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The correct integration of the detoxification processes in a risk assessment model

for ozone damage on plants remains challenging. In particular, the intracellular

compartmentation of antioxidant metabolites could play a role, since each compartment

presents its own sensitivity to ROS and metabolite set. For each compartment, we tried

to provide both qualitative and quantitative information on the metabolites present as well

as the putative transporters implied. When they are known, the modifications caused by

O3 or oxidative stress are presented. Clearly, under O3 exposure, integrative data which

would allow to improve predictive models for O3 risk assessment are missing.
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INTRODUCTION

Ozone (O3) is a phytotoxic air pollutant known to negatively impact crop and forest productivity
(Wittig et al., 2009; Jolivet et al., 2016; Li et al., 2017). In order to determine the critical
level above which O3 damage on plants occurs, the PODY (Phytotoxic Ozone Dose above a
threshold flux of Y nmol.m−2.s−1) was derived from flux-based methods to improve dose-response
relationships including the detoxifying capacity of leaf tissues (Musselman et al., 2006; Dizengremel
et al., 2009). Flux-based models use a range of cut-off thresholds (Y) indicative of varying
detoxification capacities. However, the considerable uncertainties to determine the contribution of
each metabolite to the cellular antioxidant potential make the estimation of the threshold difficult
to assess. This difficulty can be explained by the differences in concentrations and redox status
of these metabolites between compartments. Here, we resumed recent highlights on the spatial
distribution of the main defense metabolites to decipher their possible roles in response to O3 and
point out which importance the occurrence of this compartmentation might have in estimating the
detoxification threshold.

DEAL WITH A DIVERSITY OF ANTIOXIDANT METABOLITES

Different classes of molecules serve as antioxidants amongst which ascorbate (AsA), glutathione
(GSH), and phenolic compounds as flavonols are considered as the most ubiquitous according
to their presence in several cell compartments (Foyer and Noctor, 2011; Figure 1), including
vacuole and the extracellular space (Zhao and Dixon, 2009; Agati et al., 2012). Sugars such as
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FIGURE 1 | Compartmentation of plant oxidative system. This non-exhaustive figure summarizes current knowledge from plant subcellular localization of antioxidants

in non-stress conditions. In view of the multiplicity of all enzyme isoforms, the figure only mentions the presence of the HAF cycle in each compartment where the

dehydroascorbate reductase (DHAR) has been characterized. AsA, total ascorbate; GSH, total glutathione; GSSG, glutathione disulphide; GS-conj, glutathione

conjugates; HAF, Halliwell-Asada-Foyer; MRP, Multidrug Resistance associated Protein; CRT, Chloroquine Resistance Transporter; PHT, phosphate transporter; POX,

phenol peroxidases; ROS, reactive oxygen species. See the text for references.

sucrose, RFOs (raffinose family oligosaccharides) and fructans
are known to directly quench ROS in different organelles
and thus contribute to antioxidant defense (Keunen et al.,
2013). Another type are liphophilic antioxidants, such as
α-tocopherol or carotenoids located in organelle membranes
particularly in plastids (Das and Roychoudhury, 2014).
Subcellular compartments also possess various enzymes able
either to act as ROS scavengers or to support regeneration
of the reduced form of the antioxidants (Noctor et al., 2018).
The first group includes enzymes trapping the superoxide ion
(such as superoxide dismutase, SODs) and hydrogen peroxide
with catalases (specifically located in the peroxisome) or several
peroxidases (AsA, GSH, or thioredoxin dependent) whose cell
location has already been detailed in several reviews (Rouhier
and Jacquot, 2005; Dos Santos and Rey, 2006; Mhamdi et al.,
2010b; Rahantaniaina et al., 2013; Noctor et al., 2018). The
second group, responsible for the regeneration of antioxidants,
is ascribed to the close redox coupling of AsA and GSH pools
in vivo (HAF as Halliwell Asada Foyer cycle). The presence of
dehydroascorbate reductase (DHAR) seems to be sufficient to
consider the presence and the functioning of the HAF cycle
within a specific cell compartment (Figure 1; Rahantaniaina
et al., 2013). It is also important to consider that the HAF
cycle functioning needs to be linked with a correct enzyme
regeneration through NAD(P)H reducing power, e.g., under O3

stress (Dizengremel et al., 2008; Dghim et al., 2013), in cytosol
as well as in organelles. In fine, detoxification results from the
combined actions of all these mechanisms, which therefore
explains the difficulty to choose key parameter(s) in modeling
the detoxifying capacity of leaf tissues.

