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Understanding the importance of climate in determining species distribution and how it

might change as a function of spatial grain size is a vital issue for species distribution

modeling (SDM), yet it is often not accounted for in models and has not been extensively

addressed in under sampled areas in tropical forests. Using extensive field sampled

vegetation plots data on species occurrences and current climate conditions wemodeled

150 vascular plant species in the Okavango River Basin, to map their current projected

suitable climate space at 2, 5, 10, 20, and 50 km2 pixel resolution. Relationships between

the variable importance scores and variable identity and their interaction with predictor

spatial grain were investigated using Generalized Linear Models and post-hoc analysis.

We found variation in the relative influence of temperature and precipitation variables

across the spatial grains. The importance of the determinants of species distribution

may change between species but such changes are less determined by the predictor’s

spatial grain. Potential evapotranspiration consistently exhibited the greatest influence

in determining species and richness distribution across fine to coarse spatial grains. We

found that the spatial grain of predictors had no effect on the model predictive power and

that varying predictor spatial grains had only negligible effects on the model performance

measured by AUC and Kappa statistics. The spatial grains of the climatic predictors used

showed no effect on species richness pattern either. Our results indicate that in areas with

relatively low topographic variation, modeling at coarse spatial grain for conservation

purposes can be acceptable. Moreover, we show that in tropical areas that have

comparatively homogeneous climatic conditions along large spatial extents the variable

importance is not influenced by predictor spatial grain. For projections of contemporary

species suitable climate space in relatively flat and topographically homogeneous areas

which often have a climatically homogenous landscape, more attention must be given

to the identity of the selected predictor variables for modeling the species distributions

than to their spatial grain size. We suggest that in species distribution modeling for

conservation planning, assessment of the input datasets spatial grain should be informed

and guided by knowledge of the landscape level topographic conditions, as protocol.

Keywords: Okavango river basin, stacked species distribution models, macroecological models, predictor spatial

grain, species richness, variable importance, ecological niche models
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INTRODUCTION

Species Distribution Models (SDM) have been a critical
technique for investigating a variety of ecological, conservation
and management issues (Garcia et al., 2012; Van Echelpoel
et al., 2015; DellaSala et al., 2018) as well as in studies of
paleoclimate (Reichgelt et al., 2018). The technique relies on
statistically associating contemporary species occurrence data
with climatic and environmental predictors (Elith and Leathwick,
2009). Since its inception, the SDM technique has advanced from
simple correlative ecological niche models (Araújo and Peterson,
2012) to more complex mechanistic models, incorporating range
(Fordham et al., 2013a; Zurell et al., 2016) and population
dynamics, dispersal abilities (Fordham et al., 2013b) and
community dynamics (Singer et al., 2016). However, ecologists
and conservation practitioners are still faced with problems of
spatial and temporal scale variations in the datasets used in
operating SDMs.There is no consensus about the most suitable
predictor spatial grain that can improve the accuracy of SDM
prediction (Raven, 2002; Bradter et al., 2013; Fournier et al.,
2017) and there is a lack of full understanding of the effects
of building SDMs at multiple predictor spatial grains. This has
an impact on management planning and conservation decision
making (Porfirio et al., 2014; Yates et al., 2018).

The ecology and distribution of terrestrial plant and animal
species are influenced by climatic conditions (Aguirre-Gutiérrez
et al., 2015) across various spatial grains (Connor et al., 2018;
Kosanic et al., 2018). Modeling of the species distributions
under current and a changing climate requires spatially explicit
environmental predictors. It is not surprising that one of the
frequently documented sources of uncertainty in SDMs is
insufficiency in the spatial grain of the climate data used, often
originating from low resolution global climate models (GCM)
or from downscaled by-products of those models (Weibull
et al., 2003; Dunford and Freemark, 2005; Wang et al., 2016).
Uncertainty in predictor variables can result from instrumental
errors or methods used to collect the variables. In the case
of climatic variables, this would include resampling of weather
station data and gridded climate reanalysis products. The
uncertainty in predictor variables can also emanate from spatial
scaling (Scott et al., 2002), brought about by the disparity between
the spatial grain size of the climate data and that of the species
modeled, which may lead to uncertainty in the magnitude, rate
and direction of changes of biodiversity imposed by the changing
climate (Garcia et al., 2012; Wan et al., 2016).

