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We used a hydro-ecologic model (RHESSys) constrained by measurements of stream
discharge, and spatially distributed snow and soil moisture, to simulate the impacts
of operational forest treatments, historical wildfire and climate warming on productive
mixed-conifer forests. We compared the response of two headwater catchments
at the rain-snow-transition elevation in the wetter central Sierra and more water-
limited southern Sierra. The variability of precipitation exerted a greater influence
on annual evapotranspiration and runoff than vegetation changes from operational
fuels treatment or historical wildfire. The short-term impacts of vegetation changes
associated with wildfire, however, did have a greater effect on evapotranspiration and
runoff than temperature increases in a warming climate. The average central-Sierra
headwater response of evapotranspiration and runoff to fuels treatments (−12%, +12%,
respectively) and wildfire (−43%, +46%) were greater than the projected responses to
a 4.5◦C temperature increase (+2 and −7%). The response in the southern Sierra was
limited by lower annual precipitation and showed no response to fuels treatments; but
the catchment showed respective changes of −11 and +17% in evapotranspiration
and runoff for wildfire, versus +9 and −3% to a 4.5◦C temperature increase. These
results suggest that in the central Sierra, reductions in vegetation from either fuels
treatments or historical wildfire can, temporarily, offset reductions in streamflow from
a warming climate. In the southern Sierra, impacts of fuels treatments were small,
and only more-extensive vegetation removal as would occur with wildfire, results in
significant changes in hydrologic fluxes. Further research is needed to investigate how
initial hydrologic changes and climate effects evolve as vegetation adapts and regrows
following disturbance.
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INTRODUCTION

It has long been known that mountain watersheds such as
those on the western slopes of the Sierra Nevada, and the
critical water supplies originating in these areas, are sensitive
to climate warming (Pupacko, 1993; Jeton et al., 1996). Many
of the winter storms that provide the deep seasonal snowpack
in the western Sierra occur at temperatures above −3◦C (Bales
et al., 2006), making precipitation vulnerable to a transition
toward a higher rainfall fraction and reduced snowpack storage
in a warmer climate (Knowles, 2002; Miller et al., 2003). The
frequency of wildfires is also increasing in western U.S. forests
as the temperatures warm, and fuel loads remain high, the
legacy of a century-long history of suppressing the frequent
low-intensity fires that previously kept vegetation densities low
(Westerling et al., 2006). Climate warming is changing the timing,
amount and quality of mountain water supplies, as demand
pressures grow and as policy requires balancing statewide water
supply and demand.

Climate projections for California point to a 3.1–5.0◦C
increase in temperatures by the year 2100, with annual
precipitation increasing or decreasing as much as 15% (Pierce
et al., 2018). Greater changes in Sierra Nevada precipitation
are possible by 2050–2100, as indicated under a high-
emissions scenario (Garfin et al., 2013). While confidence in
precipitation projections is low to medium, taken together
the projected temperature and precipitation reinforce the
need to consider climate scenarios that are hotter and drier
than even the most-severe droughts of the past 1100 years
(Griffin and Anchukaitis, 2014).

One of the impacts from climate warming is an increase
in the fraction of precipitation falling as rain versus snow and
effects on runoff will depend on both climate and land use
attributes (Bales et al., 2018). However, Berghuijs et al. (2014)
suggested that catchments with a higher fraction of snowfall
have higher streamflow than would otherwise be expected from
precipitation and potential evaporation. A number of studies
focusing on watershed response to changes in climate have been
completed for the western slope of the Sierra Nevada, which
has been identified as more sensitive to changes in temperature
than the eastern slope due to the larger area of lower elevation
(Pupacko, 1993). For projected temperature increases of 2–5◦C
in the American and Merced river basins, and no change in
precipitation amount or timing, Dettinger et al. (2004) reported
that average-annual runoff generally remained constant, despite
changes in the fraction of precipitation falling as rain and earlier
snowmelt. These trends that have already been observed in the
last half of the twentieth century (Stewart et al., 2004). An
analysis of historical streamflow in the Sacramento River basin
found that the interannual variability in precipitation explained
95% of differences in annual streamflow volumes while only
3% was explained by temperature (Risbey and Entekhabi, 1996),
consistent with the minimum 80% of streamflow explained by
precipitation reported by Duell (1994).

Wildfire is one of the key risks to North American ecosystems
from climate change (Romero-Lankao et al., 2014). Westerling
et al. (2006) discuss the competing influences of climate and

forest management on increasing wildfire occurrence across the
western U.S., suggesting that although recent climate change
was the primary driver in Northern California, fire exclusion is
also an important contributing factor in this region. In response
to these changing conditions, Millar et al. (2007) encourage
a proactive planning approach for forest management. Fuels
treatments are an effective forest-management tool for mitigating
wildfire risk in Sierra Nevada forests (Stephens, 1998; Collins
et al., 2011; Stephens et al., 2013), and include selective thinning
and prescribed burning for promoting fire-resilient landscapes
(Agee and Skinner, 2005).