TOTAL POOL OF ANTIOXIDANTS: NOT SO
SATISFYING

One major issue when considering the total pool of antioxidants
is the difficulty to evaluate it as a whole, taking into account
the diversity of the metabolites it contains. Indeed, the methods
and kits used are disputable (Noctor et al., 2016). For example,
in order to take into account the total antioxidant capacity
in plants, some authors used the FRAP assay (ferric reducing
ability of plasma given in micromoles of Fe2+ per gram in
dry matter). However, the significance of the FRAP test is
questionable since it takes antioxidants into consideration that
do not necessarily react to the oxidative load generated by O3

(Severino et al., 2007). To solve this issue, researches focused on
specific metabolites considered as cue to explain differences in
O3 tolerance. AsA is one of the main examples of a potential
factor in O3 tolerance (Burkey et al., 2000; Conklin and Barth,
2004) at least for some species. To support this fact, studies with

Frontiers in Forests and Global Change | www.frontiersin.org 2 August 2019 | Volume 2 | Article 45

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Dusart et al. Cellular Compartmentation of Antioxidants

AsA deficient mutants and clones (Conklin et al., 1996, 2000;
Veljovic-Jovanovic et al., 2002) showed that low concentrations
of AsA in the plant tissue limit O3 tolerance. However, in
numerous examples and particularly in ligneous species (e.g.,
Populus genotypes or Quercus sp.), differences in AsA content
were not sufficient to explain the differences in O3 tolerance
(Dusart et al., 2019; Pellegrini et al., 2019). Other antioxidants
such as GSH and/or phenolic compounds could play a more
important role in some species or genotypes. In addition, changes
at the leaf scale could hide more subtle changes at the scale
of a cell compartment that is crucial for cell homeostasis. The
redox state of each metabolite also varies, as some compartments
differ from others with lower reduction states. Thus, the apoplast
and vacuole were endowed with a lower level of reduction for
AsA and GSH (Noctor and Foyer, 2016). In this respect, both
the antioxidant content and the ability of cell compartments to
regulate the redox levels of the molecules have to be considered.

COMPARTMENTATION OF ANTIOXIDANTS

The different cell compartments are not equal in terms of
antioxidant concentrations (Zechmann, 2017) and redox state
(Foyer and Noctor, 2016) and the main differences between
cell compartments are discussed in this section. We also
highlight some specific features related to the transport of
these metabolites through intracellular membranes, which also
contributes to the extent of antioxidant content and redox status
in each compartment.

Apoplast
The apoplast comprises the cell wall and the fluid in
the intercellular spaces as such constitutes the first barrier
encountered by O3 after entering the leaf through the stomata
(Laisk et al., 1989). AsA contained in the apoplastic fluid was
often considered as the first line of defense against O3 and,
consequently, its content may increase with the beginning of
the exposure (Riikonen et al., 2009). In this context, it has been
integrated in different models (Polle et al., 1995; Ranieri et al.,
1996; Plöchl et al., 2000; Burkey and Eason, 2002; Conklin and
Barth, 2004; Tuzet et al., 2011). In fact, in many species, the
importance of apoplastic AsA regarding O3 tolerance is still
unclear (D’Haese et al., 2005; Booker et al., 2012; Dai et al.,
2018). For example investigated poplar clones showed no relation
between apoplastic AsA content and O3 sensitivity of clones (Van
Hove et al., 2001; Di Baccio et al., 2008). Moreover, the efficiency
of apoplast detoxification by AsA depends on the export of
the oxidized form to the cytoplasm where it then has to be
regenerated (Luwe and Heber, 1995). Finally, despite an efficient
transmembrane exchange between apoplast and symplasm, the
AsA concentrations (around 0.2–1.5mM) in the apoplast are 10–
30 times lower than in the cytosol (Moldau et al., 1997; Plöchl
et al., 2000; Van Hove et al., 2001) with higher oxidation rates
(Booker et al., 2012). The transport proteins responsible for DHA
uptake and ascorbate efflux have not yet been identified, even
though the ascorbate efflux mechanism possibly occurs via an
anion channel (Smirnoff, 2018). It should also be considered that
the presence of ascorbate oxidase in the apoplast could maintain