The intrinsic properties of species occurrence data and their
spatial grain affect model performance and prediction abilities
(Thuiller et al., 2003; Guisan et al., 2007a), they affect species
occurrence probabilities (Garcia et al., 2012; Wan et al., 2016)
and transferability of SDMs (Manzoor et al., 2018). Differences
in spatial grain have also been found to affect variations in
the relative importance of environmental predictors determining
plant distribution (Thuiller et al., 2003; Radinger et al., 2015).
Investigating how the spatial grain of environmental predictors
in SDMs affects a model’s variable importance can provide ways
to use expert or theoretical knowledge in the decision-making
process of what input datasets to use in SDM’s. Testing the

sensitivity of species distribution models to the spatial grain size
of predictor variables is, therefore, an important component to
consider in/before applying SDMs.There is a lack of consensus
on the direction and magnitude of effects of spatial grain in
SDMs, but it is important for practical use of this technique that
consensus is reached (Rodríguez et al., 2007).

Africa is predicted to be highly vulnerable to the impacts
of climate change. Extensive areas of the region are projected
to have warming exceeding 2◦C by the end of the twenty-first
century with a likely decline in precipitation (Collier et al.,
2008; Niang et al., 2014). These changes in temperature and
precipitation are already negatively impacting ecosystems and
biodiversity (Biggs et al., 2008), with evidence of species ranges
shifts and changes to ecosystems (Garcia et al., 2012, 2014).
Despite the continent’s vulnerability to a changing climate, with
a potential high loss of biodiversity (IPBES, 2018), the likely
impacts remain largely unstudied. In addition, the African arid
tropical forests landscape has not yet been utilized to investigate
intrinsic sensitivities of SDM modeling. Given the continent’s
vulnerability to climate change, effective, reliable and high
performing SDMs within the arid forests of Africa is critical.

Recent studies have aimed to increase confidence in species
occurrence projections by tackling methodological uncertainties
of ecological models (Diniz-Filho et al., 2009; Buisso et al.,
2010). The southern African landscape, climatic system and
plant species diversity (Revermann et al., 2016; Reason, 2017),
presents an ideal setting to investigate if and how the importance
of environmental drivers for determining species distributions
change across spatial grains. In this study, we use 194 unique
intensively sampled vegetation plots (nested design of 100-
m2, at the center of 1,000-m2 plot) in the Okavango River
Basin, and relevant climatic information to investigate and
evaluate the effects of predictor spatial grain on the variable
importance of SDM predictions. We then explore if and how the
variation in spatial grain affects the patterns and estimations of
species richness distribution. We specifically tackle the following
questions: (i) which are some of the main climatic determinants
of the plant species distributions in the Okavango river basin? (ii)
What are the effects of predictor spatial grain on the importance
of the climatic variables determining suitable climate space? and
(iii) what is the degree to which species richness estimations differ
across fine to coarse predictor spatial grains?

MATERIALS AND METHODS

Study Area
The study is based on the Okavango River Basin (hereafter
ORB) located in Southern Africa (Figure 1) and spanning
three countries: Botswana, Namibia and Angola. An interesting
and important case study given its special ecological status:
as biodiversity hot spot and UNESCO world heritage site
(UNESCO WORLD HERITAGE SITE, 2014), as well as an
ecoregion of global conservation priority (DEA, 2009). Its
relatively homogenous climatic and topographic background
(Figure S1), also provides a tractable model system for exploring
issues of grain size in SDM. The ORB covers an area of
approximately 1,860 km2 including the delta. The basin is
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FIGURE 1 | Location of the Okavango River Basin in southern Africa with the map of the ORB showing the location of vegetation plots used for this study.

comprised of distinctive landscape units starting with the semi-
humid Angolan highlands in the north where the Okavango
river originates, South of this are lowlands, followed by the
Okavango Delta in Northwest Botswana (Revermann et al.,
2016). The Okavango Basin has a strong rainfall gradient with
a mean annual precipitation of 1,300mm in the north east
and >500mm in the southwest. The wet season is between
the austral summer months of December, January, February
Climatic, geological and soil conditions control the flow regime
of the river. The Okavango basin is a key conservation region as
it is a major wetland system and harbors vital seasonal habitats
that support a high diversity of species. The basin features a
latitudinal gradient of a transitioning wet/dry type of tropical
climate and landscape where the vegetation can be clustered into
13 vegetation communities (Revermann et al., 2016). This plant
community composition appears to be driven by variations in
wetness and soil texture and fertility (Ramberg et al., 2006).

Vegetation Species Sample
We use the Vegetation Database of the Okavango Basin
(GIVD ID: AF-00-009, http://www.givd.info/ID/AF-00-009)
(Revermann et al., 2016) collected through The Future Okavango

(TFO) project. The database contains samples from a wide
range of terrestrial vegetation, such as Miombo woodlands and
forests, geoxylic grasslands, Baikiaea-Burkea woodlands, and
Colophospermum mopane woodlands. The terrestrial vegetation
presence/absence data comes from a plot network consisting of
194, 1,000 m2 plots.

