ∼45◦N on both continents (Figures 7f,g). As indicated
above, 77% of NA areas with univoltine population growth
(R > 1) in 1981–2010 were projected to be no longer thermally
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FIGURE 6 | Proportion of years with projected univoltine population growth (R > 1) for D. ponderosae in Pinus habitats in (A) Europe study area and (B) North

America. We assumed that model output of R > 1 was indicative of positive D. ponderosae univoltine population growth.Projected proportion of years with

I. typographus univoltinism in Picea habitats in (C) Europe study area and (D) North America as a function of latitude. Model projections were averaged for 30-years

periods between 1981 and 2100, and are based on D. ponderosae and I. typographus physiological models and two Global Climate Models representing RCP 8.5. A

Loess regression was applied to 30-years average model projections across latitudes.

suitable for this strategy by the end of the century. Only 17% of
the NA areas where univoltinism was lost were projected to be
suitable for a successful 2nd generation (Figures 7d,h).

DISCUSSION

Intra- and Inter-Continental Establishment
Potential
Differences between I. typographus andD. ponderosae life history
traits are reflected in the phenology models used for simulating
thermal suitability for population success of each species. We
modeled the role of positive density dependence inD. ponderosae
tree attacks by restricting population success to those years
when thermal conditions for development resulted in adult
emergence that occurs at a seasonally appropriate time in
summer and is synchronized among individuals to overwhelm
defenses of live standing host trees (Powell and Bentz, 2009).
Ips typographus attack success, in contrast, was assumed to
depend on the availability of wind-felled trees with no or
weak defenses (Christiansen and Bakke, 1988; Schroeder, 2010),

and the I. typographus model determined whether populations
undergo one or two generations between spring emergence and
the following winter as a function of temperature (Jönsson et al.,
2011). Moreover, two or more generations annually are common
for I. typographus in warm European locations (Wermelinger,
2004), but not for D. ponderosae in warm NA locations (Bentz
and Powell, 2014; Bentz et al., 2014). Our model simulations
reflect and highlight these differences in the responses of both
species to projected temperatures in their native and non-
native habitats in NA and the Europe study area. Generally,
I. typographus was projected to benefit from warming on both
continents whereas thermal suitability for D. ponderosae was
projected to decline, a result also found for D. ponderosae in NA
based on correlative niche modeling (Sidder et al., 2016). In NA,
60% of the area thermally suitable for D. ponderosae in 1981–
2010 was projected to be unsuitable by the end of the century,
whereas very little I. typographus habitat was simulated to be lost
over the same time period due to changing thermal conditions.
The capacity of I. typographus to switch from univoltinism to
a 2nd generation, and the requirement for D. ponderosae adult
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FIGURE 7 | Proportion of years in each 30-years period with projected D. ponderosae univoltine (1 year annually) population growth (R > 1) in (a) 1981–2010, (b)

2011–2040, (c) 2041–2070, and (d) 2071–2100 for Pinus habitats in NA and the Europe study area according to two Global Climate Models representing RCP 8.5.

Predictions were based on the integrated MPB-R and MPB-Cold models. Dark grey areas represent range contraction, where thermal conditions are not suitable for

either univoltinsim or bivoltinism (a 2nd generation occurs annually), relative to thermal suitability in 1981–2010. Proportion of years projected to have thermal suitability

for a 2nd generation in (e) 1981–2010, (f) 2011–2040, (g) 2041–2070, and (h) 2071–2100 are also shown.

emergence synchrony, highlight how thermally dependent fitness
traits can differ among species and also have positive and negative
effects on population success in a changing climate.

Our results corroborate observed recent northward intra-
continental range expansion of D. ponderosae in Pinus habitats
of Canada (Cooke and Carroll, 2017) where at >60◦N univoltine
population growth was projected to increase 30% by mid-
century as a result of warming in Pinus habitats in summer
and winter. Thermal suitability for I. typographus univoltine
populations was also projected to shift north in native habitats
in the Europe study area where by mid-century the proportion
years with univoltinism at 65◦N will be higher than at any other
time period. As the occurrence of the phenological strategy to
produce a single generation annually shifts north for both species,
our model simulations suggest response at lower latitudes will
differ. A common strategy for I. typographus in Denmark and
areas further south in Europe, except at the highest altitudes,

has been to produce two or more generations in a year
(Christiansen and Bakke, 1988; Wermelinger, 2004). Warming
summer temperatures throughout this century are projected
to result in an earlier completion of the first I. typographus
generation and a northward expansion into Sweden and Finland
of a successful 2nd generation. By the end of the century the
majority (∼70%) of Picea habitat in the Europe study area is
projected to support a 2nd I. typographus generation.

