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Vegetation controls carbon and water fluxes because of the fundamental tradeoff
between carbon dioxide uptake and water loss occurring when stomata are
open. Quantifying the rates of this exchange typically requires either intensive gas
exchange or destructive harvesting of tissues and mass spectrometry analyses. Recent
developments in high-throughput methods have enhanced our capacity to empirically
test plant–environmental interactions. The vast integration characterizing satellite remote
sensing methods masks organ-level physiological mechanisms limiting the predictive
capability of current process models. Hence, more ground truth studies are necessary to
determine the amount of mechanistic information needed to improve our understanding
of forest, crop, and land management. Imaging methodologies, such as thermal and
chlorophyll a fluorescence, are currently used to collect information for relevant traits
such as water use, growth, and stress response. We tested these techniques during
progressive drought across species with different susceptibility in controlled greenhouse
conditions. We chose two highly represented tree species in North America: the
gymnosperm Pinus ponderosa and the angiosperm Populus tremuloides. To better
explore the whole drought response parameter space, we also tested a crop (Brassica
rapa) and desert shrub (Artemisia tridentata). Thermal and fluorescence images of the
canopy were coupled with leaf-level measurements as we performed three tests to
predict drought response using (1) leaf temperature, (2) chlorophyll a fluorescence,
and (3) the combination of the two. At 5 days of drought, leaf temperature increased
7 and 10%, accounting for 63 and 73% of the variation in stomatal conductance
for both tree species, respectively. The fluorescence signal from images decreased
∼12% and ∼83% in moderately and severely droughted leaves respectively, reaching
zero at mortality. Leaf water status was then predicted using a Bayesian approach
that incorporated measurements’ uncertainty and parsimony in the analysis of the
parameters. Changes in canopy temperature provided confident predictions for the
reductions of daily evapotranspiration at the onset of drought. Empirically combining
thermal and fluorescence measurements improved predictions (R2 = 0.81) of midday
leaf water potential compared to univariate models. Our results represent an important
step toward quantifying plant water status during drought using first principles that do
not require species-specific information.

Keywords: aspen, chlorophyll a fluorescence, drought, phenotyping, leaf water potential, ponderosa pine, remote
sensing, thermal imaging
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INTRODUCTION

Drought is a primary contributor to the increasing levels of global
plant mortality, which exacerbates the already uncertain water
and food securities for the coming decades (Allen et al., 2010;
Steinkamp and Hickler, 2015). The complexity of plant response
to drought is characterized by a variety of symptoms (i.e.,
stomatal closure, osmotic adjustments, hydraulic failure, carbon
starvation, regulation of invertase, and changes in allocation
to less productive organs), which have been profusely analyzed
in the last decades (Gorissen et al., 2004; Bréda et al., 2006;
Schachtman and Goodger, 2008; Adams et al., 2009; Ruehr et al.,
2009; McDowell and Sevanto, 2010; Ruan et al., 2010; Sala et al.,
2010; Mcdowell, 2011; Hartmann et al., 2013; Urli et al., 2013;
Sevanto et al., 2014; Salmon et al., 2015; Guadagno et al., 2017;
Martínez-Vilalta and Garcia-Forner, 2017; Nolan et al., 2017).
The onset of one or more of these symptoms clearly decreases
productivity and increases the probability of mortality. However,
predicting the plant water status in response to progressive
soil water limitations remains uncertain and complicated by
diverse plant water use resulting in a wide spectrum of drought
resistance strategies (Hartmann et al., 2013; Salmon et al., 2015;
Guadagno et al., 2017).

Efficient monitoring of vegetation water use and screening of
vulnerable areas are essential, given the possibly deadly effects of
water scarcity. The use of informative high-throughput (i.e., high
number of measured plants in a short time, repeated time points,
and multiple spatial locations) methods based on biophysical first
principles allow for more useful predictions of plant responses
to drought because they are based on mechanisms more likely
to be applicable outside observations. Such approaches also span
from organ to ecosystem scales and can provide informative
predictions in less measured environments and for divergent
plant responses to stress. Predicting community or ecosystem
behavior under drought is often elusive due to the broad
spectrum of strategies plants can adopt, and the potentially
stochastic aspects of duration, severity, and frequency of the
stress event, with confounding interactions of the soil and
atmosphere (Grieu et al., 1988; Tardieu and Simonneau, 1998;
Naithani et al., 2012; Will et al., 2013; Duursma et al., 2019; Zhou
et al., 2019). The magnitude of plant response varies based on
endogenous stress resistance, life history, developmental stage at
the stress occurrence, pre-drought conditions, and synergistic or
compound stress events (e.g., antecedent stress events) (Resco
et al., 2009; Camarero et al., 2011; de Vries et al., 2012; Anderegg,
2015; Guo et al., 2020).

The presence of numerous remotely sensed imaging
techniques from organ-level chambers to entire canopies and
ecosystems, further complicates the achievement of a universal
means of prediction (Tanner, 1963; Jones, 2004; Flexas et al.,
2007; Cleary et al., 2015; Mahlein, 2016; van Dusschoten et al.,
2016; Still et al., 2019). Although satellite-based imaging and
remote sensing methods coarsely inform predictions of plant
water status and stress response using spectral signatures, they
often mask local, individual, and stand variation along with
sudden changes due to limited return intervals (Milton, 1987;
Carter, 1998; Gitelson et al., 2003; Halcro and Noble, 2018).
Lately, the development of near remote sensing techniques with

higher spatial resolution, has facilitated quantifying physiological
and anatomical variations at leaf- and whole-plant-level in crops
(Dhondt et al., 2013; Humplík et al., 2015; Ryan et al., 2016;
Salon et al., 2017; Jud et al., 2018). Among others, chlorophyll
a fluorescence (ChlF) and infrared thermometry (e.g., infrared
radiometers and thermal images) are metrics of leaf water
status broadly utilized for their non-invasive nature to measure
photosynthetic capacity and leaf temperature (TL), which are
mechanistically connected to transpiration, carbon uptake,
and photochemistry (Van Kooten and Snel, 1990; Kalaji et al.,
2016; Guadagno et al., 2017; Simon et al., 2018). These recent
advancements have increased the demand for similar high-
throughput and high-resolution methods for monitoring entire
forests and ecosystems (Fahlgren et al., 2015; Gutiérrez et al.,
2016; Dungey et al., 2018; Santini et al., 2019; Still et al., 2019).

We utilize high spatial resolution thermal and Pulse-
Amplitude Modulated (PAM) ChlF imagery to identify
plant responses to progressive soil water limitations, from
mild to lethal, hereafter referred to as drought. These two
imaging techniques directly correspond to changes in biomass
accumulation upon water stress; TL is dynamic with water use
while ChlF reflects changes in photochemistry. We test whether
biophysically informative image-based parameters (i.e., TL and
ChlF) are able to predict changes in plant water status following
drought, recovery, and mortality (Figure 1A). We tested three
image-based modeling approaches using (1) leaf temperature,
(2) chlorophyll a fluorescence, and (3) the combination of both,
and evaluated their ability to predict changes in plant water
status associated with drought (Table 1). The near remotely
sensed high-throughput images and the coinciding models are
validated using infrared radiometry, leaf-level gas exchange, and
spot ChlF measurements. Our approach is applied to a panel of
extreme plant types from broad-leaf (Populus tremuloides) and
needle-leaf (Pinus ponderosa) temperate trees to a crop (Brassica
rapa) and a desert shrub (Artemisia tridentata) covering an
extreme spectrum of drought response strategies (Figure 1B).