Climate Data
The CORDEX initiative (Giorgi et al., 2009) has made available
Regional Climate Models (RCM) for Africa. The RCM outputs
have been empirically downscaled by CORDEX to resolutions
applicable to ecological modeling. Through this, the AFRICLIM
project has produced high resolution climate projections for
ecological application in Africa (Platts et al., 2015). The climate
data used for this study was therefore sourced from the
AFRICLIM V3.0 database. The original data stems from the
regional climate model RCA4 (Rossby Center regional model)
forced with the global circulation models from CMIP5. Current
research on the simulation of Southern Africa rainfall, uses the
EC-EARTH model from CMIP5 (Pinto et al., 2018), as it reliably
simulates the domain’s climatology. Following on from this,
within the AFRICLIM V3.0 database the study uses products
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from the EC-EARTH_SMHI-RCA4 model. The period from
1950 to 2000 is commonly used to represent conditions at the
beginning of the impacts of anthropogenic climate change and is
therefore used as the present period.

Climatic conditions are critical to plant physiological function
and survival (Becklin et al., 2016), and are therefore among
the most important agents in determining the distribution of
vegetation. The seasonally arid tropical region of the ORB calls
for variables that measure and include the intensity of the
dry or wet season. Climatic variables were therefore, selected
based on their significance to plant physiology. We used a
combination of coldest and warmest quarter mean temperatures
(mtwq), annual ratio of actual to potential evapotranspiration
(pet) and a measure of the rainfall intensity of the dry /wet season
(moisture index moist quarter [mimq], rainfall driest quarter
[rdq], temperature seasonality [tempSea]), see Table 1. We used
the climatic variables at the following four different spatial grains
2 km2 (1 arc-minute), 5 km2 (2.5 arc-minute), 10 km2(5 arc-
minute), and 20 km2(20 arc-minute) [from the AFRICLIM v.30
database (https://webfiles.york.au.uk/KITE/AfriClim/] Applying
the bilinear interpolation method, the mean values of the 20 km2

climatic variables were interpolated to a 50 km2 grid size. The
remapping was done in Climate Data Operators (CDO 2018:
Available at: http://www.mpimet.mpg.de/cdo).

Prior tomodel calibration, a sensitivity analysis was conducted
in order to identify and remove highly correlated variables, while
retaining variables that are known to be important determinants
of plant distribution (Braunisch et al., 2013). A Variance Inflation
Factor [VIF] (Zuur et al., 2010; Naimi et al., 2014) with a
threshold of 3 was used and highly collinear variables were
excluded through a stepwise procedure. From the original ten
variables, five had a collinearity problem; mean temperature
coolest quarter, rainfall seasonality, rainfall wettest quarter,
moisture index arid quarter and length of longest dry season.
We retained the remaining five variables that represent climate
variability and extremes for use in the study (Table 1).

Fitting Species Distribution Models
We fitted SDMs for the current period (1950–2000) across five
climatic predictor spatial grains from local to regional scale (2,
5, 10, 20, 50 km2) to test whether predictor variables change in
importance. The SDMs were built by assembling 6 widely-used
modeling algorithms (Table 2): 3 machine learning methods,
Random Forest (RF), Artificial Neural Networks (ANN) and
Classification Tree Analysis (CTA); two regression methods:
Generalized Additive Models (GAM) and Generalized Linear
Models (GLM) and one Maximum Entropy Modeling (Maxent).
The SDMs were fitted for all 150 species with the five non-
collinear climatic variables (Table 1). As different sets of data are
used for calibrating the model, to account for within-algorithm
model variation, distribution models for each species were
computed using ten model repetitions, producing a total of (150
species × 6 algorithms × 5 spatial grain × 10 replicates) 45,000
models. Evaluation of the performance of the models in terms
of accuracy was based on the Area Under the curve (AUC) of
the Receiver Operator Characteristic Curve. The AUC’s threshold
and prevalence independent nature, renders it an effective model

TABLE 1 | Climatic variables used to generate species distribution models of the

vascular plant species.

Variables acronym Description Units

tmpSea Temperature

Seasonality

mm (standard

deviation*100)

mtwq Mean temperature

Warmest quarter

◦C

PET Potential evapotranspiration mm

rdq Rainfall driest quarter mm

mimq Moisture index

Moist quarter

%

Climatic variables represent annual trends and seasonality.

They are derived from monthly temperature (units: ◦C) and rainfall (mm).

TABLE 2 | Statistical methods used to fit the vascular plant species distributions

models.