Producing a 2nd successful generation is not a common
strategy for D. ponderosae in its native NA habitat, and the
probability of bivoltinism in the currentD. ponderosae range and
climate was projected to be low. Simulations suggest, however,
that habitats further south of the current D. ponderosae range,
including Mexico and the southeast US, were thermally suitable
for D. ponderosae bivoltinism, highlighting the potential for
intra-continental expansion southward. As temperatures warm,
a northward expansion in thermal suitability for bivoltinism was
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projected for D. ponderosae in NA, although not to the extent as
for I. typographus due to differing life history strategies that are
reflected in the models. Because bivoltinism has historically been
rare, conditions that will support bivoltinism in D. ponderosae,
and alternatively conditions that might select against a 2nd
generation, remain unclear. We model bivoltinism based on our
knowledge of univoltine populations and the requirement for
synchronous adult emergence. Two generations have historically
been limited by cool fall and winter temperatures that can
invoke a facultative prepupal diapause (Bentz and Powell,
2014; Bentz and Hansen, 2017). As winter temperatures warm,
simulations suggest that in the warmest southerly habitats
this constraint is relaxed, but potentially remains a barrier in
northern latitudes. The capacity for predator/prey communities
and symbiotic fungal associates to maintain synchrony with
multiple D. ponderosae generations is also unknown. To fully
understand the potential for D. ponderosae bivoltinism, and
hence population success in a changing climate, additional
research on community associates, host tree constraints for
tree attacks at times other than the middle of summer, and
limits of developmental plasticity are needed. As shown in our
predictions, it is also likely there will be a lag period in thermal
suitability of some Pinus habitats where neither the univoltine
or bivoltine strategy are successful as habitats move through
thermal transition zones (Roff, 1980). As the area supporting
current adaptations for a univoltine D. ponderosae lifecycle is
reduced and limits in the plasticity of thermally-regulated and
behavioral traits are exceeded, adaptive changes in life history
strategies will be needed in order to persist (Bale et al., 2002).
Our models do not include the potential for adaptive capacity
in life history strategies to changing temperatures, which when
accounted for in modeling can significantly reduce projected
range losses (Bush et al., 2016).

Ongoing range margin shifts northward are occurring in a
wide range of taxa (Weed et al., 2013; Mason et al., 2015).
Intra-continental range expansion of D. ponderosae northward
and eastward in Canada is occurring through climate-assisted
pathways (Cooke and Carroll, 2017). Ips typographus expansion
southward and westward within Europe has been a result of
extensive planting of P. abies beyond its natural range (Mayer
et al., 2015). Inter-continental movement of non-native insects,
however, involves human-assisted movement and with ever-
increasing global trade the risk of invasion of new continents for
both species will increase (Ramsfield et al., 2016). Wood-boring
and ambrosia beetles have been a predominate guild intercepted
at ports globally (Aukema et al., 2010), although introduction
and establishment of non-native phloem feeders, including D.
valens into China (Liu et al., 2014) and I. grandicollis in Australia
(Neumann, 1987) have also been devastating. Many factors
influence establishment and spread including host, habitat and
environmental suitability (Liebhold and Tobin, 2008). Previous
research indicates that suitability of breeding material should
not be a barrier for either species, as I. typographus and
D. ponderosae can both successfully reproduce in Picea and Pinus
species, respectively, found outside their native ranges (Økland
et al., 2011; Fries, 2017; Rosenberger et al., 2017; Flø et al.,
2018). Our model projections suggest that thermal suitability for

population growth will also not be a barrier to establishment for
either species.

In the historical period (1981–2010), thermal suitability for
D. ponderosae univoltine population growth was projected to be
greater in non-native European Pinus habitat than in NA, a result
of warmer summer and winter temperatures in the Europe study
area than in comparable native habitats in NA. In the near future
(2011–2040), thermal conditions in the Europe study area were
projected to remain favorable for D. ponderosae univoltinism
at high elevations and latitudes, and for a 2nd generation in
lower latitudes. As temperatures warm throughout the century,
however, thermal suitability for D. ponderosae is predicted to
decrease except at the highest latitudes in Europe, with continued
high probability of a 2nd generation at lower latitudes. During
1981–2010, I. typographus thermal suitability for univoltinism
was also projected to be high across the majority of non-native
Picea habitats in NA. In contrast to D. ponderosae, thermal
suitability for one and two I. typographus generations annually
is projected to increase throughout the century in NA. Although
winter temperatures were much colder in NA than European
Picea habitat during 1981–2010, warming winter temperatures
throughout the century at the northernmost latitudes of NA will
favor I. typographus overwintering survival.