the AsA pool in a more oxidized state than the intracellular pool
(Smirnoff, 2018).

There are furthermore other metabolites with antioxidant
activity being present in the apoplast. Considering GSH, its
content in the apoplast has been found to be very low (Zechmann,
2014), limiting its ability to scavenge ROS or contribute to ASA
regeneration. Apoplastic GSH is therefore expected to be rather
involved in signaling than in detoxification (Zechmann et al.,
2008). Phenolic compounds (Grace, 2007) may be widespread
in the apoplastic fluid of plants and in some cases were shown
to increase in response to O3 (Langebartels et al., 1991; Eckey-
Kaltenbach et al., 1993; Booker et al., 2012). However this
increase was considered to have little effectiveness in scavenging
O3 in Arabidopsis (Booker et al., 2012). Cell wall bound phenolics
may also scavenge ROS (Vreeburg and Fry, 2007) but their
contribution to O3 detoxification is yet unknown. In the cell
wall of foliar and stem cells, O3 exposure resulted in an increase
in lignin biosynthesis in a dose-dependent manner suggesting a
role in detoxification (Cabane et al., 2012). The contribution of
phenolics and more widely secondary metabolites in apoplastic
O3 detoxification has not been sufficiently studied so far and
should be further investigated especially because of their species-
specific diversity.

Cytosol
Cytosol is an important determinant in the antioxidant capacity
of the cell, acting as a hub for the production/transportation
to other cell compartments and between compartments
(Zechmann, 2017). Using labeling techniques (Zechmann, 2011),
showed that the highest concentration of AsA was found in
this compartment (Figure 1). Moreover, isoenzymes related to
HAF cycle localized in the cytosol seem to play an important
role in O3 tolerance (Yoshida et al., 2006; Di Baccio et al., 2008;
Mhamdi et al., 2010a; Rahantaniaina et al., 2017; Dusart et al.,
2019). A good example of the cytosol interface is the GSH
biosynthesis taking place both in cytosol and chloroplast (Rausch
et al., 2007). Interestingly, although chloroplasts synthesize GSH,
this metabolite is also readily taken up by intact chloroplasts
(Foyer et al., 2001). For the other compartments, unable to
carry out GSH biosynthesis, transport from cytosol must also be
efficient (Rausch et al., 2007). While these carriers are far from
being characterized, their regulation under oxidative stress is
fully unknown.

