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The efficiency of the water transport system in trees sets physical limits to their

productivity and water use. Although the coordination of carbon assimilation and

hydraulic functions has long been documented, the mutual inter-relationships between

wood anatomy, water use and productivity have not yet been jointly addressed in

comprehensive field studies. Based on observational data from 99 Indonesian rainforest

tree species from 37 families across 22 plots, we analyzed how wood anatomy and sap

flux density relate to tree size and wood density, and tested their combined influence on

aboveground biomass increment (ABI) and daily water use (DWU). Results from pairwise

correlations were compared to the outcome of a structural equation model (SEM). Across

species, we found a strong positive correlation between ABI and DWU. Wood hydraulic

anatomy was more closely related to these indicators of plant performance than wood

density. According to the SEM, the common effect of average tree size and sap flux

density on the average stem increment and water use of a species was sufficient to fully

explain the observed correlation between these variables. Notably, after controlling for

average size, only a relatively small indirect effect of wood properties on stem increment

and water use remained that was mediated by sap flux density, which was significantly

higher for species with lighter and hydraulically more efficient wood. We conclude that

wood hydraulic traits are mechanistically linked to water use and productivity via their

influence on sap flow, but large parts of these commonly observed positive relationships

can be attributed to confounding size effects.

Keywords: functional traits, growth rate, hydraulic efficiency, net primary production, sap flux density, structural

equation modeling, wood anatomy

INTRODUCTION

Water availability is probably the single most important determinant of tree size and productivity
on a global scale (Moles et al., 2009; Šímová et al., 2019). Evolving an efficient vascular system
designed for long-distance water transport allows trees to place their carbon assimilating foliage
high above the ground (Sperry, 2003), thereby gaining a competitive advantage over shorter
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neighbors in the competition for light. The absence of frost
and extended dry periods in tropical rainforest climates with
their usually ample water supply has spurred the race to reach
advantageous canopy positions. The reduced selection for a “safe”
xylem in perennially wet climates allowed for the development
of highly conductive vascular systems (Maherali et al., 2004;
Mencuccini et al., 2015; Sanchez-Martinez et al., 2020). To enable
a sufficiently high water supply to the canopy, the stem wood
of tall and productive tropical trees is commonly composed of
wide xylem vessels that facilitate the necessary high flow rates
(Poorter et al., 2010; Schuldt et al., 2013; Kotowska et al., 2015;
Hietz et al., 2016). Nonetheless, trees cannot escape the inevitable
link between carbon assimilation and transpirative water loss
(Brodribb et al., 2002; Santiago et al., 2004; Brodribb, 2009).
Water supply needs to be secured over the entire length of the
flow path, which ultimately limits the height growth potential
(Koch et al., 2004; Liu et al., 2019). Although the coordination of
productivity and hydraulic functioning has long been recognized,
the underlying causal links often remain unresolved and the
precise role of xylem vascular anatomy for the efficiency of the
water transport system, tree water use and stem growth rate is
hard to quantify (Hoeber et al., 2014). Nevertheless, the approach
to use easy-to-measure plant functional traits for characterizing
the hydraulic architecture of tropical trees and for understanding
the coexistence and performance of tree species in communities
is increasingly popular (Poorter et al., 2018; McDowell et al.,
2019).

In ecosystems with ample soil water supply and low
atmospheric evaporative demand, the capacity to transport water
efficiently to the canopy is most likely a key factor limiting gas
exchange and carbon assimilation. Consequently, physiological
traits related to soil water access and water transport correlate
positively with biomass increment (Tyree, 2003; Hajek et al.,
2014; Smith and Sperry, 2014; Kotowska et al., 2015). Next
to wood properties that determine hydraulic efficiency, wood
density (WD) is another widely used property that might be
indicative of the growth performance of trees (King et al., 2006;
Chave et al., 2009; Poorter et al., 2010; Hoeber et al., 2014) and of
water use dynamics (Bucci et al., 2004). Fast-growing pioneer tree
species tend to have lower wood densities than slower-growing
species from later successional stages, with consequences for
their wood anatomical structure, construction cost and water
transport properties (Apgaua et al., 2015; Eller et al., 2018).
However, in evergreen tropical rainforests, several studies found
wood density to vary largely independently of hydraulic traits
(Baraloto et al., 2010; McCulloh et al., 2010; Fan et al., 2012;
Schuldt et al., 2013; Kotowska et al., 2015; Grossiord et al., 2019),
putting into question the predictive value of wood density.