We probabilistically addressed the varying degrees of
uncertainty (variety of species, drought scenarios, methods, and
scales) of the three image-based modeling approaches (Table 1)
using Bayesian statistical approaches (Link et al., 2002; Wang
et al., 2009; Xu et al., 2015; Anderegg et al., 2016; Ryu et al.,
2019). Hierarchical Bayesian approaches provide robust, testable
predictions from the data in hand while allowing for probabilistic
testing of false positives interacting with model complexity
and probabilistic exploration of measurement error (Olejnik
and Algina, 1983; Press, 2005; Lu et al., 2017). Both of these
benefits are crucial when using different types of measurements to
increase transparency in the analyses and inferences using explicit
priors and credible intervals to better explain the variation in the
data (Samanta et al., 2007; Ogle and Barber, 2008; Quaife and
Cripps, 2016; King et al., 2019; Phillipson et al., 2020).

MATERIALS AND METHODS

Greenhouse Experiment
Two drought experiments were developed [i.e., moderate (2019)
and severe drought (2018)] to test the three image-based
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FIGURE 1 | Conceptual hypothesis of physiological responses during drought (A) and susceptibility across a spectrum of drought tolerance species (B). Comparison
between linear responses of gas exchange and threshold responses of leaf water potential and PSII efficiency across a normalized gradient of leaf temperature.

TABLE 1 | Three image-based modeling approaches [i.e., thermal, relative chlorophyll a fluorescence (RChlF ), and combined thermal and RChlF )] for predicting plant
water status parameters [i.e., stomatal conductance (gs) and leaf water potential (9L)] with respect to species and drought induced time to death (TDD).

Model Approach Measured Parameters Model Statement

(1) Thermal Leaf Temperature and ICWSI gi
s = βi

Therm*deltaT i
+ βi

Spp*Speciesi
+ βi

0

gi
s = βi

ICWSI
*IiCWSI + βi

Spp*Speciesi
+ βi

0

ψi
L = βi

Therm*deltaT i
+ βi

Spp*Speciesi
+ βi

0

(2) Chlorophyll a Fluorescence RChlF ĝS i = 1

(1+e(−αi
RChlF+βi

RChlF *RChlFi )
)

ψ̂L i = 1

(1+e(−αi
RChlF+βi

RChlF *RChlFi )
)

(3) Combined Thermal and Chlorophyll a Fluorescence Multivariate Thermal + RChlF gi
s = βi

Therm*deltaT i
+ βi

RChlF *RChlF i
+ βi

TTD + βi
0

ψi
L = βi

Therm*deltaT i
+ βi

RChlF *RChlF i
+ βi

TTD*TTDi
+ βi

0

Normalized 9L and gs are denoted by 9̂L i and ĝs i, respectively. The i corresponds to the median (n = 5–6) per species for each unique day of drought in which measures
were conducted. Empirical regressions for thermal (β i

Therm), RChlF (αi
RChlF and β i

RChlF ), TTD (β i
TTD), species-level (β i

Spp), and intercept parameters (β i
0) are evaluated for

importance based on the 94% credible intervals excluding zero.

modeling approaches (i.e., thermal, ChlF, and the combination,
Table 1) and their ability to predict plant water status. The
moderate drought experiment in 2019 was conducted to refine
physiological responses during mild and moderate drought that
were less represented in the severe drought experiment. The
combined results reflect a full progressive drought event on
aspen (Populus tremuloides, POTR) and ponderosa pine (Pinus
ponderosa, PIPO) seedlings.

Drought was applied to 3 years old seedlings for 45 days after
3 weeks of establishment in pots with well-watered conditions.
The PIPO seedlings were 3 years of age and purchased from the
University of Idaho Nursery. The POTR seedlings were 3 years
old, purchased from the Montana Conservation Nursery. Soils for
both species were collected from species-specific locations from
Medicine Bow National Forest (41◦ 14′49.0′′ N, 105◦ 26′53′′ W
at approximately 2650 m.a.s.l.) then sieved removing rocks and
larger pieces of organic material.

To validate the applicability of our approach, we also
quantified drought responses for a crop (R500 oilseed, Brassica

rapa var. Yellow Sarson, BRR5) and a cold desert shrub (big
sagebrush, Artemisia tridentata, ARTR). The BRR5 were grown
from seeds (University of Wyoming 2012) in a soil mixture
[Miracle-Gro soil moisture control Potting Mix (20% v/v),
Marysville, OH, United States and Profile Porous Ceramic (PPC)
Greens Grade (80% v/v) Buffalo Grove, IL, United States]
amended with 4 ml of Osmocote 16-6-12 fertilizer (Scotts,
Marysville, OH, United States) in well-watered (i.e., watered
daily) conditions until 4 weeks of age; then seedlings and soil
mixture were added to approximately 4.0 L of sand to reach the
soil volumes in the same pot type used for the woody species.
The ARTR (2 years of age) came from the New Mexico Forestry
Division and were grown in the same soils from Medicine Bow
National Forest. Both ARTR and BRR5 were excluded from
the 2019 experiment to increase replication for more detailed
measurements of the POTR and PIPO responses to drought
(Table 2). In 2019, 3 years old seedlings for POTR and PIPO were
purchased from the Montana Conservation Nursery and exposed
to moderate drought defined by water withholding for 23 days.
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TABLE 2 | Describing moderate (2019) and severe (2018) drought scenarios and
the associated species, number of replicants, days of drought, cohorts, and time
point replication.

Year Drought Scenarios

Moderate Severe

2019 2018

Species PIPO POTR PIPO POTR ARTR
BRR5

Total Replicate Plants 170 150

Soil VWC (%) Range 1.1–44.3% 0–54.5%

Total Days of Drought
(DOD)

24 52

Plant Cohorts Droughted
Well-watered
Recovered

Droughted
Well-watered
Recovered

Measurement Replicate
Plants per Timepoint per
Treatment per Species

n = 5 n = 6

In 2019, soils were mixed with 50% propagation soil (Fafard
Germination Mix, Sungro, Agawam, MA, United States) added
to increase water-holding capacity. In both 2018 and 2019, the
experiments were conducted in the greenhouse of the Williams
Conservatory at the University of Wyoming where seedlings were
grown in 4.8 L pots. For both drought experiments, all plants were
acclimated to pot conditions for 3 weeks in well-water conditions
(i.e.,∼25% VWC) using regular irrigation intervals. A schematic
representation of the random block experimental designs is given
in Figure 2. Volumetric soil content values between the two
experiments covered the entire range of soil conditions from
well-watered, to mild, moderate, severe drought, recovery, and
eventually leading to mortality (Supplementary Figure S1).

In 2018, plants were placed in random block design consisting
of 150 plants (n = 15 of each species per treatment) in 19
blocks (Table 2). Random block design in 2019 consisted instead
of 170 plants (n = 60 per species per treatment, additionally
n = 5 recovered plants per species) (Table 2). In 2018, random
droughted plants were selected for re-watering to observe
recovery following severe drought. The well-watered, droughted,
and recovered plants in 2019 were predetermined before the
initiation of soil water limitation (Supplementary Figure S1).
In 2018, the drought treatment was extreme (final predawn
9L < −10 MPa), and all plants reached mortality while in
2019, we assessed response to moderate drought (final predawn
9L > −4 MPa) and re-watering. For this reason, our results
will be addressed from now on as moderate drought (2019,
using PIPO and POTR) and severe drought (2018, using PIPO,
POTR, ARTR, and BRR5). The combined results from both the
moderate and severe drought experiments (i.e., Figures 3, 4, 8)
cover the entire range of water limitations, from mild to severe
and mortality providing a rigorous test for ground-truthed near
remotely sensed data across different species and conditions.