Algorithm Abbreviation References

Random forest RF Breiman (2001)

Maximum entropy modeling MAXENT Phillips et al. (2006)

Artificial neural networks ANN Ripley and Hjort (1996)

Classification tree analysis CTA Breiman et al. (1984)

Generalized additive models GAM Hastie and Tibshirani (1986)

Generalized linear models GLM McCullagh and Nelder

(1989)

accuracy metric (Allouche et al., 2006). We then constructed
ensemble species distribution models by averaging the model
predictions across the individual SDMs for each species and after
excluding the models with lowest AUC values (AUC <0.60). A
total of 750 ensemble SDMs were obtained (150 species x 5 grid
sizes). All analysis were done in the R statistical environment
version 3.5.1 (Team, 2013) using the SSDM package (Schmitt
et al., 2017).

Predicting Species Richness
Local species richness and composition were predicted using a
stacked species distribution modeling approach (Dubuis et al.,
2011) and a macroecological model. We estimated the species
richness with the SESAM framework and a Macroecological
Model (MEM) (Guisan and Rahbek, 2011), using the ecological
assembly probability ranking rule (PRR) (see D’Amen et al.,
2015). The PRR rule follows as assumption that species with the
highest habitat suitability are more competitive than those with
the lowest habitat suitability (D’Amen et al., 2015; Schmitt et al.,
2017). In the MEM a number of species equal to the prediction of
species richness is selected on the basis of decreasing probability
of presence calculated by the SDMs (Guisan and Rahbek, 2011;
Del Toro et al., 2019). To set the macroecological constraints
per site, the ensemble SDM models were overlaid and ranked by
their habitat suitability, retaining asmany species as the predicted
richness of the macroecological model suggested (Schmitt et al.,
2017). For observed species richness, the number of species
within the 150-species pool, present in each sampling plot was
taken as the observed species richness.
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We constructed presence and absence species range maps to
assess effects of predictor spatial grain on estimates and spatial
patterns of species richness. The present time species richness
maps (Figure 5) were achieved as described above and across the
fine to coarse spatial grains (2, 5, 10, 20, 50 km2).

Species Richness Maps Accuracy
Assesment Across Spatial Grains
We assessed the accuracy (disagreements between the prediction
and reality) of the species richness maps across the sets of
spatial grains, using observed occurrence data from the plots.
We analyzed the proportion of accurate richness predictions and
true negatives, true positives and similarities in species richness
using the species richness error, prediction success, Cohen’s
Kappa coefficient (Schmitt et al., 2017). The five species richness
prediction maps, per spatial grain, were compared against our
observed control points.

Drivers of Species Richness
To identify themain determinants of species richness and explore
the effects of predictor spatial grain on the species richness,
variable importance values (see next section for a full description)
as computed during the modeling of species richness were used.

Investigating Importance of Climatic
Drivers Across Spatial Grains
The modeling of species distribution entails the operation and
interaction of mechanisms at different scales: one at the response
scale, the analysis /operational scale, and the study extent scale
(environment spatial grains) (Mertes and Jetz, 2018). Here we
evaluate the effects of operational spatial grain on the SDMs
variable importance across fine to coarse spatial grains (2, 5,
10, 20, 50 km2). Using the SDM approach described above we
assessed which one of the variables determine the species suitable
climate space distribution. We calculated variable importance
(VI) scores from each SDM and variable involved in the models.
These VIs reflect the relative contribution of environmental
predictor variables to the model outputs and may depend on
the predictor spatial grain at which the species distributions
are modeled. For the VI calculations we used the “Percentage
Contribution” scores (Thuiller et al., 2009; Schmitt et al., 2017),
which has been successfully used in recent similar studies
(Gallardo and Aldridge, 2013; Quillfeldt et al., 2013; Aguirre-
Gutiérrez et al., 2017), as a measure of variable importance.
The percentage contribution is calculated by building an SDM
with the original explanatory variables and then comparing
it to another built by randomizing the focus variable and
then investigating the correlation between those two models.
Therefore, the final VI score is computed as one minus the
correlation value between the two models mentioned above and
standardized to percentage variable importance. The higher the
percentage, the more importance the variable has on the model.

The SDM outputs were therefore evaluated in three ways:
(i) variable importance scores for each variable were compared
across the sets of predictor spatial grains, (ii) species richness
estimates and distribution patterns were compared across spatial
grains, (iii) model performance was compared across scales,

based on AUC and Kappa values (Guisan et al., 2007b). In this
analysis predictor spatial grain interacting with variable identity
is used as a test factor and the response variables being models’
variable importance scores, both for single and species richness
maps, model performance and model spatial output.