Wood density, vessel diameter and hydraulic conductivity are
traits increasingly used in dynamic vegetation models aiming
to predict plant productivity and population dynamics across
a broad range of environments (Powell et al., 2013, 2017;
Anderegg, 2015; Maréchaux et al., 2015; Rowland et al., 2015; Xu
et al., 2016; Griffin-Nolan et al., 2018). Yet, it is still a matter of
debate as to whether and to what extent hydraulic traits and wood
properties represent suitable proxies for characterizing carbon
and water fluxes in trees in the absence of water limitation (Zanne

et al., 2010; Fortunel et al., 2014). Studies that simultaneously
measured wood density, hydraulic anatomy, tree water use,
and aboveground biomass increment in species-rich tropical
rainforests are virtually absent, but are essential to achieve a
more mechanistic understanding of carbon assimilation and
growth in trees.

Based on a dataset of 99 tropical tree species from lowland and
pre-montane rainforests in Sumatra and Sulawesi (Indonesia),
we studied how species averages of central tree structural and
functional properties (tree height, stem diameter, wood density)
are associated with wood anatomical and derived hydraulic traits,
and how they interact to affect average sap flux density, daily
water use and aboveground biomass increment. To illustrate
that pairwise bivariate correlations are not sufficient to capture
the complex relationships between these variables appropriately,
we first analyse a set of well-established relationships with
standardized major axis (SMA) regressions, and then contrast
the outcome to the results of a structural equation model (SEM)
based on a-priori hypotheses about causal relationships (cf.
Figure 1). Our main hypotheses were that (i) an efficient xylem
is a prerequisite for high area-based maximal sap flow rates,
(ii) tree species with a higher water use have a higher biomass
increment, and (iii) wood anatomical traits are more closely
related to productivity and water use than wood density.

A

B

FIGURE 1 | (A) Initial and (B) revised meta-model of the causal relations

amongst structural characteristics and hydraulic traits, water use, and

productivity. Correlative relationships are indicated by double-headed arrows,

while functional relationships are indicated by single-headed arrows.
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TABLE 1 | List of selected tree traits for the Sumatra and Sulawesi samples.

Variable Acr. Unit Sumatra Sulawesi Total

Mean ± SD nob nsp Mean ± SD nob nsp Mean±SD nob nsp

Diameter at breast height DBH cm 36.82 ± 19.77 151 84 29.22 ± 18.61 114 15 33.55 ± 19.61 265 99

Tree height H m 24.96 ± 9.02 151 84 25.20 ± 9.26 114 15 25.06 ± 9.10 265 99

Wood density WD g cm−3 0.54 ± 0.11 151 84 0.45 ± 0.10 113 15 0.50 ± 0.12 264 99

Aboveground biomass increment ABI kg yr−1 26.24 ± 22.68 119 71 50.37 ± 60.85 33 8 31.48 ± 35.86 152 79

Tree daily water use DWU kg d−1 30.90 ± 53.78 88 57 26.94 ± 45.13 90 15 28.90 ± 49.49 178 72

Average sap flux density Js g cm−2 d−1 9.17 ± 4.42 88 57 9.92 ± 5.93 90 15 9.55 ± 5.24 178 72

Hydraulically weighted vessel diameter Dh µm 181.4 ± 56.1 134 77 147.9 ± 64.7 102 15 166.9 ± 62.1 236 92

Vessel density VD n mm−² 7.75 ± 7.37 134 77 10.35 ± 7.25 104 15 8.89 ± 7.41 238 92

Potential specific conductivity Kp kg m−1 MPa−1 s−1 132.9 ± 181.2 134 77 76.8 ± 92.4 104 15 108.4 ± 151.4 238 92

Given are the acronyms used in the text, measurement units, averages ± standard deviations of the traits, observation counts (nob ), and species numbers (nsp ).

MATERIALS AND METHODS

Study Sites
This study investigates stem sap flux, wood anatomy
and aboveground biomass increment of 99 tropical tree
species from 37 families using measurements from 265 tree
individuals (Supplementary Table S1), combining data from
two long-term studies in plot networks on the Indonesian
islands Sumatra and Sulawesi comprising a total of 22 plots
(Supplementary Figure S1). Structural variables (wood density,
tree diameter, tree height) were recorded from every tree
individual, while wood anatomy was measured on 238, sap flux
density on 178, and biomass increment on 152 tree individuals,
respectively (see Table 1 for details). All individuals were mature
trees with DBH ≥ 10 cm. On Sumatra, sampled trees were
randomly chosen in equal proportions from dominant and
co-dominant trees grouped in three tree size classes: larger (DBH
> 50 cm), medium (50–25 cm) and smaller diameter (10–25 cm).
On Sulawesi, measurements were performed on 15 species from
dominant families chosen to represent slow-growing mid-story
species as well as fast-growing upper canopy species, both from
late stages of forest succession.