Throughout both experiments, the greenhouse environment
was continuously monitored for temperature and relative
humidity, solar radiation, and soil moisture. In 2018,

measurements were recorded at 15-min intervals on a CR3000
data logger (Campbell Scientific Inc., Logan, UT, United States).
Long- and shortwave radiation for the greenhouse was monitored
using a four-channel net radiometer (CNR4, Kipp and Zonen
Delft, Netherlands) along with incoming photosynthetic
photon flux densities (PPFD, LI190SB, LiCor Inc., Lincoln, NE,
United States), measured at plant height in the middle of each
bench. Seasonal light conditions in the greenhouse was similar
between the 2 years, with an average (±standard deviation)
PPFD of 157± 225.5 µmol m−2 s−1 and 135± 196.2 µmol m−2

s−1 for severe drought (2018) and moderate drought (2019),
with comparable results in life history (i.e., growth) an biomass
accumulation between the 2 years. Atmospheric temperature and
relative humidity measurements of the room were taken at 2 m
(HC2A, Rotronic, Hauppauge, NY, United States). Continuous
soil moisture was monitored using 10 Echo-10 SM (Decagon
Devices Inc., Pullman, WA, United States) soil moisture probes
(one per treatment) and 30 soil gypsum blocks (three per
treatment) estimating soil water potential (Supplementary
Figure S1). Soil moisture sensors were calibrated to each of the
four soil types (POTR, PIPO, BRR5, ARTR) using gravimetric
water content (Campbell et al., 2007). Soil water potentials
were calibrated with water retention curves constructed from
psychrometric instruments (WP4-C, Decagon Devices Inc.,
Pullman, WA, United States) upon completion of the experiment
on each soil type.

Leaf-Level Physiological Measurements
During both moderate (2019) and severe (2018) droughts,
measurements included soil volumetric water content (VWC)
(Hydrosense, Campbell Scientific Inc., Logan, UT, United States,
and Echo5, Decagon Devices Inc., Pullman, WA, United States)
and stem diameter for the tree species (POTR and PIPO)
using calipers. In 2018, repeated measurements of all pots were
conducted weekly while in 2019, all plants were screened every
third day before physiological and imaging intensive time points.

Time point leaf-level measurements were conducted
to capture gas exchange (LI-6400XT, LiCor Biosciences,
Lincoln, NE, United States), leaf-water potential (9L) (PMS
Instrument Company, Albany, OR, United States), and ChlF
(LI-6400XT fluorimeter (6400-40), LiCor Biosciences, Lincoln,
NE, United States) as dark acclimated PSII quantum yield
(Fv/Fm) or light acclimated PSII efficiency (Fv′/Fm′) and fresh
leaf biomass. Throughout the course of both experiments,
measurements were taken every 3–7 days to cover the range of
soil moisture conditions, for a total of eight to 10 time points
(Table 2). Each time point consisted of measuring between 10
and 12 (five-six well-watered and five-six droughted) samples
of each species randomly selected from across the blocks.
Predawn measurements were taken 2 h prior to sunrise for both
experiments while midday collections started at 1100 (11:00
MDT). Gas exchange parameters were set to 400 µmol mol−1

CO2 for both midday and predawn measurements. In 2018,
predawn and midday TL was set to 20 and 25◦C, respectively.
Midday measurement PPFD was set to 500 µmol m−2 s−1.
In 2019, conditions in the greenhouse were cooler than the
previous year, thus, leaf temperatures were set to 18 and 20◦C
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FIGURE 2 | Experimental design illustrating the integration of thermal, leaf-level measurements (ground truthing), and chlorophyll fluorescence images for severe
(2018) and moderate (2019) drought scenarios.

in the cuvette at predawn and midday time points, respectively.
Additionally, midday light levels were increased to 1000 µmol
m−2 s−1 for gas exchange measurements to better match the
greenhouse conditions. Due to the differences in light levels, gs
are either analyzed independently or normalized between zero
and one (Figure 9C) to compare gas exchange measurements
between moderate and severe drought scenarios. Saturation
pulses for fluorescence measurements were set to approximately
4,200 photons µmol m−2 s−1. At both predawn and midday,
leaves were excised for measurement of 9L and fluorescence
imaging. On the final day of drought (i.e., last time point) after
the physiological measurements, all of the excised leaves were
scanned using a flatbed scanner and analyzed for total leaf area.
Scans were processed using ImageJ.

Image Collection
For the severe drought experiment (2018), all thermal and ChlF
images were taken at each time point corresponding with other
physiological measurements between 10:00 and 14:00 mountain
standard time (MST) to avoid inconsistent lighting conditions
associated with sunrise (∼0600 MST), sunset (∼2000 MST) and
grow lights in the greenhouse (∼0500-0900 MST). Thermal
images captured three blocks (i.e., 12 pots), from approximately 2
meters above the bench and 1.5 meters above the pots (Figure 2).
Both well-watered and droughted plants were simultaneously
captured in each image as blocks were randomly mixed for each
treatment (Figure 2). While thermal measurements were taken in

the greenhouse environment and for entire plants, ChlF imaging
occurred on single leaves taken to the FluorCam directly after gas
exchange and in situ ChlF measurements.

Thermal and RGB Measurements
During the severe drought experiment (2018), thermal and color
(RGB) images were captured using a FLIR 420T camera (FLIR
Systems Inc., Wilsonville, OR, United States) with a 35 mm
lens. The senor had an accuracy of ±1% for measurements
within the range of 5–120◦C in ambient temperatures lower than
35◦C. Thermal images were post-processed using FLIRTools,
correcting for long-wave radiation attenuation effects using target
distances, ambient vapor pressures, and ambient temperatures
from meteorological data collected in the greenhouse (Page et al.,
2018). Images were not corrected for greenhouse long-wave
emissions, as corrections were less than the sensitivity of the
instrument (Page et al., 2018). Corrections of leaf emissivity (ε)
were standardized at 0.97 because previous studies have shown
no difference in droughted and watered leaves (Buitrago et al.,
2016). Regions of interest (ROI) were developed based on leaf
size and leaf condition determined from the RGB image. A binary
mask of leaf or not-leaf was stacked on thermal images isolating
leaf temperatures. In 2019, the infrared radiometers were also
corrected for leaf emissivity of 0.97 (Buitrago et al., 2016).

Ambient air temperature (Ta) measured on
micrometeorological stations was used to correct thermal
signatures for both camera and radiometers. In 2019, mean
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FIGURE 3 | Aspen (POTR, triangles) and ponderosa pine (PIPO, circles)
measurements of stomatal conductance (gs, A), photosystem II efficiency
(Fv
′/Fm

′, B), and leaf water potential (9L, C) from combined drought
experiments, moderate to severe. Individual replicates (gold) and the prior
data maximum likelihood estimates (MLE, red) for respective days of drought
are presented. Data 50% (dark gray) and 94% (light gray) creditable intervals
corresponding to days of drought at each time point (n = 6).

daytime TL was calculated from infrared radiometers. For
both camera and radiometers, the empirical thermal index for
crop water stress, ICSWI , was calculated using the greenhouse

microclimate information (Equation 1).

ICSWI =
TL drought − TL wet

TL max − TL wet
(1)

Where TLDrought is daytime TL of droughted plants and TLWet
is TL of actively transpiring leaf with no soil water limitations.
While TLMax represents the maximal temperature observed on
droughted leaves.

ChlF Image Collection and Analysis
The ChlF images were collected on excised leaves using a closed
FluorCam (FC 800-C, Photon Systems Instruments, Drasov,
Czechia). The youngest fully developed leaves were selected for
each plant. Leaves were placed flat onto the imaging plate and
screenshots recorded before (Fs) and immediately after (Fm′)
the application of a saturating pulse. Saturating pulses were
standardized at 4000 µmol m−2 s−1. For all captured images
we developed a computing pipeline for pixel analysis. First,
each image was separated into individual red, green, and blue
color bands. Relative Chlorophyll Fluorescence (RChlF) was then
estimated using the number counts of red (Rpix), green (Gpix)
pixels, high and moderate actively fluorescing regions, compared
to the sum of marginally fluorescing blue (Bpix) and actively
fluorescing pixel regions throughout the entire image according
to equation 2.

RChlF =
Rpix + Gpix

Rpix + Gpix + Bpix
(2)

The RChlF measurements were compared to precise handheld
PAM PSII efficiency (Fv′/Fm′) measurements from the IRGA
fluorometer using a similar modeling approach (equation 3)
to plant water status parameters (Table 1). Normalized PSII
efficiency ( ∧PSII i) measures, from zero to one, were used to
compare across species and drought experiments.