Generalized Linear Models
To investigate how the relative importance of climatic predictor
variables changes as a function of predictor spatial grain, we
fitted a Generalized Linear Model (Venables and Ripley, 2002).
The VI scores were converted to a 0 to 1 range and modeled
using a binomial error structure with a logit link function which
was selected following a test of both the default and the user
specified complementary log-log, where the model with the
lowest deviance fit was then chosen. The model was tested for
overdispersion using the chi-squared method, no suggestions
of over dispersion were found. The fitted GLM thus contained
the VI score (of the SDMs or Species richness predictions) as a
response variable and the climatic variable identity, the spatial
grain and their interaction as explanatory variables.

The logistic regression analysis is used to (i) examine
whether the relationship between the variable importance scores
interacting with climatic predictors is significant; and (ii) to
establish the contributions and roles of the different sets of
climatic variables.

We then performed a multiple comparison analysis (post-
hoc comparison test) in order to test for pairwise significant
differences between the climatic variables interacting with spatial
grains, using Tukey’s Honest Significant Difference (Yandell,
2017). All statistical analyses were carried out in the R platform
(Team, 2013), with the MASS (Venables and Ripley, 2002) and
the lsmeans packages (Lenth, 2016).

RESULTS

Species Distribution Models Evaluation
All species distribution models were found to be effective in
predicting the vascular plant species distributions, with a fairly
good median AUC score > 0.7 and an interquartile range of
0.1 (Figure 2 and Table S1). There was no effect of spatial grain
in the performance of the models, as evident from the reported
consistent AUC values (Table S1).

Main Climatic Determinants
Variations in environmental predictor spatial grain have effects
on the importance of climatic variables in determining species
suitable climate space. Our analysis (Figure 3) shows PET having
the largest effect in determining the species suitable climate space
of plants of the ORB at fine predictor spatial grain sizes (2, 5 km2).
An aggregation of one in predictor spatial grain (5 vs. 10 km2),
alters the order of the contribution of the temperature related
variable to the present-day species distribution. The contribution
of PET slightly reduces and mimq slightly increases at 10 km2,
with mimq accounting for the highest variability with a VI of
28%. At 20 km2 the importance contribution of PET is further
reduced (Figure 3). However, percentage differences leading PET
to lose its key determinant position at 10 and 20 km2 are
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FIGURE 2 | Histogram of Area Under the ROC Curve (AUC) scores showing model performance for all species (A) model performance at 2 km2, (B) model

performance at 5 km2, (C) performance at 10 km2, (D) performance at 20 km2, and (E) at 50 km2. The figure indicates that all models are effective in predicting the

plant species distribution with no effect of spatial grain in the performance of the models.

FIGURE 3 | Climatic variable importance for the plant species distributions across predictor spatial grain (2, 5, 10, 20, 50 km2 ). The figure depicts average effects of

predictor spatial grain on the importance of climatic variable driving species distribution (bars depict the 95% confidence interval over 150 species models). It also

illustrates within and between variables, and between predictor spatial grain differences in the importance performance of the climatic variables driving the Okavango

river basin plant species distribution. Climatic variables: moisture index of moist quarter (mimq), mean temperature of warmest quarter (mtwq), potential

evapotranspiration (pet), rainfall of driest quarter (rdq), temperature seasonality (tmpSea). For details of the generalized linear model see Appendix S1.

negligible. At the broader spatial grain (50 km2) PET reassumes
its role as the strongest predictor (Figure 3).

Within Variables Effects of Spatial Grain
Interestingly, negative interactions are portrayed between some
variable identities and predictor spatial grain. When considering

the rdq, a pattern of no difference in the contribution importance
is detected across all the different grain sizes, as the variable
tends to have even importance values (Table S2). Results from
the multiple comparisons, Tukey’s p-values and GLM test across
spatial grains, show no statistically significant differences in
the variable’s importance in driving the species climatically
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TABLE 3 | Model results assessing changes in the mean variable importance of

climatic variables across predictor grain sizes.