On the island of Sumatra, the field measurements were
conducted in 16 lowland rainforest sites in Jambi province
(01◦47′ - 02◦09′ S, 102◦34’ - 103◦20’ E; 80m a.s.l.), which
were mixed dipterocarp forests in a close-to-natural state but
subject to logging activities in the past, or secondary forests
comprising a mixture of regrown native species (see Drescher
et al., 2016). In the region, average annual temperature is 27.4
± 1.0◦C (data from 1991 to 2011; mean ± SD), and annual
precipitation is 2,235 ± 385mm. From June to September, the
occurrence of a somewhat drier season (<120mm monthly
precipitation) is possible. Soil types in the region are sandy or
clayey Acrisols (Allen et al., 2015). These study sites were part of
EFForTS, a large collaborative research project on the ecological
and socioeconomic consequences of rainforest transformation.
On the island of Sulawesi, we used data from six study plots
established in the frame of the STORMA project (see Hertel et al.,
2009; Moser et al., 2014), situated in largely undisturbed old-
growth rainforest at pre-montane elevation in the Pono Valley on

the western boundary of Lore Lindu National Park close to Palu,
Central Sulawesi province (01◦29.6′ S, 120◦03.4′ E; 1,050m a.s.l.).
The soils of this forest are Acrisols over metamorphic rocks. The
climate is wet all around the year, with mean annual precipitation
of 2,700mm and mean annual air temperature of 20.8◦C (Moser
et al., 2014).

Tree Morphological Characteristics
Tree height was measured with a Vertex III height meter
(Haglöf, Långsele, Sweden) and tree diameter was recorded with
diametric measuring tape at breast height (130 cm) or 10 cm
above obstacles such as buttress roots. Stem sapwood samples
with a diameter of 5.15mm and a length between 4 and 7 cmwere
taken of each tree with an increment corer (Haglöf, Långsele,
Sweden). Wood density (WD, g cm−3), defined as oven-dry
weight over wet volume, was calculated for each core. The fresh
volume of each sample was determined by Archimedes’ principle,
or by using the length and diameter of the core assuming a
cylindrical shape (Schüller et al., 2013). Subsequently, samples
were oven-dried for 48 h at 105◦C before determining their
dry weight.

Aboveground Biomass and Biomass
Increment
Aboveground biomass was calculated with the R package
BIOMASS (Réjou-Méchain et al., 2017) using the allometric
equation of Chave et al. (2014) for tropical wet forests: AGB =

0.0673 × (WD × DBH2 × H)0.976, where AGB is the estimated
aboveground biomass (kg), DBH the diameter at breast height
(cm), H total tree height (m), and WD stem wood density (g
cm−3). We measured diameter increment using dendrometer
tapes (UMS GmbH, München, Germany) or conducted repeated
measurements with measuring tapes at marked positions on
the stem. To estimate plant growth performance, we calculated
aboveground woody biomass increment (ABI; kg tree−1 yr−1)
as the difference in tree biomass estimates (based on allometric
regression models) over the measurement interval divided by
the length of the measurement interval in years. Stem radial
increment was monitored on trees equipped with dendrometers
every 3 months from 2012 to 2017 in Sumatra and from 2007
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to 2009 in Sulawesi, while a complete census of the remaining
trees was conducted at the end of the study period. Tree height
was measured only at the beginning of the study, as we expected
the measurement error to be larger than height growth in the
investigation period. The most extreme 2% of values recorded
for AGB increment were excluded from further analysis, as they
were most likely affected by measurement errors due to shifts in
measurement positions on the stem.