∧
PSII i =

1

(1+ e(−αiRChlF+βiRChlF∗RChlF
i))

(3)

Where βiRChlF and −αiRChlF represent the logistic regression
fitting parameters for RChlF. Same model was used for species
specific responses.

Infrared Radiometer Data Collection
For the moderate drought experiment in 2019,
micrometeorological conditions were monitored throughout
the course of the drought with the addition of continuous
measurement of TL using thermal radiometers (SI-111, Apogee
Instruments Inc., Logan, UT, United States) 12 cm from top
of both droughted and well-watered aspen and pine canopies.
All measurements were measured every 5 s and averaged every
minute on CR1000 data loggers (Campbell Scientific Inc., Logan,
UT, United States).

Scaling Transpiration and Leaf Energy
Balance
Timeseries measurements of TL from radiometers and thermal
images were differenced from greenhouse Ta providing delta
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FIGURE 4 | Stem growth and leaf area for POTR (triangle) (A,C) and PIPO (circle) (B,D) under drought (gold) and well-watered (blue) conditions. Stem growth rates
from both moderate and severe drought scenarios resulted in limited growth and reductions when compared to well-watered individuals for both POTR (A) and PIPO
(B). Leaf area for both droughted POTR (C) and PIPO (D) were less than well-watered treatments (C), albeit significant reductions only observed in aspens.
Maximum likelihood estimates (MLE, red) with the 50% (dark gray) and 94% (light gray) represented by error bars.

temperature (deltaT), which was used to develop relationships
with 9L, gs, and canopy resistance (rc). The energy balance of
the leaf and canopy (Equation 4) was used to estimate daily
evapotranspiration (ET) from both droughted and watered PIPO
and POTR.

Rn − G = H + λE (4)

Where Rn is net incoming radiation, G is the soil and storage
heat flux, H represents sensible heat flux, and λE represents the
latent heat of vaporization of water and the evapotranspiration
rate. Daily estimates of ET in millimeters per day per pot area
(i.e., 156.25 cm2) were estimated using Penman-Monteith (PM)
(Allen et al., 1998) (Equation 5).

ET =
1(Rn +

ρCp
rα ∗ VPD)

(1+ γ(1+ rs
ra ))

(5)

Canopy resistance (rs) was empirically estimated using simple
linear regressions of deltaT. Where1 is the gradient of the water
saturation vapor pressure curve (kPa K−1), ρ is the density of
air (kg m−3) and specific heat of air is represented by Cp (J
kg−1 K−1). The atmospheric dynamics are accounted for with
both vapor pressure deficit (VPD) (kPa) and γ, the psychrometric
constant (kPa K−1). Boundary layer resistance for water vapor
transfer from the canopy to the atmosphere is represented by
aerodynamic resistance (ra) (s m−1) and the resistance of water
vapor diffusion through stomatal apertures is denoted by rs (s
m−1). In the greenhouse, wind speeds were not directly measured
and were assumed to be near zero (i.e., 0.01 m s−2). We assumed
that stomatal resistance (rs) measured from the IRGA was linearly
proportional to the entire canopy by multiplying per unit leaf area
measurements from the IRGA by total leaf area for both POTR
and PIPO to provide estimates of canopy resistance (Hatton and
Wu, 1995; Leuning et al., 1995). Canopy decoupling within the

Frontiers in Forests and Global Change | www.frontiersin.org 7 November 2020 | Volume 3 | Article 589493

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-03-589493 October 27, 2020 Time: 18:42 # 8

Beverly et al. Biophysical Imaging Plant Water Status

greenhouse was assessed using canopy decoupling coefficients
(�) (Jarvis and McNaughton, 1986).

Image-Based Modeling Approaches
To understand the consequences of soil water limitations on
plant water status we modeled drought induced changes in
gs and 9L with respect to (1) thermal, (2) ChlF, and (3) the
combination of both thermal and ChlF signatures throughout
moderate and severe drought events (Table 1). Multivariate
linear regressions were utilized for thermal modeling approach
(approach 1 Table 1) for predicting plant water status parameters
(i.e., giS and ψi

L), where i represented the daily median.
The daily median and its uncertainty for each i were used
rather than individual measurements because we treated the
measurements as populations to account for the necessity
that some measurements occurred on different plants. The
Bayesian analysis described in the next section incorporate these
uncertainties. Predictions of giS were tested using two different
thermal-based fixed effect covariates, IiCWSI and deltaTi, to
evaluate which proxy of TL best explained the drought responses.
The lack of Twet measurements from the thermal camera limited
calculations of IiCWSI to the infrared radiometers (results in
Figure 6C). Predictions of ψi

L were only conducted using only
deltaTi. Species level fixed effect covariates (i.e.,Speciesi) were
added to account species-specific differences in drought response
in all three thermal regression models. Additionally, intercept
regression parameters (βi0) were included to improve predictions
using the thermal covariates. We applied our thermal approach
to predict ET using thermal parameters (i.e., deltaT). Daily
deltaT and leaf-level gas exchange were used to predict stomatal
conductance responses to drought. Timeseries measurements of
deltaT were correlated with gs and then incorporated into the
PM using linear Bayesian regression models. The PM thermal-
based modeling approaches were then validated against gas
exchange measurements.

The ChlF imaging approach (approach 2 in Table 1) aimed to
evaluate the capability of RChlF to predict changes of giS and ψi

L
during progressive drought. Bayesian logistic regression models
were used to quantify the physiological responses (i.e., Fv′/Fm′,
gs, 9L) to soil moisture limitations. The logistic regressions
parameters (i.e., αiRChlF and βiRChlF) were empirically fit to
best explain the threshold dynamics observed in the RChlF
measurements. However, direct comparisons of RChlF across
drought responses and species was not possible due to the
immense range of gs and 9L. Hence, we normalized gs and 9L
between 1 (i.e., maximal gs and 9L) and zero (i.e., minimal gs
and 9L) which are denoted by ĝsi and ψ̂Li. This normalization
allowed methodological inferences across species and drought
scenarios (i.e., comparison of the moderate and severe droughts).

After evaluating the predictions of gs and 9L throughout
progressive drought separately, we evaluated the predictive
relationships using a combined thermal and RChlF image-based
modeling approach (approach 3 in Table 1). The combined
approach utilized a multivariate linear regression models to
predict non-normalized gs and 9L with fixed effects of deltaTi,
RChlFi, and the length of drought expressed as the time to death

(TDDi). The intercept regression parameters (βi0) were included
to improve predictions of plant water status. For all three
modeling approaches, the importance of the thermal (i.e., βiICWSI

and βiTherm ), RChlF (αiRChlF and βiRChlF), species-level (i.e.,βiSpp),
the time to death (i.e.,βiTTD), and intercept (βi0) parameters were
assessed using maximum likelihood estimates (MLE; i.e., the
single most likely point of the posterior distribution) and credible
intervals of posterior probabilities (Beauducel and Herzberg,
2006). Informative model parameters (i.e., significant effects)
were determined if parameter MLE and 94% CI were equal to
zero (posterior prob < 94%, i.e., low probability of effect) or not
being equal to zero (posterior prob > 94%, i.e., inferred to be a
high probability effect).