Forest-vegetation density and structure impact the
interception of precipitation (Storck et al., 2002; Moeser
et al., 2015), evapotranspiration amounts (Dore et al., 2010,
2012; Hawthorne et al., 2013), and the surface energy balance
for snowmelt (Essery et al., 2008; Ellis et al., 2011; Mahat and
Tarboton, 2012; Lundquist et al., 2013). Molotch and Meromy
(2014) found elevation, temperature and precipitation were more
influential than vegetation, using regression-tree analysis to rank
relative physiographic and climatic influence on snow cover for
the major Sierra Nevada watersheds. A modeling study using
the Distributed Hydrology Soil Vegetation Model (DHSVM;
Wigmosta et al., 1994) suggested that both forest cover and
temperature increases will have significant, non-linear effects on
snowpack and streamflow in the upper Tuolumne (Cristea et al.,
2014). The relative effects of temperature and vegetation may
then depend on the specific montane elevation range, vegetation
type, and annual precipitation received in a watershed, requiring
more-localized analyses to determine the dominant influences
on evapotranspiration and runoff.

The specific aim of this study was to project the interacting
effects of climate warming with forest treatments and disturbance
on the annual water balance of productive Sierra Nevada mixed-
conifer forests in the elevation range that transitions from rain-
to snow-dominated precipitation (1500–2500 m). We focus on
the extent to which reductions in vegetation that are consistent
with relatively light thinning prescriptions and historical wildfire
versus increasing temperatures will affect the partitioning of
precipitation between evapotranspiration versus runoff.

MATERIALS AND METHODS

This study used a hydro-ecologic model, the Regional Hydro-
Ecologic Simulation System (RHESSys version 5.14.7; Tague
and Band, 2004), to integrate distributed-snow, distributed-
soil-moisture and stream-discharge measurements, and to
project water-balance response of two Sierra Nevada mixed-
conifer headwater catchments to temperature and vegetation
perturbations. Extensive catchment and model descriptions
are available in Saksa et al. (2017), with the most-relevant
information provided here. Two types of vegetation change
were simulated, a forest-thinning treatment implemented in
2012, and impacts of wildfires modeled with and without the
thinning. Projected temperature increases from two climate
scenarios were also simulated, Representative Concentration
Pathways (RCP) 4.5 and 8.5, at 2050 and 2100. The climate and
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FIGURE 1 | Leaf Area Index (LAI) values in the Bear Trap and Big Sandy catchments in the highest (no treatment, no fire) and lowest (no treatment, fire) vegetation
density scenarios.

vegetation scenarios were then simulated together to determine
the dominant factors controlling evapotranspiration and runoff,
assessed over the range of dry-to-wet precipitation conditions
observed during a 4-year period (2010–2013) for which field
measurements were carried out.

Study Sites
Two headwater catchments at different latitudes along the
western slope of the Sierra Nevada were monitored for climate,
stream discharge, distributed snow depth and soil moisture
during water years 2010–2013 (Figure 1). Bear Trap Creek
(1.4 km2, 1560–1826 m elev) is located in the headwaters of
the American River basin, in the central Sierra, and Big Sandy
Creek (2.2 km2, 1776–2475 m elev) is located in the Merced
River Basin, in the southern Sierra. Observed discharge was
calculated from stream-level data recorded every 15 min, and
a stage-discharge relationship developed for each stream. The
catchments are dominated by mixed-conifer forests, a forest type
covering 13–14% (∼52,500–56,500 km2) of California (Barbour
and Minnich, 2000), and have well-drained soils, classified as
loamy-sand in Bear Trap and sandy or sandy-loam in the Big
Sandy catchment. The headwaters receive a mix of rain and snow
precipitation at the elevation of the catchment outlet, but are
snow dominated at the upper elevations, suggesting these basins
would be sensitive to lower snowfall and higher rainfall from
increases in temperature.

Model Scenarios
Four vegetation scenarios were combined with climate
projections to determine dominant influences in forest
hydrology: no-treatment, thinning-treatment, no-treatment
with wildfire, and thinning-treatment with wildfire. Strategically
Placed Landscape Treatments (SPLATs; Finney, 2001), a

fuels treatment strategy to lower the risk of high-severity fire
by treating part of the landscape, were implemented at the
fireshed scale during the summer of 2012. As part of SPLAT
implementation on a larger fireshed, the mixed-conifer forest
was selectively thinned in 95% of the Bear Trap catchment
and in 32% of the Big Sandy catchment. It should be noted
that these treatments reflect operational decisions of the local
forest managers, which are constrained by topography, wildlife
habitat, public input, budgets and other factors (North et al.,
2015; Lydersen et al., 2019). LiDAR data, described in Kelly
and Guo (2015), was used to determine vegetation-community
type, and forest-plot measurements were performed before
and after SPLAT implementation. Forest plot data were used
to impute forest-structure characteristics into the individual
vegetation areas (Su et al., 2016), to capture vegetation changes
in both horizontal (canopy cover) and vertical (Leaf Area Index)
(Saksa et al., 2017).