Predictors Odds

ratios

C.Int (95%) p

(Intercept) 0.13 0.08–0.22 <0.001

Moisture index moist quarter: 2 × 2 km 2.11 1.12–3.97 0.020

Mean temperature warmest quarter: 2 × 2 km 1.69 0.89–3.24 0.110

Potential evapotranspiration: 2 × 2 km 3.81 2.09–6.97 <0.001

Rainfall driest quarter: 2 × 2 km 1.02 0.51–2.06 0.956

Temperature Seasonality: 2 × 2 km 1.28 0.65–2.51 0.475

Moisture index moist quarter: 5 × 5 km 2.37 1.27–4.42 0.007

Mean temperature warmest quarter: 5 × 5 km 1.47 0.76–2.84 0.254

Potential evapotranspiration: 5 × 5 km 4.31 2.37–7.85 <0.001

Rainfall driest quarter: 5 × 5 km 1.02 0.50–2.06 0.958

Moisture index moist quarter: 10 × 10 km 2.92 1.58–5.39 0.001

Mean temperature warmest quarter: 10 × 10 km 2.29 1.22–4.28 0.010

Potential evapotranspiration: 10 × 10 km 2.74 1.48–5.07 0.001

Rainfall driest quarter: 10 × 10 km 0.98 0.49–1.99 0.964

Temperature Seasonality: 10 × 10 km 0.92 0.45–1.87 0.808

Moisture index moist quarter: 20 × 20 km 2.06 1.09–3.88 0.025

Mean temperature warmest quarter: 20 × 20 km 2.84 1.54–5.26 0.001

Potential evapotranspiration: 20 × 20 km 2.44 1.31–4.54 0.005

Rainfall driest quarter: 20 × 20 km 1.30 0.67–2.55 0.439

Temperature Seasonality: 20 × 20 km 1.05 0.52–2.11 0.892

Moisture index moist quarter: 50 × 50 km 1.57 0.82–3.03 0.174

Mean temperature warmest quarter: 50 × 50 km 2.32 1.24–4.33 0.008

Potential evapotranspiration: 50 × 50 km 2.68 1.45–4.97 0.002

Rainfall driest quarter: 50 × 50 km 1.86 0.98–3.52 0.059

Temperature Seasonality: 50 × 50 km 1.17 0.59–2.33 0.648

Observations 3,750

Highlighted p-values show significant effects of predictor spatial scale on the mean

variable importance of climatic variables at p < 0.05. For more statistical details see the

post-hoc tests, Tables S2, S3.

determined distribution, whether on fine or coarse spatial
grain (Table 3 and Table S3). This pattern of no variation
across spatial grains also holds for temperature seasonality
(Table 3 and Table S3). Spatial grain has therefore no significant
effect on the contribution of these climatic variables to plant
species distribution.

Decreases in predictor spatial grain causing an increase in
variable importance gives a mixed response. The notion is only
apparent for the mtwq where the highest importance values are
observed at a coarse grain of 20 km2 (27%), 50 km2 (23%), and
10 km2 (23%) (Figure 3 and Table S2). Significant interactions
(p< 0.05) for the effect of spatial grain onmtwq were observed at
these coarse spatial grains (Table 3). However, when considering
the local spatial grain, there is an exception to this notion as
at the finest grain of 2 km2, the temperature variable gains
more importance than at a coarser grain of 5 km2. Based on
multiple comparisons, Turkey’s p-value (p > 0.05), the difference
in the importance values at both the 2 and 5 km2 is however
insignificant (Tables S2, S3). At the fine spatial grains, the GLM
test also displays a no significant effect (p > 0.05) of spatial grain
to the temperature related variable (Table 3).

Specific climatic variables such as mimq quite clearly display
less evidence of predictor spatial grains’ influence on the variable
importance. The rainfall variable performance at a 20 km2

distribution model is equivalent to that at the finest scale of
2 km2. Even though the predictor spatial grains are spread
apart, both produced a relative importance contribution of 22%
(Figure 3 and Table S2). Multiple comparisons analysis and
GLM test (p > 0.05) show no significant difference in the
importance of the variable in driving the species climatically
determined distributions, whether at the finest spatial grain or
coarser grain (Table 3 and Table S3). At the coarsest 50 km2

the spatial grain has an insignificant effect on the mimq variable
importance (p= 0.254) (Table 3).

A 5 - and 10-fold increase in predictor spatial grain (10 and
20 km2) causes a significant influence in variable importance,
however this was only observed in three variables; mimq, mtwq
and PET (p < 0.05; Table 3). A 25-fold increase to 50 km2

exerts influence only on the importance of temperature related
variables; the mtwq (p = 0.008), and PET (p = 0.002). The
broadening of the spatial grain from 20 km2 to regional scale of 50
km2 does not cause any effect on mimq, or rdq and tempSea with
(p > 0.05; Table 3). The fine spatial grains of 2 and 5 km2, have a
statistically significant effect on PET (p < 0.001) and a significant
effect on mimq (p = 0.020 and 0.007, respectively, Table 3).
The results suggest that among the analyzed variables, there is a
significant interaction between the mean variable importance of
PET only, across all spatial grains.