Data and Statistical Analysis
As noted by McElreath (2020), parameters such as treatment or
TL, are what we are most interested in as model outcomes, but
we do not measure them directly, thus, quantifying uncertainty
in parameters is crucial. Hence, we used Bayesian statistical
methods to quantify multiple, hierarchical error sources and
report potential treatment differences and model predictions
probabilistically. Physiological responses to soil water limitations
were tested using Bayesian approaches that do not require
assumptions of time, and are thus an improvement over
repeated measures analysis of variance (ANOVA) (Figure 3 and
Supplementary Figure S2) (Dietze, 2017). Bayesian inferences
are based on clearly stated priors (Supplementary Table S1)
and avoid the frequentist statistical assumptions that entire
experiments should be repeated multiple times (Kruschke, 2010,
2013; Ogle and Barber, 2020). Throughout our study, we report
likelihood credible intervals that explicitly incorporate variability
both directly observed in our experiments and uncertainty from
measurements themselves (McElreath, 2020). Result Figures 3–
10 and Supplementary Figures S2, S4–S7) report both the
50 and 94% credible intervals to transparently illustrate the
variation and uncertainty surrounding the data and image-
based model predictions. Additionally, the model fits based
on the mean Bayesian correlation coefficients (R2) and the
corresponding 94% credible intervals are reported as the lower
(Q3) and upper (Q97) quantities (Gelman et al., 2019). Where
appropriate, we refer to whether these credible intervals include
zero or not as a method to show if the parameters are likely to
be meaningful and worth including in inferences. Comparison
of the models were completed using the widely applicable
information criterion (WAIC) in the BRMS package (Bürkner,
2018), which quantifies and ranks models by their ability to
predict data while penalizing for overfitting with additional
parameters. Analyses were conducted using R versions 3.2.1,
all Bayesian analysis was conducted using Bayesian Regression
Model Systems in RStan (Stan Development Team, 2020). All
data is available from the University of Wyoming data repository1

and the source files with corresponding packages, functions, and
analyses are available on GitHub2.

1https://datacorral.uwyo.edu/data-directory
2https://github.com/dbeverly/ImagingWaterStatus
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RESULTS

Physiological Response to Drought
To test our three image-based modeling approaches (thermal,
RChlF, and the combination; Table 1) that predict plant water
status, we first quantify the environmental variables that will be
incorporated into the models. Soil VWC was monitored during
both experiments of moderate (2019) and severe drought (2018)
(Supplementary Figure S1). The severe drought experiment
resulted in death of all (i.e., 12 of each species) POTR
(VWC < 6%) and PIPO (VWC < 6.3%) following 45 days
of water withholding and consequent 2 weeks of fully re-
watering. The same year, BRR5 and ARTR died after 21 (minimal
VWC< 7.2%) and 52 days (minimal VWC< 5.1%), respectively.
During the moderate drought experiment, despite POTR and
PIPO reaching extremely low soil moisture (VWC < 5%) after
23 days (Supplementary Figure S1), all plants recovered upon
re-watering. Across the two experiments, death was defined as the
absence of recovery after re-watering, with recovery assessed as
re-sprouting or increase in the PSII efficiency (i.e., Fv′/Fm′) signal.

We next quantify the impacts of the drought on physiological
variables that we will test throughout our three models. Merged
physiological results from 2018 and 2019 are reported in Figure 3
to encompass the entire range of drought severity. Overall,
declines in gs were the first sign of stress response across species,
although the time of response varied. Values of soil VWC below
13.5% following 9 days of drought triggered rapid reductions of
gs for both POTR (0.26 to 0.1 mol m−2 s−1) and PIPO (0.18
to 0.07 mol m−2 s−1) (Figure 3A). As expected, BRR5 showed
high sensitivity to drought with rapid reductions of gs from 0.65
to 0.09 mol m−2 s−1 after only 8 days of water withholding
(Supplementary Figure S2a). Maximal stomatal conductance in
ARTR (0.13 mol m−2 s−1) substantially declined in response to
drought with an 83.0% decline after 14.3% VWC, with subtle
drops in gs below 12% VWC (Supplementary Figure S2a).

Once soil VWC reached 3–9% after 18–35 days of water
withholding, the impacts of the drought on both PSII efficiency
and 9L were evident (Figures 3B,C and Supplementary
Figures S2b,c). Substantial declines of PSII efficiency were
observed in PIPO and POTR after 35 days of water withholding
(Figure 3B). The BRR5 showed zero PSII efficiency in light after
18 days of drought, while ARTR declined at 28 days, although it
did not reach zero until after 45 days of drought (Supplementary
Figure S2b). Once plants reached zero PSII efficiency they
never recovered upon re-watering, consistently for all species
(Figure 3B and Supplementary Figure S2b). Minimum 9L of
−10.0 MPa was observed for POTR and−6.2 MPa for PIPO after
35 and 45 days of water withholding, respectively (Figure 3C).
Predawn 9L responded similarly to PSII efficiency with respect
to both soil VWC and days of drought, declining at 18 and
24 days of drought for POTR and PIPO, respectively. Minimum
predawn 9L of −2.4 MPa was observed in BRR5 following
18 days while ARTR minimum predawn 9L (−9.2 MPa) was
observed at 52 days (Supplementary Figure S2c).

Limitations in relative stem diameter growth were observed in
response to drought for POTR (Figure 4A) and PIPO (Figure 4B)
seedlings throughout both experiments. In moderate drought,

well-watered POTR grew 1.21 mm and PIPO grew 0.55 mm
compared to droughted cohorts. However, highly probable
differences (posterior prob > 94%) were observed only in POTR
with respect to droughted plants (Figure 4A). In severe drought,
stem diameter growth for both PIPO and POTR declines at least
−0.02 mm (posterior prob > 94%) (Figures 4A,B). In the same
severe conditions, droughted POTR (0.08 m2) (Figure 4C) and
PIPO (0.10 m2) (Figure 4D) leaf area were lower than well-
watered POTR (0.13 m2) and PIPO (0.15 m2); albeit, only POTR
posterior probabilities were greater than 94% (Figures 4C,D).

Leaf Temperature
In order to build and test models of TL and related parameters
that predict the physiological responses to drought, we quantified
the relationship between9L, PSII efficiency, and gs. Physiological
responses to drought were better correlated to deltaT and ICWSI
in comparison to TL, measured from both camera and infrared
radiometer. The consequences of drought for both PIPO and
POTR were evident in the time series of deltaT within 5 days
(Supplementary Figure S3). The reductions in deltaT from
both thermal camera and infrared radiometers were able to
predict the changes in plant water status based on midday
9L (Figure 5A) for all species (mean R2 = 0.57, Q3 = 0.36,
Q97 = 0.65; βTherm 6= 0; Supplementary Table S2). In moderate
drought, the range of variation for both deltaT and midday 9L
was smaller than in severe drought which overall reduced our
predictive power (Supplementary Figure S4a) (mean R2 = 0.30,
Q3 = 0.06, Q97 = 0.49; βTherm = 0; Supplementary Table S2).
In the severe drought experiment, the thermal camera captured
more of the parameter space with respect to midday 9L and
deltaT resulting in higher correlation to plant water status
(Supplementary Figure S4b) (mean R2 = 0.51, Q3 = 0.22,
Q97 = 0.62; βTherm 6= 0; Supplementary Table S2). Reductions of
PSII efficiency correlated with declines of deltaT for both thermal
camera and infrared radiometer (Figure 5B) (mean R2 = 0.56,
Q3 = 0.41, Q97 = 0.65). During severe drought, the relationship
between PSII efficiency and deltaT was uninformative due to
the subtle changes of PSII efficiency during moderate drought
(Supplementary Figure S4c) (mean R2 = 0.06, Q3 = 0.00,
Q97 = 0.22). Thermal imaging results in severe drought correlated
with the declines of PSII efficiency corresponding to deltaT for all
species (Supplementary Figure S4d) (mean R2 = 0.53, Q3 = 0.29,
Q97 = 0.66).

Thermal images collected from severe drought produced a
strong relationship between gs and deltaT (mean R2 = 0.63,
Q3 = 0.52, Q97 = 0.68; βTherm 6= 0; Supplementary Table S2)
(Figure 6A). However, species-specific covariates did not
improve correlations likely due to low replicate numbers for
species and treatment (Figure 6A). In severe drought, ICWSI
derived from thermal images associated with individual time
points were not informative due to inconsistent retrieval of both
TWet and TDry measurements from the same individuals or same
species. The dynamics of gs in response to progressive drought
were highly correlated with deltaT measured from infrared
radiometers for both PIPO and POTR (Figure 6B) (mean
R2 = 0.69, Q3 = 0.21, Q97 = 0.87; βTherm 6= 0; Supplementary
Table S2), with no additional improvement using species-specific
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FIGURE 5 | Leaf water potential (9L) response to changes in air temperature
relative to leaf temperature (deltaT, air minus leaf temperature) from both
thermal radiometers and cameras (A). Decreases of deltaT corresponding to
greater tension on xylem for aspen (POTR, triangles), ponderosa pine (PIPO,
circles), sagebrush (ARTR, star), and B. rapa (BRR5, diamonds) (R2 = 0.57).
The decreases of deltaT was similarly associated with reductions of
photosystem II efficiency (Fv

′/Fm
′) (B) across all species (R2 = 0.56).