Understory-vegetation cover was also estimated using a linear
equation developed from forest-plot data relating basal area
and canopy cover with shrub-cover fraction (Hopkinson and
Battles, 2015). The vegetation densities before and after fuels
treatments were used to run the Forest Vegetation Simulator
(FVS; Dixon, 2002) with the Fire and Fuels Extension (FFE;
Reinhardt and Crookston, 2003) and the Fire Area Simulator
(FARSITE; Finney, 2004) to project treatment impacts on wildfire
severity and vegetation mortality (Fry et al., 2015). As the fire
model was calibrated with recent observations, the post-fire
vegetation scenarios reflect fire behavior under current climate
conditions. FVS was then used to estimate forest-vegetation
regrowth for 10 years after the simulated fire events. Following
the 10 years of regrowth, overstory canopy cover was transferred
directly from FVS, and LAI was calculated from tree lists using
allometric estimates.
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The model did not consider changes in surface characteristics
such as soil hydrophobicity, reduced soil-infiltration capacity,
and diminished litter cover that can occur immediately after fire.
While these can be important in more semi-arid regions, the
impacts are likely to be small in this region where hydraulic
conductivity is quite high in the loamy-sand to sandy-soil
textures, and infiltration excess runoff production is relatively
rare. Wildfire simulations were based on current 95th percentile
weather and fuel moisture conditions, as more extreme weather
and wildfire events are expected with climate warming, we
consider this a conservative scenario.

The climate scenarios were based on changes projected in
the minimum and maximum daily temperatures for RCP 4.5,
defined as a 4.5 W m−2 increase in radiative forcing relative
to pre-industrialization with stabilization by 2100; and for RCP
8.5, which represents an 8.5 W m−2 radiative increase by 2100
that continues to rise (van Vuuren et al., 2011). Mean-annual
minimum and maximum temperature anomalies were calculated
using the 4-year annual mean of 2010–2013 as a baseline.
The 4-year baseline period was + 0.4◦C (−0.2◦C to +0.9◦C)
and + 0.1◦C (−0.8◦C to + 0.9◦C) of the long-term climate mean
for minimum and maximum temperature in the Sierra climate
region, respectively (California Climate Tracker; Abatzoglou
et al., 2009). A 4-year trailing ensemble mean was calculated
using the Coupled Model Intercomparison Project Phase 5
(CMIP5) output for the Community Climate System Model
version 4 (CCSM4) and the Model for Interdisciplinary Research
on Climate version 5 (MIROC5) (Figure 2). These models
were chosen because they showed low error in bias analyses
(Kattsov et al., 2013), and both were archived in the CMIP5
database with the required daily minimum and maximum
temperatures. Using the temperature anomalies to produce a
uniform offset in minimum and maximum temperatures on our
observed-temperature data set aside the need for downscaling
climate projections. Vapor pressure and relative humidity were
derived using standard air temperature relationships in the model
simulations (Tague and Band, 2004), and respond accordingly
with increasing temperatures. Impacts on snowpack from vapor
pressure and relative humidity are minor, with greater differences
during the ablation period in higher elevations and wetter years
(Roche et al., 2018a).

Water-Balance Model
RHESSys was used to simulate the hydrologic response
to vegetation and climate scenarios. Model calibration was
completed for the pre-thinning water years of 2010–2012, during
which annual precipitation varied from drier than normal
(−39%) to wetter than normal (+60%) conditions in the Sierra
Nevada (Saksa et al., 2017). Drainage and subsurface-storage
processes were calibrated by comparing simulated and observed
streamflow at a daily time step, with precipitation not attributed
to evapotranspiration or runoff considered subsurface bypass
flow, a comprehensive term to account for all subsurface storage
and routing, as in Saksa et al. (2017). Garcia et al. (2013) provides
additional details on RHESSys storage and drainage parameters
and standard calibration. Monte-Carlo style calibrations were
completed by running 5000 sets of random parameters and

FIGURE 2 | Climate-scenario temperature anomalies based on the
2010–2013 4-year mean. Each line connects data points for annual-mean
temperature anomalies calculated as a 4-year trailing mean from 1950 to
2100. Shaded areas note the range of daily minimum and maximum
temperature anomalies from the two climate scenarios used to calculate the
mean.

selecting the parameter sets that conformed to a Nash-Sutcliffe
and log-transformed Nash-Sutcliffe statistic higher than 0.60,
as well as annual and August streamflow rates within 25% of
observed values. Six parameter sets met the criteria for the
Bear Trap catchment and 17 sets were acceptable for the Big
Sandy catchment, providing a range of modeled responses to
temperature and vegetation perturbations.

Increasing temperatures at the elevation range of these
catchments will have a significant impact on the amount of
precipitation received as snow versus rain, and the persistence of
snowpack during the winter and into spring. RHESSys calibration
was completed using a separate rain and snow precipitation
input, and changes to initial snowfall rates were implemented
using the linear transition of snowfall temperatures in the model,
from −1 to 3◦C. Three inputs contribute to snowmelt rates:
temperature, precipitation falling as rain, and radiation. All three
components are affected by air temperature, and the relevant top-
level equations are listed below from Tague and Band (2004). Melt
attributed to temperature is based on an empirical relationship to
sensible and latent heat, and is calculated as:

MT = βMTTair(1− 0.8F) (1)

where βMT is the temperature-index melt coefficient, calibrated
to 0.0005 for Bear Trap and 0.001 for Big Sandy, Tair is the
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temperature in Celsius and F is the fraction of forest cover.
Snowmelt from advection due to rainfall is calculated as:

Mv = (ρwaterTairTFcpwater)/λf (2)

where ρwater is the density of water, TF is net throughfall onto the
snowpack, cpwater is the heat capacity of water, and λf is the latent
heat of fusion. Lastly, melt due to radiation is calculated as:

Mrad = (Kdirect + Kdiffuse + L)/λf ρwater (3)

where Kdirect and Kdiffuse are direct and diffuse net shortwave
radiation, and L is net longwave radiation. Melt only occurs when
the snowpack is ripe, but snow loss also can occur by sublimation
from radiation energy input, calculated by adding the latent heat
of vaporization to the latent heat of fusion in Eq. 3 (λf + λv).