Wood Anatomical and Derived Hydraulic
Traits
For the xylem anatomical analysis, we used the outermost 4 cm of
the sapwood from the increment cores. In total, 134 samples from
Sumatra belonging to 80 species and 104 samples from Sulawesi
belonging to 15 species were analyzed. The samples were stored
in 70% ethanol and stained with safranin (1% in 50% ethanol,
Merck, Darmstadt, Germany) before sectioning. Subsequently,
10–20µm semi-thin cross-sections of the entire 4 cm sample
were cut with a sliding microtome (G.S.L.1, WSL, Birmensdorf,
Switzerland). Photographs of the sections were taken with a
stereo-microscope with an automatic stage equipped with a
digital camera (SteREOV20, Carl Zeiss MicroImaging GmbH,
Göttingen, Gemany) at 100x magnification. Image processing
was done with Adobe Photoshop CS6 (version 13.0.1, Adobe
Systems Incorporated, USA) and the particle analysis-function
of ImageJ v. 1.50e (Schneider et al., 2012). All vessels of a
section (mean ± SD: 64.22 ± 25.03 mm2) were analyzed,
yielding 100–500 measured vessels per sample. The hydraulically
weighted average vessel diameter (Dh, µm) was calculated from
the measured vessel diameters Di as Dh =

∑
D5
i /

∑
D4
i (Sperry

et al., 1994). The potential hydraulic conductivity (Kp, kg m−1

MPa−1 s−1) of a wood segment was calculated based on Hagen-
Poiseuille’s law as Kp = (π × ρ ×

∑
D4
i )/(128 η × Axylem), where

Di is the diameter of each single vessel i, η the water viscosity
(1.002×10−9 MPa s) and ρ the density of water (998.2 kg m−3),
both at 20◦C, and Axylem (m2) the analyzed sapwood area.

Sap Flux Measurements and Water Use
To derive daily tree water use rates, xylem sap flux density (Js,
g cm−2 d−1) was recorded with the thermal dissipation probe
(TPD; Granier, 1985) technique [see Horna et al. (2011), Röll
et al. (2019)]. Pairs of 20 mm long and 2 mm wide heating
probes were inserted in northern and southern orientation into
the sapwood at breast height (1.30m) or above buttress roots; the
upper probe was heated with a constant power of 0.2W, resulting
in a current of 120mA. Subsequently, sensors were covered
with reflective aluminum foil attached to isolative material and
covered by plastic foil to minimize temperature gradients caused
by radiation. The sensors were read by a CR1000 data logger
(Campbell Scientific Inc., Logan, USA) and connected using an
AM16/32 multiplexers, with data collected every 30 sec, averaged
and logged at 10min (Sumatra) or 30min intervals (Sulawesi).
Sap flux density was calculated according to the original empirical
calibration coefficients given by Granier (1985) as Js = 119
× K1.231, where K is a temperature constant determined as
K = (1T0 – 1T)/1T, where 1T0 is the maximum temperature
difference at zero flux night-time conditions, and1T is the actual

temperature difference between heated and reference probe.
Several recent studies pointed out that using the original equation
parameters given by Granier (1985) may result in a systematic
underestimation of real flow, and recommend species-specific
sensor calibration, which is hardly feasible in species-rich tropical
forest settings (Steppe et al., 2010; Fuchs et al., 2017). However,
a recent review of sap flow calibration studies concluded that
notwithstanding this systematic bias, TDP sensors can be used
when sap flow responses to environmental variables in relative
terms are the primary focus of the study (Flo et al., 2019).

On Sumatra, sap flux density was measured for a minimum
of 3 weeks on eight dominant and co-dominant tree individuals,
which account for themajor part of stand water use on each of the
16 plots, yielding 88 stems from 58 species in total. On Sulawesi,
measurements were performed on up to 14 stems of each species
on the six plots, which were continuously measured from July
2007 until April 2009, yielding 90 trees in total. We harmonized
sap flux density by calculating the average of 3 representative days
under similar evaporative demand were maximum values were
reached. Sunny conditions with a daily average vapor pressure
deficit (VPD) between 0.64 and 0.82 kPa (mean ± SD: 0.71 ±

0.09 kPa) were chosen to obtain consistent estimates of daily
mean sap flux density (Js, g cm−2 d−1) for day-time hours (6
am to 7 pm). We chose this range for reasons of comparability
because most trees had already reached their maximum flux at
a VPD of 0.7 kPa (Supplementary Figures S2, S3). For details
on microclimatic measurements in the respective study regions
(i.e., air temperature and relative air humidity), see Drescher et al.
(2016) for Sumatra and Horna et al. (2011) for Sulawesi.