Maximum likelihood estimates (MLE, red) are presented and the 50% (dark
gray) and 94% (light gray) creditable intervals.

responses and their interactions (Supplementary Table S2).
These covariates reduced the explanations of variation of the
posterior estimates of gs, though marginally lowered the mean
correlation coefficient (mean R2 = 0.67, Q3 = 0.44, Q97 = 0.91;
βTherm = 0; Supplementary Table S2) (Figure 6B). The ICWSI
values correlated with gs, but the relationship was less strong than
for deltaT, for POTR and PIPO (mean R2 = 0.66, Q3 = 0.27,
Q97 = 0.76; βTherm 6= 0; Supplementary Table S2) (Figure 6C).
Species-specific and interaction covariates provided minimal
improvements in the mean correlation coefficients between ICWSI
and gs (mean R2 = 0.65, Q3 = 0.34, Q97 = 0.78; βTherm 6= 0;
Supplementary Table S2) (Figure 6C).

Applied Estimates of Whole Plant
Transpiration and Leaf Energy Balance
Scaling Transpiration
Using our first image-based modeling approach (i.e., thermal),
the time series of TL from the infrared radiometers observed
in moderate drought (2019) was used to estimate at the whole

canopy level using leaf area. Canopy ET estimated from leaf-
level gas-exchange strongly correlated with deltaT measured and
rs calculated from infrared radiometer measurements (mean
R2 = 0.75, Q3 = 0.64, Q97 = 0.80; βTherm 6= 0; Supplementary
Table S3) (Figure 7A). Both PIPO and POTR rs exhibited no
species effect (posterior prob < 94%) in response to deltaT,
thus time series estimates of daily rs were established using
the same regression fitted across both species (Figure 7A
and Supplementary Table S3). Daily estimates of ET using
PM showed substantial reductions of transpiration immediately
following the onset of drought treatments between the POTR
(Figure 7B) and PIPO (Figure 7C). The non-linear relationship
of rs and deltaT results in considerable uncertainty that is
propagated into the estimated daily ET (Figure 7).

Leaf Energy Balance
Because leaf energy balance is a first principle biophysical
connection between TL and plant water status, we tested the
relationship between these variables. The uncertainty observed
in time series estimates of whole plant ET from moderate
drought corresponded to the variation of leaf energy balance
for both POTR and PIPO. Leaf energy balance results were
strongly correlated with measured transpiration rates (mean
R2 = 0.65, Q3 = 0.49, Q97 = 0.73) (Figure 8A). However, the
relationship deviates from the one to one line (slope = 2.31;
intercept = −0.48) with transpiration underestimated at the
highest flux rates (Figure 8A). The residual difference between
measured and estimated transpiration (i.e., difference from the
one to one line) was mostly explained by leaf-level measured gs
(mean R2 = 0.86, Q3 = 0.81, Q97 = 0.88) (Figure 8B). Residuals
were linearly correlated with increases of gs (βgs = 5.95, Q3 = 5.10,
Q97 = 6.81) (Figure 8B).

Relative Chlorophyll a Fluorescence
In our second image-based modeling approach (i.e., RChlF),
we quantified the relationship between RChlF and physiological
status. Validation of normalized PSII efficiency and RChlF using
logistic regressions tracked the progression of drought and
detected thresholds of recovery (Figure 9A). The relationship
was robust during severe drought conditions capturing the
entire range from well-watered through drought mortality (mean
R2 = 0.76, Q3 = 0.67, Q97 = 0.81; αRChlF 6= 0, βRChlF 6= 0;
Supplementary Table S4), though explained very little of the
variation during mild and moderate drought (Figure 9A) (mean
R2 = 0.29, Q3 = 0.00, Q97 = 0.51; αRChlF 6= 0, βRChlF 6= 0;
Supplementary Table S4). Species-specific responses improved
explanations of the variation by better constraining parameter
estimates for each species (mean R2 = 0.80, Q3 = 0.75, Q97 = 0.83;
αRChlF = 0, βRChlF = 0; Supplementary Table S4) (Supplementary
Figure S5). Across the entire range of drought from moderate to
severe, RChlF calculated from fluorescence images was effective
at predicting thresholds of relativized 9L across all species
(mean R2 = 0.72, Q3 = 0.61, Q97 = 0.76; αRChlF 6= 0, βRChlF
6= 0; Supplementary Table S4) (Figure 9B). The addition of
species-specific variation increased predictions of 9L to drought
(mean R2 = 0. 80, Q3 = 0.75, Q97 = 0.83; αRChlF = 0, βRChlF
= 0; Supplementary Table S4) (Supplementary Figure S6).
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FIGURE 6 | Thermal images (A) Infrared radiometers (B,C) measured deltaT (air minus leaf temperature) (A,B) and ICWSI (C) serve as powerful predictors of the
reduction of stomatal conductance (gs) in response to soil water limitations for aspen (POTR, triangles), ponderosa pine (PIPO, circles), big sagebrush (ARTR, star),
and oilseed Brassica rapa (BRR5, diamond). The maximum likelihood estimates (MLE, red) for the reduction of gs consequent to soil water limitations is presented
and the 50% (dark gray) and 94% (light gray) creditable intervals for deltaT and ICWSI.

The RChlF imaging results had very limited correlation with
normalized gs at all considered drought conditions (Figure 9C)
(mean R2 = 0.29, Q3 = 0.07, Q97 = 0.46; αRChlF 6= 0,
βRChlF 6= 0; Supplementary Table S4) but species-specific
effects substantially improved the relationship (mean R2 = 0.58,
Q3 = 0.44, Q97 = 0.63; αRChlF = 0, βRChlF = 0; Supplementary
Table S4) (Supplementary Figure S7).

Combined Relative Chlorophyll a
Fluorescence and Leaf Temperature
To test our third image-based modeling approach (i.e., the
combination of thermal and RChlF), we evaluated whether a
combined deltaT and RChlF model was better than either model
individually. Empirical models that combined RChlF, deltaT, and
their interaction improved predictions, compared to univariate
approaches, of midday 9L for all species during progression
from well-watered to extreme drought, i.e., mortality (Figure 10)
(mean R2 = 0.81, Q3 = 0.63, Q97 = 0.80; βTherm = 0, βRChlF 6=

0; Supplementary Table S5). The maximum likelihood response
for the relationship of predicted and observed midday 9L was

less than the one to one line (slope = 0.90), but not different
considering the 94% credible intervals (i.e., green polygon)
captures the one to one line (Figure 9). Our predictive power
increases if we consider only the woody species, i.e., removing
B. rapa (mean R2 = 0.89, Q3 = 0.79, Q97 = 0.95; βTherm = 0, βRChlF
6= 0; Supplementary Table S5). However, removing the crop did
not improve predictions of gs from coupled RChlF and deltaT
(mean R2 = 0.48, Q3 = 0.23, Q97 = 0.73; βTherm = 0, βRChlF = 0;
Supplementary Table S5). The increased complexity of the third
model provided the most improved predictive power despite the
reduced parsimony, as the combined model had a WAIC estimate
of 11.2 and 18.2 (Supplementary Table S5) points lower than the
univariate approaches using deltaT and RChlF, respectively.