RHESSys was also used to estimate overstory and understory
transpiration and evaporation of water intercepted by forest
canopy and litter, as well as soil evaporation and snow
sublimation. RHESSys simulates vertical infiltration and
drainage between surface storage, plant rooting zone, and
unsaturated and saturated zones. Lateral redistribution of water
follows topography. Previous application of RHESSys in snow-
dominated mountain environments demonstrates that the model
can capture the impact of climate variation on eco-hydrologic
processes such as streamflow (Zierl et al., 2007; Garcia et al.,
2013), the impact of increases in atmospheric carbon dioxide
concentration on conifer net primary productivity and water
use efficiency (Vicente-Serrano et al., 2015), and snowpack
(Christensen et al., 2008; Godsey et al., 2013; Morán-Tejeda et al.,
2014; Bart et al., 2016). Additional details on RHESSys process
representation can be found in these studies, plus Tague and
Band (2004), and the open-access code maintained online1.

RESULTS

Vegetation and Climate Changes
Mean-annual water-balance components of evapotranspiration
and runoff were assessed in response to vegetation and climate
scenarios over the complete observation period (water years
2010–2013). Mean annual precipitation for this period was
1990 mm in Bear Trap and 1300 mm in Big Sandy. Selective
thinning implemented in Bear Trap reduced mean LAI (Canopy
Cover) from 9.9 (0.51) to 9.1 (0.49), with reductions from
modeled wildfire being 8.8 (0.37) with SPLATs and 7.7 (0.29)
without SPLATs. Wildfire in the catchment had a mean flame
length of 2.2 m and crowning in 42% of the area without SPLATs,
reduced to a mean flame length of 1.2 m and crowning in 19% of
the area with SPLATs.

Mean LAI in Big Sandy was 5.0 (0.55 Canopy Cover), and the
limited commercial thinning did not reduce the mean catchment
LAI substantially (change of < 0.1). A small section of Big Sandy
was thinned, with LAI being reduced by as much as 4.0; but
the minor amount of area thinned combined with incremental
increases in growth elsewhere led to the small changes in basin-
scale LAI. Wildfire in Big Sandy reduced LAI to 3.8 (0.47 Canopy

1https://github.com/RHESSys/RHESSys

Cover), with thinning prior to wildfire having an insignificant
effect. Because of the limited catchment-scale thinning impacts
on Big Sandy, results are only reported for the no-treatment and
post-fire vegetation change. Wildfire in the catchment had a mean
flame length of 1.5 m and crowning in 22% of the area.

Observed mean-daily winter temperatures during the months
of heaviest precipitation (Nov-Apr), were 4.3◦C in both Bear
Trap and Big Sandy catchments. Projected increases in mean-
annual temperature with RCP 4.5 were 1.2◦C by 2050 and 1.6◦C
by 2100 in Bear Trap, with slightly smaller increases at Big Sandy,
1.0◦C by 2050 and 1.4◦C by 2100. In the RCP 8.5 projections,
temperature increases by 2050 and 2100 are 1.8 and 4.7◦C in Bear
Trap and 1.6 and 4.4◦C in Big Sandy, respectively.

Water-Balance Simulations
Simulations showed that vegetation changes had much greater
effects on runoff and evapotranspiration than did the changes
in temperature (Figure 3). Ninety-five percent confidence
intervals were calculated for the 6 Bear Trap and 17 Big Sandy
model calibrations, with runoff and evapotranspiration responses
reported as fractions of precipitation. Confidence intervals were
small for both pre-treatment and post-fire scenarios in Big Sandy.
Confidence intervals in Bear Trap increased with decreasing
vegetation and resulted in higher uncertainty of water-balance
response with greater vegetation disturbance. In Bear Trap,
the scenario of greatest vegetation change (no treatment, fire)
increased the mean runoff fraction by 0.20 (from 0.44 to 0.64)
and decreased the mean fraction of evapotranspiration by 0.20
(from 0.47 to 0.27), in response to the 22% LAI decrease (from
9.9 to 7.7) and 42% canopy decrease (0.51 to 0.29). This is
equivalent to a drop in ET of about 398 mm yr−1, from 935 to
537 mm yr−1 (Figure 4). In comparison, the climate scenario of
greatest temperature increases (RCP 8.5, 2100) with no change in
vegetation resulted in a smaller reduction in runoff, from 0.44 to
0.41, and smaller evapotranspiration increase, from 0.47 to 0.48.
Responses of mean runoff and evapotranspiration fractions in
2050 and 2100 to RCP 4.5 temperature increases were limited to
less than 0.03, as was the response to RCP 8.5 in 2050.