To calculate daily water use per tree (DWU, kg d−1), Js
was multiplied with the corresponding sapwood area (As, cm2).
We used a subsample of 66 tree individuals belonging to
13 species covering a large range of tree height (9.5–81.0m)
and wood density values (0.340–0.682 g cm−3) for estimating
As with dye injection to determine the maximum depth of
hydraulically active xylem (e.g., Meinzer et al., 2001). During the
morning hours and before the onset of high transpiration rates,
a hole was drilled with an increment corer (Haglöf, Långsele,
Sweden) and a plastic tube filled with a 0.1% indigocarmin
dye solution attached to the stem and sealed with modeling
clay (Terostat IX, Henkel, Düsseldorf, Germany). The tube was
fixed to the stem in horizontal orientation but with a slight
inclination in order to avoid a pressure gradient that might
actively force the dye into the sapwood, and refilled if necessary.
In the afternoon, a second core was extracted 5 cm above
the first hole, and sapwood depth measured with a caliper.
The resulting measurements of sapwood depth were used to
establish a relationship between the conductive sapwood area
and diameter at breast height (P < 0.0001, r2 = 0.75), which
was used to predict the As of all trees equipped with sap flux
sensors according to As = 3.4794 × exp[0.7801 × exp(0.4689 ×
ln(DBH))] (Supplementary Figure S4).

Statistical Analyses
All statistical analyses were performed in R v. 3.6.1 (R Core
Team, 2019) in the framework of the tidyverse package
(Wickham et al., 2019).

Frontiers in Forests and Global Change | www.frontiersin.org 4 January 2021 | Volume 3 | Article 598759

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Kotowska et al. Water Use and Productivity of Tropical Trees

The relationship between Dh, WD and a series of growth-,
water use- and size-related traits as well as the relationship
between DWU and ABI were analyzed using standardized major
axis (SMA) regressions of species averages of those variables
using R package smatr v. 3.4-8 (Warton et al., 2012). As most
of the variables in the dataset were strongly right-skewed, all
traits except wood density were natural log-transformed prior
to analysis.

The presumed causal relationships between tree size and
various plant functional traits were analyzed with a structural
equation modeling (SEM) approach based on the R package
lavaan v. 0.6-3 (Rosseel, 2012). Following Grace et al. (2012),
we first developed a meta-model that reflected our a priori
theoretical expectations about the relationships between wood
density, wood anatomical traits and tree size, and the way these
variables affect biomass increment and sap flow (Figure 1A).
Initial data inspection suggested that the dataset was more
accurately characterized by separating between the (area-specific)
sap flux density and the (tree-specific) overall daily water use,
and replacing the causal link between wood density and wood
anatomical properties by a correlative relationship (Figure 1B).
We described “hydraulic efficiency” by a latent variable measured
through vessel diameter Dh, vessel density VD and potential
hydraulic conductivity Kp, and “tree size” by a latent variable
linked to tree height and diameter. Biomass increment, water use
and sap flux density were represented by the associated variables
ABI, DWU, and Js, respectively, resulting in the causal diagram
displayed in Supplementary Figure S5.

A summary of the structural variables used in the model
and wood density (average values of each trait and number
of replicates per species) is given in Supplementary Table S1.
Before model fitting, all variables except wood density were
natural log-transformed. Subsequently, all variables were
centered and scaled to aid convergence. As the number of
observations varied between species and the number of species
was unevenly distributed between Sumatra and Sulawesi
(Table 1), we decided to work with species-level averages of the
observed variables to circumvent problems related to the nested
data structure and to reduce the impact of missing data. The
dataset used for model fitting included species-level averages of
all available data of the 265 individuals from 99 species.

The model was fit with a robust estimator with Huber-White
standard errors to accommodate deviations from multivariate
normality, and using full information maximum likelihood to
account for pairwise missing data. We started by fitting the
model described in Supplementary Figure S5. Model adequacy
was then evaluated by the inspection of modification indices
(cf. Rosseel, 2012). Model fit was assessed by the scaled χ²-
value and its corresponding P-value, Root Mean Square Error
of Approximation (RMSEA) and Comparative Fit Index (CFI).
Subsequent inspection of modification indices suggested that
an important path was missing in the initial model based on
Supplementary Figure S5, as this model did not account for
the significant residual covariance between VD and Kp. After
allowing for a correlation between these variables, there was no
indication for missing paths and the model no longer showed
significant deviations from the observed data (model χ² =

15.39, df = 15, P = 0.442) and achieved a high goodness of fit
(CFI= 0.999, RMSEA= 0.016).

RESULTS

Unadjusted Relationships With Wood
Anatomy and Wood Density
Species averages of wood anatomical and size-related variables
were correlated with sap flux density, biomass increment,
and water use (Figure 2). Wood density (WD), on the other
hand, was only weakly associated with most other variables
in the dataset (Figure 2). This is reflected in the results of
the SMA regressions (Figure 3), which revealed a significant
positive scaling relationship between hydraulically-weighted
vessel diameter and biomass increment (ABI; r = 0.38, P <

0.001), daily water use (DWU; r = 0.56, P < 0.001), sap flux
density (Js; r = 0.38, P < 0.001), and tree height (H; r = 0.39,
P < 0.001), while their relationships to WD were insignificant
with the exception of sap flux density (r = −0.30, P = 0.011; cf.
Figure 3, Supplementary Table S2).