Even though the importance order of the temperature and
precipitation species distribution determinants, display slightly
different tendency across the spatial grains (Figure 3 and
Table S2), the differences in each variable’s mean importance
values at the fine to coarse spatial grains, are quite small
(Table S2). Across the spatial grains of 5, 10, 20, and 50
km2 temperature seasonality maintains its position as the least
importance contributor. An exception to this is depicted at the
finest grain of 2 km2, where the temperature seasonality displays
a higher importance than rainfall of the driest quarter, relative to
the other spatial grain of predictors.

Overall, the results show that importance of the climatic
variables does not vary consistently with predictor spatial grains.

Comparisons of Species Richness
Distribution Maps Accuracy Assessment
Species richness distribution models that use different predictor
spatial grains do not differ significantly as measured by the Kappa
coefficient. Across all the species richness maps produced at
different spatial grains, a high level of agreement with Kappa
scores of 0.99 is achieved (seeTable S5). However, corresponding
levels of species presence and absence per given point against
the observed occurrence data points, varied slightly across the
different spatial grains. The variation between the predicted and
observed species richness marginally increases with the increase
in predictor spatial grain, where at the broader spatial grain of
50 km2, the highest average of 5.56 species richness error/250
vs 2.74/4 km is detected, and the lowest 2.51 species richness
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FIGURE 4 | Species richness maps accuracy assessment. The figure explores the effect of predictor spatial scale and the accuracy of species richness maps based

on 3 evaluation metrics; Cohen’s Kappa, Prediction success, Species richness error (bars depict the 95% confidence interval).

error/25 km species richness error obtained at 5 km2 (Figure 4
and Table S5).

The richness maps at the finest and coarsest spatial grains of
2 and 50 km2, offer the highest chance of a predicted species
being found in that grid square. On average, prediction success
at both the local and regional spatial grain is 19.11 and 19.26,
respectively. No emerging trend is observed as the next fine
spatial grain of 5 km2 gives the lowest proportion of accurate
predictions with a mean of 18.53. Our analysis shows that strong
predictive capacity is obtained at the coarsest species richness
maps (50 km2). However, there is a very small variations in
the proportions of prediction success of the models across all
predictor spatial grains.

Current Patterns of Species Richness
Across Predictor Spatial Grain
The distribution, patterns and estimate of richness displayed no
major variation with decrease of the predictor spatial grain from
local to regional scale. Within the boundaries of the case study,
the maximum estimated richness of 40–60 species per km2 is
in Northern Namibia, with medium (20–40 species per km2)
richness predicted in the center of the domain, while the center
of Angola and wider Southwards areas at the bottom of the delta
depict a low estimated richness of 0–20 (Figure 5). This pattern
is observed across all species richness maps from local (2 km2) to
regional (50 km2) scale. When considering the area coverage of
richness across the projected models, we see the coarser spatial
grain (Figures 5C–E) leading to a slightly greater area predicted
to contain a high richness (i.e., dark green patch increases in size
40–60 per km2). Whereas, the finer resolutions (Figures 5A,B)

show that species richness is not equal within these high richness
areas shown at a coarser resolution.

DISCUSSION

The understanding of how the spatial grain of environmental
variables influences the species geographic occurrence is critical
for studies inferring ecological niche relationships (Verbruggen
et al., 2013; Radinger et al., 2015; Manzoor et al., 2018; Yates
et al., 2018). This understanding is important for developing
biodiversity monitoring tools for conservation decision making
(Rodríguez et al., 2007) as well as developing management
and conservation (adaptation) strategies. Moreover, accounting
for any uncertainties in species distribution models is of
pivotal importance, especially when building species distribution
for biodiversity conservation (Vaughan and Ormerod, 2003;
Rodríguez et al., 2007; McInerny and Purves, 2011). The results
offer important insights on the relationships between changes in
plant suitable climate/environmental space and environmental
variables across spatial grains (2 to 50 Km2).

Identification of Main Climatic
Determinants of Plant Species
Distributions
Some climatic variables determining species distributions were
relatively inconsistent across spatial grains. However, PET
outperformed other variables as it was progressively selected
as an important driver for the plant species and richness
distributions at the fine spatial grains and the coarsest scale of
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FIGURE 5 | Estimate present day predictions of species richness for the study domain across predictor grain size derived from SSDM, (A) species richness at a 2

km2, (B) species richness at 5 km2, (C) richness at 10 km2, (D) richness at 20 km2, (E) richness at 50 km2.