In the Big Sandy catchment, the simulated response of
evapotranspiration and runoff to the 26% LAI decrease (from
5.0 to 3.7) and 14% canopy decrease (0.55–0.47) from modeled
wildfire was more limited than in Bear Trap, increasing the
runoff fraction by 0.06 (from 0.35 to 0.41) and decreasing the
evapotranspiration fraction by 0.06 (from 0.54 to 0.48). This
is equivalent to a drop in ET of about 78 mm yr−1, from
702 to 624 mm yr−1 (Figure 4). A similar response in the
reduction of evapotranspiration of 0.05 (from 0.54 to 0.49) was
simulated due to the RCP 8.5 temperature increase by 2100,
but the response of runoff was not significant, only increasing
from 0.35 to 0.36. Precipitation not accounted for in runoff or
evapotranspiration is routed to deeper groundwater storage and
thus changes in evapotranspiration do not necessarily translate
directly into runoff change in the model. Response to all other
climate scenarios also resulted in changes of less than 0.03 in
evapotranspiration and runoff fractions, similar to Bear Trap,
even though Big Sandy has a higher overall evapotranspiration
fraction due to the lower precipitation.
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FIGURE 3 | Simulation results of the runoff and evapotranspiration fractions for vegetation scenarios and projected temperature increases in 2050 and 2100.
Basin-mean LAI in Big Sandy following treatment, with and without fire, were not different from the no-treatment scenarios and are not shown. Simulations are for
water-year 2010–2013 conditions, during which mean precipitation was 1990 mm in Bear Trap and 1300 mm in Big Sandy. Vertical bars indicate the 95%
confidence interval based on the multiple parameter sets for each catchment.

Precipitation Variability
Runoff in Bear Trap varied between wet, average, and dry years,
and runoff response also varied across vegetation scenarios (fire
and treatment). The difference in runoff between wet and dry
years exceeded 750 mm while the runoff difference between
no treatment/fire runoff and runoff from the most-substantial
vegetation disturbance was limited to less than 500 mm
(Figure 4). Trends of runoff and evapotranspiration response
with increasing temperatures were the same in all climate
scenarios except for RCP 8.5 in 2100, where evapotranspiration
increases were greater in the wet years (<50 mm). In Big
Sandy, precipitation variability between wet and dry years had
a greater effect on evapotranspiration and runoff than the
reductions in vegetation from wildfire (Figure 4). The differences
in annual precipitation resulted in evapotranspiration differences
near 400 mm without treatment or fire, and runoff differences
close to 700 mm with post-fire vegetation. Water-balance
response to reductions in LAI from wildfire were smaller, with
evapotranspiration decreases and runoff increases of <200 mm.
Elevated temperatures in 2050 and 2100 increased ET during
mean to high precipitation years, offsetting some of the ET
decline due to fire.

Hydrologic Timing and Storage
Precipitation falling as rain or snow, along with the accumulation
and melt of the seasonal snowpack, determines the timing of

soil infiltration, runoff and availability of water in the soil for
use by vegetation. Projected temperature increases affected both
precipitation phase and melt rate, and changes in vegetation
density impacted snowmelt by modifying the surface-energy
balance. Simulations of temperature and vegetation impacts on
hydrologic storage and timing were assessed for 2010, a mean
precipitation year (Figure 5).

In Bear Trap, post-fire vegetation losses advanced the
snowpack melt-out date by about 3 weeks, while temperature
increases by 2100 in RCP 4.5 advanced the melt-out date by
about 4 weeks (Figures 5A,B). Increases in temperature by 2100
in RCP 8.5 showed no persistent snowpack, with the fraction
of precipitation falling as snow decreasing from 0.40 to 0.10
(Table 1). The reduced vegetation after fire increased soil-water
storage during the dry season from minimal storage to within
150 mm of saturated winter conditions (∼350 mm). Increased
temperatures resulted in an earlier start of the soil-water
storage recession from wet winter to dry summer conditions by
approximately 1.5 weeks, associated with the reduced snowpack.
Evapotranspiration with increased temperatures becomes more
limited in the early summer because of the earlier soil drying.
The reduced post-fire vegetation resulted in evapotranspiration
reductions during all seasons and was not limited by soil-
water storage. Runoff timing was accelerated with both scenarios
of increased temperatures and reduced vegetation, with peak
runoff about 8 weeks earlier. Post-fire vegetation resulted in
67% higher annual runoff, with increased peak (+54%) and
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FIGURE 4 | Evapotranspiration (upper 6 panels) and runoff (lower 6 panels) for forest-treatment and disturbance scenarios during dry (2012), mean (all years), and
wet (2011) precipitation conditions for current and projected temperatures Vertical bars indicate the 95% confidence interval based on the multiple parameter sets
for each catchment. Left column of panels is Bear Trap and right column of panels is Big Sandy. Big Sandy mean basin LAI following treatments were not different
than having no treatment and are not shown.
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FIGURE 5 | Daily precipitation and snowpack storage (A,F), basin snow-cover fraction (B,G), soil-water storage (C,H), evapotranspiration (D,I), and stream
discharge (E,J) in the Bear Trap and Big Sandy catchments with vegetation and temperature perturbations. Vegetation densities are from control and post-fire
conditions, and temperature increases are from year 2100 projections with RCP 4.5 and 8.5 climate scenarios.