Relationship Between Biomass Increment
and Daily Water Use
ABI had a highly significant positive relationship with DWU (r
= 0.63, P < 0.001; cf. Figures 2, 4), with a scaling coefficient
of 1.271 (95% CI 1.028 – 1.572; cf. Supplementary Table S2).
However, our structural equation model indicated that the
strong correlation between the two variables was largely driven
by their shared positive relationship with Js and average tree
size (cf. Figures 2, 3). After accounting for the influence of
these variables, no significant residual correlation remained
between ABI and DWU (r = 0.145, z = 1.09, P = 0.28;
Table 2, Figure 5).

Determinants of Sap Flux Density and
Water Use
We found Js to be significantly higher for species with higher
hydraulic efficiency (standardized path coefficient 0.42, z = 3.21,
P = 0.001; Table 2, Figure 5), and lower for species with a lower
wood density (−0.22, z = −2.08, P = 0.038; Table 2, Figure 5).
While average tree size did not have a direct effect on Js, we
found an indirect size effect mediated by hydraulic efficiency
(0.43, z = 3.817, P < 0.001; Table 2, Figure 5), indicating that
larger tree species had higher sap flux rates because of their
significantly higher hydraulic efficiency. In either case, the low
fraction of 23.8% of explained variance in Js (Table 2, Figure 5)
shows that differences in tree size, WD and wood anatomical
variables only explained a small fraction of the interspecific
differences in Js.

In total, the model explained 91.9% of the variance in
DWU (Table 2, Figure 5). As expected, DWU increased highly
significantly with tree size (0.85, z = 12.64, P < 0.001; Table 2,
Figure 5) and Js (0.51, z = 9.943, P < 0.001; Table 2, Figure 5).
After accounting for the effects of these two factors, no significant
direct effect of hydraulic efficiency onDWU remained, indicating
that the positive association between DWU and wood anatomical
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FIGURE 2 | Pairwise Pearson correlation table (upper triangle), scatterplots (lower triangle), and density plots (diagonal panels) for the transformed variables used for

model fitting. Shown are the species means of the ln–transformed (with the exception of WD), scaled and centered structural characteristics and hydraulic traits for

n = 99 species, including trend lines from linear regression with 95% confidence intervals. Color and size indicate direction and strength of the correlation.

traits (cf. Figures 2, 3) was fully explained by their effect on Js.
However, there was a small but significant positive effect of WD
onDWU (0.09, z= 2.37, P= 0.018; Table 2, Figure 5) (i.e., given
the same values of Js and tree size, trees with harder wood had a
slightly higher water use).

Determinants of Plant Productivity
As anticipated, average tree size had a highly significant positive
effect on the rate of aboveground biomass accumulation (0.51, z
= 4.30, P < 0.001; Table 2, Figure 5). After accounting for this
size effect, there was no evidence for direct effects of hydraulic
efficiency and WD on ABI. However, species of a given average
size had a significantly higher ABI when they had higher sap flux
densities (0.31, z= 3.01, P= 0.003; Table 2, Figure 5), indicating
that the effect of both WD and wood hydraulic properties on
ABI was entirely mediated through their effect on Js. Together,
the predictor variables explained 49.1% of the variance in ABI
(Table 2, Figure 5).

DISCUSSION

Drivers of Productivity-Water
Use-Relationships
In line with our expectations, we found aboveground biomass
increment to be tightly positively associated with water use across
a wide range of tropical tree species in this sample of Southeast
Asian trees. We further show that differences in average tree
size and sap flux density are sufficient to fully explain the
relationship between aboveground biomass increment (ABI) and
daily water use (DWU): at a given average size, tree species that
can achieve higher sap flux rates use more water and grow faster.
In turn, sap flux density was confirmed to be significantly higher
in trees that possess lighter sapwood with a higher hydraulic
efficiency. This reaffirms the importance of an efficient vascular
system as a prerequisite for high productivity and water use (cf.
Tyree, 2003; Brodribb, 2009). Although these findings are merely
supportive of previously discussed concepts, to our knowledge
we are the first to demonstrate this interdependence in a
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FIGURE 3 | Results of standardized major axis regressions of species-level averages of biomass increment, daily water use, sap flux density, and tree height against

hydraulically weighted vessel diameter and wood density.

comprehensive observational dataset of both wood anatomical
and empirically determined hydraulic traits of tropical rainforest
species, and to combine it with growth measurements conducted
for the same species.