50 km2, which is in agreement with Thuiller et al. (2003) who
reported consistency in some variables selected by SDMs across
spatial grain sizes. It is not surprising that PET is a key driver
of ecological patterns in the ORB given that an estimated 98%
of total inflow to the basin is lost through evapotranspiration
(Ramberg et al., 2006). Our results suggest that moisture too plays
and important role in determining plant distributions, as the
rainfall related climatic variable; moisture index of moist quarter,
presents strong predictive power at 10 km2. This differs with
findings of Revermann et al. (2016), who showed that moisture
based climatic variables displayed less predictive strength over
the domain of study whereas temperature related variables have
strong predictive power. Plant species of the Okavango river
basin are susceptible to shifts in temperature related conditions
and this has implications in the vegetation patterns and diversity
of the river basin (Tonkin et al., 2017). It is expected that as the
climate of Southern Africa gets drier by the end of the twenty-first
century (Niang et al., 2014), the basin will be dominated by drier
vegetation types such as Baikiaea burkea and Colophospermum
mopane woodlands.

Spatial Grain Effects on the Importance of
Climatic Variables
Contrary to the findings of Wan et al. (2016) whose results
of a global study showed a positive dependence of variable
importance on spatial grain, our results suggest that the response
of a species to climatic variables is relatively independent of
the variable spatial grain in the ORB region. Spatial grain in
a relatively flat homogenous landscape like the interior sand
sheet of the south western region of Southern Africa (study area)

may therefore be less important than in a more heterogeneous
landscape (Raes and Aguirre-Gutiérrez, 2018). Thus, landscape
level homogeneity in climatic and topographic conditions
(Reason et al., 2006; Weber, 2013) may also contribute to the
explanation of the lower dependence of variable importance
to spatial grain in our study area. Our results suggest that
climatic variables that determine species distribution patterns
can still be appropriately detected and estimated at coarse
predictor spatial grains. Studies with the aim of evaluating niche
relations and identification of predictor variables driving species
occurrence, such SDM models, can be operated at both the local
(2 km2) and regional spatial grains of up to 50 km2 at least
in the context of relatively flat climatically and topographically
homogeneous landscapes. This is an encouraging finding
for conservation practitioners, given the resource demanding
processes of downscaling climate/environmental variables to fine
(2 km2) spatial grain for ecological modeling.

Accuracy Assessment of Species Richness
Prediction Across Spatial Scales
The expectation is that the levels of accuracy in species richness
predictions would differ across predictor spatial grains, with
accuracy declining with the decrease in spatial grain (Connor
et al., 2018). For our studied species and area, there was a high
level of agreement between prediction maps based on spatial
grains from fine to coarse. Our results are inconsistent with Seo
et al. (2009), who concluded that increases in spatial grain size (1–
64 km2) causes AUC predictive model values to decline while the
predicted geographic extent of species climatically determined
distribution increased. Moreover, our results are also comparable
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to those of Guisan et al. (2007a), who found that variation in
spatial grain size (between 100 and 10 km) had minimal impact
on model performance. Therefore, our results suggest that the
benefit of increasing predictor spatial grain does not necessarily
result in an increase of model accuracy.

Effects of Predictor Spatial Grain on
Species Richness
Measure of species richness are shaped by multiple biotic
and abiotic factors, one of which may be spatial grain (Keil
et al., 2012). In our study, irrespective of the stacked species
distribution models being constructed on varying predictor
spatial grains, similar distribution patterns and estimates of
species richness were obtained (Figure 5). This implies that
spatial grain has a small effect on the estimates, pattern and
distribution of species richness in our study area. However, this
does not imply that the spatial generalization in the predictions
caused by a lower spatial grain does not also cause a possible
overestimation of species richness, as also shown by other studies
(Seo et al., 2009; Franklin et al., 2013). It is therefore imperative to
note that modeling species distribution at coarse spatial grains is
a trade-off between data availability and generalization of species
richness distributions patterns. Some important details, such as
information associated with uncertainty of model predictions,
are lost when modeling species richness patterns at coarse
spatial grains and such limitations should be accounted for when
applying SDMs for species conservation decision making.

CONCLUSION

Our results contribute to the on-going debate on what the
adequate resolution of climate data is for an accurate prediction
and identification of determinants of species distribution and
species richness patterns. For conservation purposes, species
distributions models and species richness predictions for current
and future climate scenarios may be undertaken at a coarse
spatial grain in areas with relatively low climatic and topographic
variation as the one shown in this study, with relatively high
statistical accuracy and from fine to broad spatial grains.
However, the use of SDMs across spatial grains will need to
be tailored to the specific location, data available and questions

being addressed for effective biodiversity management and
conservation. In addition, coarse spatial grain modeling being
acceptable in the case of low topographic variation needs further
testing in a more heterogenous region.
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