TABLE 1 | Mean daily temperatures for the months of highest precipitation (November–April) and the fraction of precipitation falling as snow under each climate scenario.

2013 RCP 4.5 2050 RCP 4.5 2100 RCP 8.5 2050 RCP 8.5 2100

Bear Trap (American River) November–April mean temperature 4.3◦C 5.5◦C 5.9◦C 6.1◦C 8.8◦C

Mean annual snow fraction 0.40 0.33 0.27 0.29 0.10

Big Sandy (Merced River) November–April mean temperature 4.3◦C 5.3◦C 5.7◦C 5.9◦C 8.7◦C

Mean annual snow fraction 0.60 0.57 0.53 0.54 0.29
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frequency (5–14 events) of high-flow events, where increased-
temperature scenarios resulted in lower peak flow (−35%) at
similar frequency.

In Big Sandy, post-fire vegetation resulted in the loss of a
persistent winter snowpack, similar to temperature increases by
2100 with RCP 8.5 (Figures 5F,G). Increases in temperature
by 2100 with RCP 4.5 and 8.5 reduced the snowfall fraction
from 0.60 to 0.53 and 0.29 of precipitation, respectively. Soil-
water storage from infiltration increased earlier in the winter and
became more saturated with temperature increases (300 mm)
than in the control (230 mm), but the dry season recession curve
also started about 4 weeks earlier than in the control scenario.
Evapotranspiration response to the vegetation reductions was
muted, but evapotranspiration was reduced in all vegetation and
temperature simulations from the earlier drawdown in soil-water
storage. Peak runoff timing was shifted about 12 weeks, from
early June to early March, in the post-fire and RCP 8.5 scenarios,
with higher peak flow (+29%) in the post-fire vegetation
simulation than with projected increases in temperature (−9%
to +4%). The earlier peak runoff in the RCP 4.5 scenario was only
shifted about 8 weeks, to mid-April.

DISCUSSION

These are highly productive ecosystems compared to other
temperate conifer forests (Millar, 1996), where vegetation
change from wildfire, and to a lesser extent forest management,
impacted evapotranspiration and streamflow more than
projected temperature increases from climate warming. On the
other hand, impacts from inter-annual climate variation between
relatively wet and dry years were greater than the impacts of
vegetation change or climate warming. The hydrologic impacts
of wildfire were greater than those associated with fuel treatments
and the magnitude of vegetation change impacts were greater in
the wetter central-Sierra study site. These results are based on
two relatively small Sierra Nevada watersheds that enable the
incorporation of substantial observation data for constraining
a physically based model, but that also limit the ability to fully
capture the wide range of geoclimatic variation within the
Sierra. Nonetheless, our findings demonstrate how climate and
vegetation change effects can interact to produce significant,
short term hydrologic changes, but also show why it can be
challenging to meaningfully generalize about these impacts in
the context of climate and site differences.

Estimated hydrologic responses to vegetation change in this
study were relatively high, particularly for the wetter Bear Trap
catchment. Boisramé et al. (2019) found streamflow increases
of about 20–40 mm as managed fires were allowed to return to
the Illilouette Creek Basin, which is lower than the ∼75 mm
change in the climatically similar Big Sandy Creek catchment.
The difference can likely be attributed to a greater vegetation
change from a reduction in forest cover in the Big Sandy
headwater simulated wildfire, a single event that burned the
entire catchment during 95th percentile weather conditions (e.g.,
high temperature, low humidity) in which high-severity wildfires
are more likely to occur. Vegetation change in the Illilouette

Creek catchment is a result of the ongoing managed wildfires
that burned portions of the larger Illilouette Creek catchment
in various weather conditions over 40 years, and incorporated
conversion of forested areas to shrubs and meadows. Bart et al.
(2016) showed the potential for water balance changes in the
southern Sierra region in excess of 100 mm with reduced
vegetation, and changes in vegetation type from forest to shrubs.
The greater 400 mm yr−1 decline in ET with high-intensity
wildfire in the high-precipitation, mixed-conifer region of the
central-Sierra American River basin was approximately 70 mm
higher than the findings of Roche et al. (2018b) and Roche et al.
(2020). For example, the nearby 2014 King Fire resulted in a
330 mm (±80 mm) ET reduction in areas burned by high-
severity fire, averaged over 4 years after the fire event. Saksa
et al. (2020) also demonstrated the higher response of the water
balance to horizontal forest structure changes in RHESSys, as
such the 42% reduction in canopy cover contributed substantially
to the change in ET.

Water-Balance Simulations
Ficklin and Barnhart (2014) suggest using multiple parameter sets
and General Circulation Model outputs, as significant differences
in hydrologic projections will occur from uncertainty in model
parameterization and climate scenario. In this study, we used the
ensemble means from two climate models and two emissions
scenarios, with 6 (Bear Trap, American River Basin) and 17
(Big Sandy, Merced River Basin) parameter sets to incorporate
some accounting of uncertainty. Additional uncertainties can
originate from climate downscaling, which was not done in
this study, and model structure (Wilby and Harris, 2006). We
simulated a uniform increase in the minimum and maximum
daily temperatures, using projected temperature anomalies for
2050 and 2100. Studies often use a single mean-temperature
adjustment to project effects of climate warming on Sierra
Nevada watersheds (e.g., Young et al., 2009; Meyers et al., 2010),
but minimum and maximum temperatures may have periods of
non-linear increases, which can modify the diurnal temperature
range (Easterling, 1997; Vose et al., 2005).