The single most important predictor for the biomass
production and water use of a tree species was its average size,
highlighting the repeatedly documented central role of large
trees for the productivity and water cycles of tropical forests
(cf. Slik et al., 2013; Stephenson et al., 2014; Bastin et al., 2015,

2018; Lutz et al., 2018). This is not surprising as both carbon
assimilation and transpiration directly depend on foliage area,
which scales with tree mass (cf. Enquist et al., 1999; West, 1999;
Brown et al., 2004). Furthermore, larger trees typically have access
to higher light intensities (Coble and Cavaleri, 2014), which is
a key variable for tropical tree growth (King et al., 2005; Rüger
et al., 2011, 2012), and are exposed to higher evaporative demand,
which enhances water use (Horna et al., 2011). In tropical forest
with high vapor pressure deficits at midday hours, trees thereby
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FIGURE 4 | Results of standardized major axis regressions of species-level averages of biomass increment vs. daily water use. Color: average sap flux density; size:

average tree height.

seem to rely on internal water storage to meet this high demand
during the course of a day (James et al., 2003; Meinzer et al.,
2003; Scholz et al., 2011), which is again size-dependent and
permits larger trees to have their maximum of photosynthetic
activity at later times (Meinzer et al., 2001). In consequence,
growth and water turnover are highly coordinated (Smith and
Sperry, 2014), as larger trees assimilate more carbon (Stephenson
et al., 2014) and use more water (Wullschleger et al., 1998;
Meinzer et al., 2005; Horna et al., 2011; Kunert et al., 2017; Link
et al., 2020). The strong size dependence of important aspects
of tree carbon and water relations has the potential to mask
or confound relationships between other variables in studies
focusing on functional traits. In correspondence, many recent
studies have highlighted the great importance of including plant
size as a covariate when studying relationships between tree
functional traits (e.g., Hietz et al., 2016; Gleason et al., 2018;
Lechthaler et al., 2019; Šímová et al., 2019). Indeed, we observed
a meaningful influence of average tree size on wood anatomical
properties related to hydraulic efficiency. These observations are
in agreement with other studies showing that larger tropical trees
possess wider vessels and higher potential conductivity, both at
the stem base and in distal twigs (Poorter et al., 2010; Zach
et al., 2010; Schuldt et al., 2013; Hietz et al., 2016). Tree height
in particular has been singled out as the putative main driver
of conduit dimensions (Coomes et al., 2007; Rosell et al., 2017;
Olson et al., 2018; Fajardo et al., 2020). Interestingly, average tree
size was virtually unrelated to sap flux density, indicating that the
exposition of taller tree species to higher light levels and vapor
pressure deficits (Horna et al., 2011; Schuldt et al., 2011) was fully
offset by these changes in hydraulic anatomy along the flow path.

Wood Anatomical Traits Outperform Wood
Density as Predictors of Plant Growth and
Water Use
In accordance with previous findings, our observations show
that growth and water use are more closely related to the
water transport capacity in the vascular system—mainly driven
by larger average vessel diameters—than to wood density
(Russo et al., 2010; Hoeber et al., 2014; Eller et al., 2018).
As hypothesized, we found a significant link between wood
anatomy and sap flux density on the species level. This effect was
sufficiently large to explain the association of growth and water
use with anatomical traits remaining after controlling for average
tree size, demonstrating that the frequently reported relationship
between productivity and wood properties is in fact caused by
the limiting effect of these anatomical features on plant hydraulic
conductance and water transport (cf. Brodribb, 2009). To our
knowledge, our study is the first to confirm this relationship
across a high number of broad-leaved tree species, although
wood anatomical properties may critically influence sap flow
calibration performance (Xie and Wan, 2018; Flo et al., 2019).

In principle, natural selection should favor the development
of higher hydraulic efficiency per sapwood area to save xylem
construction andmaintenance costs (McCulloh and Sperry, 2005;
Gleason et al., 2016). However, the advantage of large vessels
and an efficient vascular network likely trades off with the
vulnerability of conduits to embolize, which puts a practical limit
on vessel dimensions (Tyree et al., 1994; Wheeler et al., 2005;
Hajek et al., 2014). As trees in humid tropical forests are neither
constrained by freeze-thaw embolism nor prolonged periods of
soil desiccation, their maximum xylem hydraulic efficiency is
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TABLE 2 | Estimated coefficients for the final path model.