DISCUSSION

Testing models to predict plant water status from TL, RChlF,
and their combination using a Bayesian approach provides a
rigorous test of the effectiveness of these methods. This statistical
method also highlights the uncertainty involved in using near
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FIGURE 7 | Changes in leaf temperature (deltaT, air minus leaf temperature) serve as a strong predictor of stomatal resistance (rs) (A) across soil moisture gradients
from both well-watered (blue) and droughted (gold) POTR (triangle) and PIPO (circle). The rs responses to leaf temperature maximum likelihood estimate (MLE, red),
50% (dark gray), and 94% (light gray) creditable intervals. Integration of rs estimates into process-based models (i.e., Penman-Monteith) capture plant water status
and daily ET estimates for POTR (B) and PIPO (C). The 94% creditable intervals of rs correspond to the uncertainty of daily ET estimates.

remotely sensed data products and points to future work that
may reduce this uncertainty. Both imaging techniques are high-
throughput, robust, process-informed proxies of plant water
status (Figures 5, 6, 10) and can be used to predict water use
dynamics (Figures 7, 8). The combination of these methods and
the use of a Bayesian statistical approach provide the most useful
predictions of plant response to progressive drought (Figure 10)
and leverage the information in both measurements while not
over fitting. The Bayesian statistical approach used throughout
our tests provides probabilistic predictions for the physiological
responses of plant water status for the diverse species across a
wide range of soil water limitations.

Ecophysiological applications of satellite remotely sensed
methods have improved ecosystem-scale predictions of
productivity, carbon exchange, water use, leaf area, canopy
water content, and species distributions (Waring et al., 1982;
Pierce et al., 1990; Running et al., 1995; Renzullo et al., 2008;
Adam et al., 2010; Landsberg et al., 2017; Xue and Su, 2017;
Moreno-Martínez et al., 2018; Chen et al., 2019). However,
current process-based models are hindered by the lack of
ground-truthing approaches to validate canopy and leaf-level

responses to environmental changes (Liu and Zhou, 2004;
Govender et al., 2009; Köhler and Huth, 2010). Moreover,
greenhouse experiments provide the optimal environment for
developing relationships between spectral signatures derived
from imaging techniques and physiological responses to drought.
We acknowledge that our approach is limited to near remote
sensing applications that can be applied to estimates of ET and
leaf energy balance, but has not been tested on larger scales.

With the image-based thermal model, we show that empirical
9L estimates using TL provide confident estimates of plant
water status under soil water limitations (Figure 5A and
Supplementary Figure S4) informing process-based predictions
of transpiration and drought response (Figure 7). Previous
studies have shown predictable relationships between midday
9L and deltaT in agricultural and orchard systems but they do
not consider the entire span of water limitations from zero to
mortality, which limits the predictive power of plant water status
for non-agricultural systems prone to extreme drought events
(Figure 5A) (Cohen et al., 2005; Sepulcre-Cantó et al., 2006;
Alchanatis et al., 2010; Baluja et al., 2012; Bellvert et al., 2014).
Here, the TL measured from both the infrared radiometers and
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FIGURE 8 | Transpiration (E) estimated from leaf level energy balance using
infrared radiometer data are lower than gas exchange measurements (LiCor
6400XT) under high transpiration rates in well-watered (blue) than droughted
conditions (A) for both POTR (triangle) and PIPO (circle). Across both species
and treatments, (B) the residual distance from the measured and estimated
transpiration rates (i.e., 1:1 line) are explained by leaf-level stomatal
conductance (gs) (Mean R2 = 0.86). Maximum likelihood estimate is
represented in red along with the 50% (dark gray) and 94% (light gray)
creditable intervals.

thermal camera provides predictive insight on the regulation of
temperature from the onset of drought to mortality (Figure 6).
Although thermal camera and radiometers provided similar
results, differences arise from the distinctive assumptions and
features of each method (Liu et al., 2011; Prashar and Jones,
2016; Hong et al., 2019). The non-invasive infrared radiometers
provided the more consistent TL measurements, due also to
a greater frequency in data acquisition (i.e., every 10 min.)
(Figure 6B). However, infrared radiometers integrate into a
single signal with a limited field of view (0.027 m2 in this study)
while the thermal images capture the temperature of multiple
species and treatments (Figure 2). Both thermal measurements

claim an accuracy of approximately 2◦C though the error often
increases with changing environmental conditions including
distance and canopy structure (Rahkonen and Jokela, 2003;
Faye et al., 2016).

Our analyses assume that all differences in TL and declines
in transpiration result from drought, though it is acknowledged
that differences may be associated with structural changes of the
canopy from wilting, as well as shifts in emissivity (Gerhards
et al., 2016). Variation of leaf angle has been observed to double
TL estimates, especially in droughted leaves (Jones et al., 2009;
Ren et al., 2014). Leaf water content alters spectral reflectance
in many relevant bands (e.g., water absorption features 970,
1170, 1450, 1775, and 1930 nm) (Sims and Gamon, 2003;
Murphy et al., 2019). However, temporal variation, let alone
variation associated with plant stress, of emissivity remains
poorly understood, resulting in another potential error source
when estimating small fluctuations of TL linked to gs (Gerhards
et al., 2016). Standardizing leaf emissivity (i.e., 0.97) for both
thermal images and radiometers poses potential uncertainty
as variations of emissivity can result in 3 ◦C changes in leaf
temperature (Arp and Phinney, 1980; Bugbee et al., 1998;
Chen, 2015; Buitrago et al., 2016) which is often greater
than the range of temperature associated with changes in gs
(Figures 6B,C) creating limitations for TL analysis and thermal
methodological development. Additionally, sensors for remotely
measuring temperatures typically have a precision of 2–3◦C
resulting in lower accuracy of absolute temperature (Rahkonen
and Jokela, 2003; Aubrecht et al., 2016). In this study, deltaT gives
more effective predictions for drought responses across species
when compared to ICWSI as the variability of TL throughout
tree canopies limits accurate estimates of transpiring and non-
transpiring leaves (Jones, 1992; Kim et al., 2018). Ben-Gal et al.
(2010) observed similar predictability of gs using deltaT over
ICWSI in olive orchards suggesting that the index built on crops
needs further validation prior to implementation to either natural
and non-herbaceous crop systems.

In plants, changes in leaf water status lead to variation in
the energy partitioning at the photosystem level with more
excitation energy dissipated as heat via NPQ mechanisms to
avoid oxidative stress limiting PSII efficiency (i.e., Fv′/Fm′)
(Silva et al., 2010; Alonso et al., 2017). Imaging ChlF has been
developed to monitor these energetic changes and it has been
demonstrated to do so effectively across a wide range of species,
genotypes, and environmental stresses (Van Kooten and Snel,
1990; Sayed, 2003; Flowers et al., 2007; Kalaji et al., 2014,
2016; Guadagno et al., 2017). The RChlF image-based pipeline
decreased the image acquisition time from minutes to seconds
and revealed thresholds for hydraulic and photochemical failure
(Figures 9A,B) (Tschiersch et al., 2017). Changes in RChlF
showed similar patterns to leaf-level PSII efficiency across all
considered conditions, but they did not show a one to one
relationship (Figure 9C). This difference is most probably due
to the RChlF images, captured right after a saturating pulse and
representing the maximal fluorescence in light conditions (Fm′)
while the IRGA-based data represent the ratio Fv′/Fm′. The IRGA
fluorimeter in vivo, and almost simultaneously, calculates this
ratio accounting for Fo′, the value of minimal fluorescence in
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FIGURE 9 | Relative chlorophyll fluorescence (RChlF ) to normalized physiological responses of midday leaf water potential (PSI L, A), photosystem II efficiency
(Fv
′/Fm

′, B), and stomatal conductance (gs, C) during the progression of both moderate and severe drought experiments. Maximum likelihood estimates (MLE, red)
for trends with 50 and 94% creditable intervals for aspen (POTR, triangle), ponderosa pine (PIPO, circle), big sagebrush (ARTR, star), and oilseed Brassica rapa
(BRR5, diamond). FluorCam images (D) for well-watered (left) and droughted (right) leaves used for estimating RChlF.

the dark upon a short far-red pulse following actinic illumination
(Oxborough and Baker, 1997). Although the imaging protocol we
use is meant to avoid long time of exposure of the cut leaves in the
chamber, it allows us to record Fm′ shown to be a robust proxy of
photochemical quenching in light (Murchie and Lawson, 2013).
The low predictive power for gs is mostly due to the frequency in
data acquisition (i.e., 3–7 days), and to the destructive harvesting
of leaves, necessary when using a closed model of the FluorCam
for fluorescence imaging (Figure 9C).