In the RCP 4.5 projections, minimum and maximum
temperatures increased an average of 0.017 and 0.020◦C yr−1 in
the American and 0.016 and 0.019◦C yr−1 in the Merced between
2013 and 2100, respectively. RCP 8.5 projections of minimum
and maximum temperatures resulted in mean increases of 0.044
and 0.055◦C yr−1 in the American and 0.045 and 0.053◦C yr−1

in the Merced between 2013 and 2100, respectively. The rate
differences of minimum and maximum temperature will impact
snow accumulation and melt estimates, along with ecological
estimates in RHESSys, such as the estimation of vapor-pressure
deficit and the Jarvis-based calculations of stomatal conductance
(Jarvis, 1976) used to estimate transpiration in RHESSys, which
incorporates functions of mean and minimum daily temperatures
to limit maximum conductance.

The simulation results of temperature perturbations generally
agree with the findings of Dettinger et al. (2004) that without
statistically significant changes in precipitation, annual volumes
of streamflow will generally remain steady in the American and
Merced River basin areas with increasing temperatures. Dettinger
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et al. (2004) did find a general trend of +8% precipitation per year
with climate warming, but the effect was small compared to the
interannual variation, which was also found to have a large effect
on runoff in this study (Figure 4). Previous work in the Merced
River basin (Christensen et al., 2008) also showed the sensitivity
of transpiration to precipitation at an elevation range similar to
Big Sandy, with their model extending into higher elevations
where transpiration became increasingly sensitive to changes in
temperature. The sensitivity to transpiration at higher elevations
may also be why Bales et al. (2018) estimated a greater increase in
evapotranspiration (+12–15%) with a +1◦C temperature increase
in the Kings River Basin during the recent California drought,
leading to a −5% change in runoff over the basin, calculated
as precipitation minus evapotranspiration. Null et al. (2010)
used the Water Evaluation and Planning (WEAP21) water-
balance model that includes supply, demand, and policy scenario
capabilities to project progressively decreasing mean annual flows
in all major Sierra Nevada basins with increasing temperature,
including a respective −5.6 and −6.3% for the Merced and
American with +4◦C. Temperature increases in this study were
similar for the RCP 8.5 scenario in 2100, resulting in a similar
response for projected mean runoff in Bear Trap (American) of
−5.3%, but a lesser runoff response in Big Sandy (Merced) of
−1.2%. Changes in Water Use Efficiency and evapotranspiration
with increasing atmospheric CO2 concentrations were not
considered in this study (De Kauwe et al., 2013).

Precipitation Variability
The strong response of evapotranspiration to vegetation density
in Bear Trap, and to annual precipitation in Big Sandy, suggests
that within a Budyko (1974) framework of competing water and
energy limitations of transpiration, the Big Sandy region tends to
be more water limited (Figure 6). The difference in energy and

FIGURE 6 | Annual evapotranspiration as a function of dry to wet precipitation
conditions in Bear Trap and Big Sandy. Forest vegetation was constant
(pre-treatment), with fitted lines highlighting the different trends between the
two catchments.

water limitations will affect the magnitude of the water-balance
response to changes in vegetation and temperature, consistent
with Zhang et al. (2001), who showed the potential for increased
response of evapotranspiration with reduced forest cover in
regions with higher precipitation. In both sites, yearly runoff
was influenced by interannual precipitation variability more than
temperature, similar to results from previous work in the western
Sierra (Duell, 1994; Risbey and Entekhabi, 1996).

The individual years of 2011 and 2012 were selected from
the 4 years of simulation (2010–2013) to provide a spectrum of
response to climate and vegetation perturbations during a wet
and dry year, respectively. Antecedent-moisture conditions can
modify watershed response to disturbance, so the progression
of dry to wet years may be important. Precipitation in 2010
was close to the long-term mean for both regions, followed
by the wet year of 2011, and dry years of 2012 and 2013.
Shallow subsurface water-storage capacity and the rates of soil
drainage versus evapotranspiration will impact the magnitude
of summer-baseflow response in low-precipitation years and
where temperature increases lead to earlier snowmelt (Jefferson
et al., 2008; Tague and Grant, 2009; Huntington and Niswonger,
2012). The uncertainty associated with the calibrated model
parameter sets of subsurface flow increased in Bear Trap Creek
with simulated reductions in vegetation (Figures 3, 4). Improved
characterization of subsurface properties in Sierra watersheds are
needed to enhance our understanding and predictive capability
of runoff response to climate (Shaw et al., 2014), which could
be used to further constrain the simulation uncertainty of
vegetation scenarios in this study. The total subsurface storage
capacity, and plant-available water storage (Garcia and Tague,
2015; Tague et al., 2019), could limit the evapotranspiration
increases seen in warmer Sierra Nevada watersheds that have
been used as a proxy for temperature increases with climate
change (Goulden and Bales, 2014).