In addition to habitat thermal suitability and availability
of breeding material, the potential for inter-continental
establishment and spread of both species could be hampered
by life history strategies that influence population persistence
at low levels including propagule size at invasion and dispersal
capacity. Both I. typographus and D. ponderosae have sexual
mating and population growth can be influenced by Allee effects.
Allee effects cause a decline in per capita population growth
when population density decreases below a critical threshold
and can limit establishment when sufficient mates are not
available (Liebhold and Tobin, 2008). Both species, however,
have evolved strategies that allow for population persistence at
low levels. Although at epidemic levels D. ponderosae favors
large standing trees with active defenses, thereby requiring
conspecifics to overwhelm defenses and create suitable breeding
sites (Boone et al., 2011), very low levels of D. ponderosae can
survive and reproduce in weakened trees that are often colonized
by other beetle species and stem and root diseases (Bartos
and Schmitz, 1998; Smith et al., 2011). Similarly, a common
strategy for I. typographus is to attack wind-felled trees that
have no or weak defenses, and reproductive success in these
trees can be greater than in live standing trees (Komonen et al.,
2011). Establishment potential for both species will therefore
require forest stands with weakened or downed host trees.
Although, strong Allee effects can reduce invasion speed (Lewis
and Kareiva, 1993), the strength of the effect can vary across
landscapes (Tobin et al., 2007) and may be overcome by the
density of host plant material that is specifically suitable for low
level populations (Powell et al., 2018), in addition to dispersal
capacity (Chase et al., 2017). Passive or wind-assisted dispersal
above forest canopies was responsible for D. ponderosae invasion
into new habitats in Alberta, Canada (de la Giroday et al.,
2012) and I. typographus is also known to have strong dispersal
capacity (Forsse and Solbreck, 1985).
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Model Limitations
We acknowledge several aspects related to phenology of
I. typographus and D. ponderosae that could influence response
to future climatic change and establishment potential in non-
native habitats that are not currently included in our models,
including intraspecific lineage differences in thermal traits.
Induction of a facultative diapause in adult I. typographus and
prepupal D. ponderosae varies with latitude in both species
due to local adaptations to photoperiod (Schroeder and Dalin,
2017) and temperature (Bentz and Hansen, 2017). Diapause
induction varies not only among populations but also within
populations such that a propagule entering a new region could
include a mixture of individuals with different responses to
day length and temperature thereby increasing the probability
that some individuals will be successful. Moreover, predicted
phenological shifts can expose lifestages to novel day lengths
and temperatures that will influence diapause induction and
generation time. Intraspecific differences are currently not
implemented in the D. ponderosae model, although geographic
variability in day length regulation of autumn diapause is
included for I. typographus.

The D. ponderosae model runs on an annual basis with
univoltine adult emergence required to occur in mid-summer.
The consequences and capacity for adaptation to emergence at
other times is not currently included, nor is the contribution
of sister broods to population growth. Thermal suitability for
population growth of D. ponderosae is modeled based on what
we know about successful univoltine populations historically, and
requirements for the rare D. ponderosae bivoltine population
success are unclear. Supraoptimal temperatures can reduce
population growth not only through disruption of seasonality,
which is included in the D. ponderosae model, but also through
death (Tobin et al., 2014), a factor not included in our models.

We acknowledge that climate projections are uncertain, and
that GCMs may overestimate mean annual temperature (Miao
et al., 2014). In addition to the direct effects of temperature
on population dynamics described by our models, drought
can indirectly influence bark beetles through stress on host
trees (Anderegg et al., 2015), and storm events through the
creation of felled trees and easily acquired brood material
(Kärvemo et al., 2014). These effects are not included in our
projections, nor are interactions with fungal associates that
could become desynchronized (Addison et al., 2013) or altered
as novel associations form (Wingfield et al., 2016). Finally,
although tree regeneration times are significantly longer than
insect generations, tree distributions are continually changing
(Aitken et al., 2008). We only considered current host tree ranges
in predicting future distributions and voltinism patterns for
D. ponderosae and I. typographus.

CONCLUSION

Forest management and carbon mitigation strategies in an era
of climate change must encompass a range of uncertainties
including periodic tree mortality events caused by native
and invasive insects. As ectotherms, insect life history traits
are thermally-dependent making their population success

highly sensitive to climatic changes. Our process-based model
projections for two important tree mortality agents in NA
and Europe, D. ponderosae and I. typographus, highlight how
future temperature changes across landscapes could result in
positive and negative population consequences in part due to
regional variation in climatic conditions and evolved adaptations
for seasonal timing of overwintering lifestages. Population
consequences could also differ between the species due to
differences in the role of density dependence and traits that
govern acquisition of breeding material. Simulations suggest
that warming throughout the century will generally favor
I. typographus in its native habitat in Europe and non-native
Picea habitats in NA as thermal suitability for a 2nd generation
(bivoltinism) increases. Long-term warming is not projected to
be as favorable for D. ponderosae as thermal conditions for the
historically optimal strategy of univoltinism declines. Bivoltinism
will be a new required phenological pathway for D. ponderosae
population success and it is imperative that adaptive potential
and thermal, community, and host tree conditions supporting a
2nd generation are investigated.

Our models provide tools for evaluating temporal and spatial
shifts in potential bark beetle-caused tree mortality in native and
novel habitats, critical aspects of forest management in an era
of climate change and increasing global trade. Our simulation
results show extensive thermal suitability for D. ponderosae and
I. typographus intra- and inter-continental establishment and
population success in the near future (i.e., 2011–2040). Moreover,
reproductive suitability of non-native hosts on each continent has
previously been demonstrated (Økland et al., 2011; Fries, 2017).
Collectively, these results highlight the importance of effective
legislation to minimize risks of importing forest insects with
potentially devastating effects on global conifer markets, and that
continued monitoring should be remain a priority at ports on
both continents.
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