Spatial resolution from satellite imaging techniques continues
to hinder the linkages of spectral and thermal signatures
to leaf-level biophysical mechanisms. However, solar induced
fluorescence (SIF) is increasingly used as an imaging technique
to detect photosynthetic capacities and stress across canopies
(Parazoo et al., 2020). Unfortunately, modern SIF approaches
often miss fine temporal variation due to the long return intervals
(e.g., 16 days on OCO-2), the RChlF imaging approach is capable
of capturing the diel variation of plant water status (Magney
et al., 2019). Although novel SIF data products from non-satellite
platforms (i.e., drones and towers) have emerged to fill both
spatial and temporal understanding, light limitations still limit

confident inferences from leaf to the ecosystem (Chen et al.,
2016; Magney et al., 2019). The use of RChlF methods are also
not constrained by low-light conditions (Van Der Tol et al.,
2014; Verrelst et al., 2015) and could help fill gaps left by SIF in
estimating regional and global gas exchange (Magney et al., 2019).
However, RChlF methods require extremely high-light pulses to
saturate photosystems and would be challenging or impossible to
implement on the ecosystem or global scales.

Our third model coupling RChlF and deltaT measurements
provides more confidence in predicting plant water status across
a spectrum of midday 9L and species with extremely different
drought strategies (Figure 10). The improved predictions of
water status using the combined approach offset the limitations
for each method by maximizing advantages from the linear and
threshold aspect of the proxies. Estimates are more robust for
the temperate trees (i.e., aspen and pine) and the desert shrubs
that cover the entire 9L parameter space due to greater xylem
tensions of woody tissues when compared to the herbaceous forbs
(Griffin-Nolan et al., 2019). Herbaceous crop midday 9L values
are consistently overestimated as B. rapa drought resistance is
low, and it rapidly dies in drought with low midday 9L (i.e., 9L
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FIGURE 10 | Linear regression of predicted and observed 9L (Green line) and
the corresponding 94% credible intervals of the linear regression (Green
polygon). Coupling deltaT and RChlF improves predictive power as model
midday leaf water potential (9L) with respect to observed midday 9L during
the progression of both moderate and severe drought. Maximum likelihood
estimates (MLE, red) are presented for trends with 50% (dark gray) and 94%
(light gray) creditable intervals for aspen (POTR, triangle), ponderosa pine
(PIPO, circle), big sagebrush (ARTR, star), and oilseed Brassica rapa (BRR5,
diamond). Error corresponds to model and measurement uncertainty.

< -5 MPa) (Figure 9) (Kumar and Elston, 1992; Siddique et al.,
2000; Guadagno et al., 2017). Recent process-based models have
made better predictions for trees with anisohydric behavior when
the full range of drought is considered (Mackay et al., 2015). On
the contrary, our model fits the behavior of isohydric trees and
shrubs and fails for the anisohydric crop (i.e., BRR5; B. rapa)
(Figure 10). This might partly be explained by the thicker leaves
characterized by a higher water content with respect to the other
species at similar soil VWC, most likely influencing the spectral
signatures in ways that challenge our model’s ability to capture
the behavior of the crop species (Figure 10) (Falcioni et al.,
2020). The limitations observed when predicting the reductions
in gs during drought using deltaT and RChlF measurements
independently persisted when coupling the two, resulting in
little to no improvement on model fit. Irrespective of these few
limitations, the value of Bayesian statistical approach is illustrated
through the scalable probabilistic predictions and candid levels of
uncertainty derived from simple empirical relationships as well as
complex process-based model predictions.

Several caveats exist when scaling transpiration and plant
water status to canopy and ecosystem scales though the
fundamentals of leaf energy balance are well defined (Tague
et al., 2009; Ferguson et al., 2010; Vinukollu et al., 2011;
Coenders-Gerrits et al., 2014). Typical calculations used for
estimating ET assume that ra is constrained by leaf size,

canopy structure, and wind speed at the leaf surface (Schuepp,
1993; Poggi et al., 2004; Leigh et al., 2017). In our study,
the reduction of daily ET was immediately detectable, though
the greenhouse environment with minimal wind speeds and
turbulence decoupling the canopy and atmosphere produced
substantial uncertainty when making estimates of absolute
transpiration rates (Figures 7B,C) (Kimball, 1973; Zhang and
Lemeur, 1992; Boulard et al., 2004). In our leaf energy balance
estimates of ET (Figure 8), the incoming radiation at the
leaf surface was not measured for the entire canopy, rather
estimated based on the mean leaf angle, which is likely to
change with the progression from well-watered to drought
conditions. Specifically, we assume that the gas exchange
measurements (IRGA-based) and ET derived from leaf energy
balance to be analogous, with constraints of rs estimated from
deltaT and IRGA chamber presumably experiencing similar
boundary layer conditions (Figure 7). However, within the IRGA
chamber, flow rates across the leaf surface are manipulated
to minimize the boundary layer resistance to isolate stomatal
limitations (Atkinson et al., 1986). Moreover, the infrared
radiometers and thermal cameras capture thermal gradients
of water vapor defusing through both the stomatal apertures
as well as the boundary layer (Jones, 2004). As observed
with scaling of deltaT to daily ET, the decoupling of the
canopy from the atmosphere is also evident [based on the
decoupling coefficient (�) to the atmosphere of 0.99 (data
not shown)] due to minimal wind speeds (i.e., <0.1 m
s−1) reducing the thermal signals associated with stomatal
conductance (Figures 7B,C, 8) (Jarvis and McNaughton, 1986;
Qiu et al., 2013). The comparison of absolute ET estimates
for experiments conducted in the greenhouse environment is
impacted, besides boundary layer and gas exchange assumptions,
by the possibility of pot root bounding, differences of soil
structures and microbial compositions, rooting depth, and
physical crowding (Berendse, 1981; Thomas and Strain, 1991;
Pashanasi et al., 1992; Mariotti et al., 2015). However, controlled
experiments, like ours, are key to clarify details and probable
sources of error of drought response and to reliably inform
remote sensing approaches used at the ecosystem scale with
leaf-level mechanistic insight.

Using a Bayesian statistical approach produces probabilistic
estimates and explicit uncertainty parameters, measurements,
and models of plant water status directly informative to
process-based predictions of transpiration and drought-induced
mortality. Both the explicitly stated priors and credible intervals
encompassing 94% of the observations maximize transparency
that is informative across scales and species. These results,
collected in a controlled stetting, provide a unique opportunity
for coupling near remotely measured and ground-truthing
findings, which scale to complex ecosystems and provide a more
holistic understanding of how we can predict reductions of
transpiration and drought-induced mortality.

Ecosystem scale remote sensing techniques can benefit from
these types of greenhouse studies to better characterize the
temporal variations (diel, weekly, or seasonal) of physiological
mechanisms and natural plant rhythms that may not be captured
in satellite images (Chaerle et al., 2007; Deng et al., 2019;
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Richardson, 2019). New sensors with improved spatial (i.e.,
smaller pixels) and spectral (i.e., numerous narrow-band filters)
resolution are being continuously developed to answer the
demand for near remote sensing methods (Petrie et al., 2019;
Still et al., 2019). However, these technological advancements
require updated calibration, ground-truthing methods, and
statistical approaches that span across diverse ecosystems to
improve predictions of carbon and water exchange. In the future,
more rigorous ground-truthing campaigns and probabilistic
approaches should be associated with remote sensing and
imaging collections, especially for predicting carbon and water
exchange across vast or heterogeneous ecosystems.
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