Hydrologic Timing and Storage
Both reduced vegetation and increased temperatures resulted in
more energy being absorbed by the snowpack, with persistent
snow cover eliminated by 2100 in RCP 8.5 (Figures 5B,H). In
contrast to results from Berghuijs et al. (2014) that indicated
streamflow will generally decrease with decreasing snowfall, these
results are consistent with studies such as Tague and Peng (2013)
that argue that snowmelt inputs can in some cases support
higher rates of evapotranpiration than winter precipitation. In
this study, the increased winter (November–April) snowmelt led
to higher water storage in the soil and increased streamflow,
while evapotranspiration generally remained unchanged. The
earlier melt reduced soil-water storage, evapotranspiration and
streamflow in May through July in both Bear Trap and Big
Sandy (Figure 5). These results agree with Tague and Peng
(2013), showing that evapotranspiration response to temperature
increases will depend on timing of snowmelt. Forrest et al.
(2018) also project higher winter flows by 2050 for watersheds
supplying California hydropower facilities, a significant source of
renewable-power-generation – but noted that due to increased
spillage events, higher flows did not necessarily yield additional
power generation.
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The response of snowmelt to vegetation loss from wildfire
in Big Sandy was much greater than in Bear Trap. LAI
drives radiation attenuation (Varhola and Coops, 2013), and
in RHESSys, radiation transferred through the canopy to the
snowpack follows a Beer’s Law type of exponential curve. In Bear
Trap, LAI was reduced from 9.9 to 7.7 in the post-fire scenario, is
within the saturated range of radiation absorption by the canopy,
and is similar to previous reported LAI values for ponderosa pine
forests in the area (Goldstein and Hultman, 2000; Gersonde et al.,
2004; Campbell et al., 2009). In Big Sandy, the LAI was reduced
from 5.0 to 3.7, which is similar to previous LiDAR LAI estimates
for the Sierra National Forest (Zhao et al., 2012; Tang et al., 2014).
The lower LAI in Big Sandy is within the exponential increase
of radiation with changes in vegetation, resulting in snowpack
patterns more similar to RCP 8.5 in 2100. The combination of
reduced vegetation and elevated snowmelt led to the highest
peak runoff in the post-fire scenario, compared to the control or
climate projections, but will be further influenced by forest gap
size and slope orientation (Ellis et al., 2013).

Changes in the timing of snowmelt and runoff also have
implications for fish habitat and other aquatic species that rely
on summer baseflow. Using the end of the 2010 water year
(Sep 30) as an indicator of low flow in this study showed
in baseflow reduced more following wildfire (−19%) than
temperature increases (−4 to −8%) in Bear Trap Creek. In Big
Sandy Creek, however, baseflow was reduced more following
temperature increases (−29 to −33%) than wildfire (−25%).
Godsey et al. (2013) note than low flows in this region depend on
both Snow Water Equivalent level of both current and previous
years, and impacts are influenced by subsurface storage capacity
and underlying bedrock. Meyers et al. (2010) further extend their
temperature warming assessment to winter and spring flooding
in the region, which may negatively impact both brook and
rainbow trout, but the greater proportion of winter flooding may
impact brook trout more severely.

CONCLUSION

The water-balance responses to simulations of temperature and
vegetation perturbations in productive mixed-conifer forests
with wildfire disturbances showed that vegetation changes from
operational fuel treatments and historical wildfire exerted a
greater influence on annual evapotranspiration and runoff than
did projected temperature increases in a warming climate.
However, inter-annual variation in precipitation had a greater
influence on runoff than did effects due to either fuels
treatments or wildfire. Hydrologic impacts associated with
historic wildfire were generally greater than those associated
with operational fuel treatments. In the wetter central Sierra,
headwater evapotranspiration decreased, and runoff increased
40–50% for a simulated wildfire event. In the more water-
limited southern Sierra, the headwaters response was constrained
to a respective −11 and +17% change in evapotranspiration
and runoff following a simulated wildfire event. In contrast,
evapotranspiration increases and runoff decreases to a 4.4◦C

temperature increase were less than 10% of current values
for all headwaters.

Climate warming will eliminate the persistent seasonal
snowpack at these elevations (1500–2500 m) by 2100 in the
RCP 8.5 projections, becoming rain dominated as the amount
of precipitation falling as snow was reduced from the current
40–60% down to 10–29%. The early snowmelt has cascading
effects on the rate and timing of soil-water storage, and thus
on evapotranspiration and runoff. Increases in temperatures
resulted in peak streamflow occurring up to 12 weeks earlier,
but post-fire vegetation conditions also increased peak runoff,
especially in the American River headwaters of Bear Trap Creek.
These results suggest that in the central Sierra, reductions in
vegetation from either light thinning and fuels treatment or
historical wildfire generate increases in flow, however, only
wildfire or more-extensive fuels treatments provide significant
increases in the southern Sierra. In both cases, these reductions
are premised on vegetation changes that can be sustained.
Further work to examine the dynamics of vegetation regrowth
following fuels treatments, wildfire, and vegetation adaptation to
a warming climate are needed to determine longer-term impacts
of vegetation change on runoff and evapotranspiration.
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