Vacuole
In vacuole, the AsA concentration is often considered not
to exceed 2mM, making it the lowest within the plant
cells (Figure 1; Zechmann, 2017). However, its level was 2-
and 4-times increased during drought and high light stress,
respectively, which represents the strongest increase among all
subcellular compartments (Rautenkranz et al., 1994; Zechmann,
2017). Changes in AsA concentration under O3 are not
known. This raises the question whether vacuolar AsA could
significantly contribute to cell defense against oxidative stress.
When facing stress conditions, a large amount of H2O2 is
transported and accumulated in the vacuole, which might
act as a sink for ROS (Michalak, 2006; Koffler et al., 2014).
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It is expected that the increase in vacuolar AsA contributes
to delocalize the detoxification of H2O2 and thus to avoid
cytosol redox imbalance. AsA seems to contribute to ROS
scavenging in the vacuole, either directly or by coupling
with phenolics and phenol oxidase. In fact, vacuoles are also
well-known to hold large amounts of polyphenols, especially
anthocyanins, flavan-3-ol monomers, proanthocyanidins, and
glycosylated flavonols. Vacuolar flavonols have been suggested
to contribute to H2O2 detoxification in this compartment, by
giving electrons to phenol peroxidases (POX) (Sakihama et al.,
2002). Furthermore, it has been shown that vacuolar AsA can
reduce phenoxy radicals produced by POX and then regenerate
phenolic compounds (Takahama and Oniki, 1997). Therefore,
an alternative AsA/phenolics/POX mechanism might efficiently
contribute to the cellular defense arsenal against ROS, jointly
to the “classic” HAF cycle. On this point, none or very little
free GSH (lower than 0.5mM) has ever been identified in
the vacuole, limiting the potential regeneration of ascorbate
by this way in this compartment (Zechmann et al., 2008;
Zechmann, 2014). In addition, DHAR was reported in the
vacuole (Zhang et al., 2015) but HAF cycle does not seem to
be functioning due to the lack of glutathione reductase isoform
in this compartment, therefore leading to glutathione disulphide
(GSSG) accumulation (Queval et al., 2011). In any case, oxidized
AsA (DHA and monodehydroascorbate) can cross the tonoplast
to be regenerated in the cytoplasm (Rautenkranz et al., 1994). In
case of oxidative stress, vacuoles also act as a sink for oxidized
GSH or GSH conjugates formed in the cytosol and transferred to
the vacuole via the action of one or more ABC transporters of the
MRP (Multidrug Resistance associated Protein) subclass (Queval
et al., 2011; Koffler et al., 2014). Despite extensive investigation of
tonoplast transporters, the role of MRPs in the transport of GSSG
to the vacuole is less clear (Bachhawat et al., 2013) as well as the
final fate of this oxidized form in the vacuole.

Chloroplast
Within the chloroplast, the electron transport chain is, in
addition to its role as major energy producer, one of the main
sites of endogenous ROS generation (Asada, 2006; Tripathy and
Oelmüller, 2012). Being triggered and increased by apoplastic
ROS, the chloroplastic ROS function as amplifiers of signals
from outer cell compartments to the nucleus where they modify
the nuclear gene expression (Shapiguzov et al., 2012; Foyer and
Noctor, 2016; Kleine and Leister, 2016). The presence of AsA
(10mM) and GSH (1mM) has been previously reported in
the chloroplast where they represent a significant part of the
cell antioxidant pool (Figure 1; Queval et al., 2011; Zechmann,
2011). Interestingly, abiotic stresses lead to a major increase
in AsA and GSH contents in the chloroplast (Heyneke et al.,
2013). Furthermore, although lacking under normal conditions,
both antioxidants also accumulated inside the thylakoid lumen
under stress, thus, demonstrating the particular dependence
of the chloroplast on these antioxidants when facing harmful
abiotic stress (Heyneke et al., 2013). Concerning AsA and GSH
transport, chloroplast and cytosol are tightly connected by the
presence of many transporters. AsA uptake by chloroplasts is
mediated by a member of a phosphate transporter family, named

PHT4;4 (Fernie and Tóth, 2015; Miyaji et al., 2015). An active
uptake of cytosolic GSH also occurred across the chloroplast
envelope (Noctor et al., 2002), even though themolecular identity
of the transporter(s) is still unknown (Bachhawat et al., 2013).
In addition, three proteins belonging to the CRT (Chloroquine
Resistance Transporter)-like transporter family were found to
be chloroplastic and responsible for glutathione efflux from the
chloroplast to the cytosol in Arabidopsis (Bachhawat et al., 2013).

At the same time, choroplasts contain large amounts of
flavonoid-like ROS defense agents, which they are able to
biosynthesize (Hernández et al., 2009; Pollastri and Tattini, 2011).
Under severe light, flavonoids complete the scavenging role
of the most abundant lipid-soluble antioxidants group(s), the
carotenoids (and tocopherols), in chloroplasts (DellaPenna and
Pogson, 2006). Due to their ability to remodel lipid membranes,
flavonoids might preserve the integrity of the chloroplast
envelope and therefore prevent oxidative stress-caused damage
(Agati et al., 2012).

Mitochondria
An endogenous production of ROS takes place in mitochondria
essentially at the level of the complexes I, II, and III of the
respiratory chain which must not be neglected even though
the contribution of this organelle to oxidative stress is rather
low (Apel and Hirt, 2004; Rhoads et al., 2006; Bettini et al.,
2008; Waszczak et al., 2018). Mitochondria are well-supplied
with antioxidants and the enzymes of the HAF cycle are present
(Jiménez et al., 1997; Foyer et al., 2001; Foyer and Noctor,
2011). Similar as chloroplast, a concentration of 10mM AsA was
determined in mitochondria (Zechmann, 2011; Zechmann et al.,
2011). Considering that the last step of ascorbate biosynthesis can
take place in the intermembrane space in contact with complex
1 (Millar et al., 2003), it is now seen that DHA is transported
in the matrix to subsequently be reduced by the HAF cycle
(Navrot et al., 2007). In this context, a high concentration of GSH
(between 7 and 15mM) has been determined in this organelle
(Zechmann et al., 2008; Queval et al., 2011; Zechmann, 2014),
despite it is considered to be devoid of GSH synthesis pathway.
This implies an uptake of GSH from the cytosol assumed by
different transporters (Chen and Lash, 1998). In addition, there
is no work mentioning the accumulation of phenols in the
mitochondria, these compounds been known as inhibitors of the
respiratory activity (Demos et al., 1975). Finally, in spite of a quite
large panel of antioxidants, the mitochondria have been pointed
out as being more sensitive to O3 than chloroplasts (Pellinen
et al., 1999). Nevertheless, there is no consensus to validate this
difference of sensitivity between organelles (Sutinen et al., 1990).

Peroxisome
Due to H2O2 production driven by photorespiration, the
peroxisome is also provided with antioxidant systems (Corpas
et al., 2019). To minimize H2O2 accumulation in this
compartment, a significant catalase activity has been observed. In
addition, the presence of DHAR isoform suggests a functioning
HAF cycle (Jiménez et al., 1997) in the peroxisome. A
high concentration of AsA (23mM) was determined in the
peroxisome (Zechmann, 2017) while GSH was also detected but
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at low level (4mM) (Zechmann et al., 2008). O3 increased catalase
activity and enhanced the number of peroxisome in tolerant
birch leaves (Oksanen et al., 2004). The increase of peroxisome
number could be a response to an enhanced requirement for
detoxification as photorespiration decreased (Booker et al., 1997;
Bagard et al., 2008).

CONCLUSION

This article points out the great diversity of antioxidative systems,
scattered in the different cellular compartments of leaves. The
data so far published suggest that this diversity must be taken
into account in O3 risk assessment. However, under O3, there
is a lack of information regarding changes in the concentrations
of the different antioxidants in each compartment under ozone
treatment. As mentioned in previous works, and considering
its occurrence in different cell compartments, it is obvious
that the HAF cycle has a prominent role in cell detoxification.
In addition, phenolic compounds in cell wall, vacuole and
chloroplasts might also play a protective role. Subcellular
immunocytochemical localization could allow a more precise

identification of the respective contribution of each compartment
to the global defense system. The next step would be to get an
integrative scheme allowing to improve the modeling for the
participation of detoxification to risk assessment. Recently, an
attempt to integrate the vacuole in an H2O2 metabolism under
oxidative constraint model appeared to be promising, especially
since transporters were considered (Tuzet et al., 2019). Indeed,
the transport of antioxidants between compartments during
oxidative stress should be also studied to better understand the
role of compartmentation.
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