Term Standardized coefficient Unscaled coefficient z value P(>|z|)

Path coefficients Hydr.Eff. ∼ Size 0.425 0.423 3.817 <0.001***

Js ∼ WD −0.220 −0.220 −2.075 0.038*

∼ Size −0.149 −0.149 −0.933 0.351

∼ Hydr.Eff. 0.424 0.427 3.211 0.001**

DWU ∼ WD 0.087 0.089 2.369 0.018*

∼ Size 0.846 0.870 12.640 <0.001***

∼ Hydr.Eff. −0.054 −0.056 −1.408 0.159

∼ Js 0.509 0.523 9.943 <0.001***

ABI ∼ WD 0.158 0.166 1.545 0.122

∼ Size 0.506 0.534 4.298 <0.001***

∼ Hydr.Eff. 0.150 0.159 1.485 0.138

∼ Js 0.314 0.331 3.009 0.003**

Indicator variables Hydr.Eff. = ∼ Dh 0.988 1.000

= ∼ Kp 0.757 0.765 11.349 <0.001***

= ∼ VD 0.833 −0.842 −13.354 <0.001***

Size = ∼ DBH 0.999 1.000

= ∼ H 0.791 0.792 10.780 <0.001***

Residual covariances DWU ∼∼ ABI 0.145 0.032 1.092 0.275

Kp ∼∼ VD 0.833 0.300 5.009 <0.001***

Hydr.Eff. ∼∼ WD −0.258 −0.230 −2.557 0.011*

Size ∼∼ WD 0.173 0.171 1.793 0.073·

Variance parameters Dh 0.025 0.025 0.678 0.498

Kp 0.427 0.426 4.910 <0.001***

VD 0.305 0.305 4.765 <0.001***

DBH 0.003 0.002 0.074 0.941

H 0.374 0.371 6.815 <0.001***

Js 0.762 0.753 5.845 <0.001***

DWU 0.081 0.085 2.345 0.036*

ABI 0.509 0.559 6.178 <0.001***

Hydr.Eff. 0.819 0.801 6.744 <0.001***

Size 1.000 0.987 7.569 <0.001***

Given are the standardized and unscaled estimates for path coefficients and variance parameters with the corresponding z-statistics and P-values for the hypothesis that the estimated

coefficients are different from zero (note that one path coefficient for the coefficients of each latent variable is fixed to 1 by default to avoid identifiability issues). *P < 0.05, **P < 0.01,

***P < 0.001.

expected to be high (Schuldt et al., 2013; Gleason et al., 2016; Liu
et al., 2019).

A positive influence of vessel size (and thus larger potential
hydraulic conductivity) on growth rates has repeatedly been
demonstrated (Poorter et al., 2010; Hietz et al., 2016; Gleason
et al., 2018). Wood density, on the other hand, is known
to be associated with most structural and functional wood
properties (Chave et al., 2009). However, it ultimately constitutes
an emergent property of wood structure rather than an
unambiguous functional trait, with a large range of combinations
of wood anatomical features resulting in the same wood density
(Ziemińska et al., 2013, 2015). Thus, wood density is at least
partially decoupled from wood anatomical traits (Zanne et al.,
2010; Fan et al., 2012; Schuldt et al., 2013).

In tropical trees, harder wood tends to be associated with
lower growth rates (e.g., Muller-Landau, 2004; King et al., 2006;
Poorter et al., 2010; Rüger et al., 2012; Hoeber et al., 2014).
Our results indicate that this relationship is a consequence of
the negative relationship of wood density with both hydraulic
efficiency and sap flux density, while wood density had no direct
causal effect on ABI and only a minor effect on DWU. Due to
the much closer mechanistic link of wood anatomical traits to Js,
their larger effect size on Js compared to wood density (WD) is
not surprising. As WD does not have a direct mechanistic link
to water transport, the observed effect on Js most likely results
from a correlation with wood anatomical attributes that were
not covered by our latent variable for hydraulic efficiency [e.g.,
pit membrane characteristics (Choat et al., 2008; Jansen et al.,
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FIGURE 5 | Path diagram of the final model (model χ² = 15.39, df = 15, P = 0.442; CFI = 0.999, RMSEA = 0.016). Shown are causal relationships with scaled path

coefficients (one-sided arrows), residual correlations (two-sided dashed arrows), and explained variances *P < 0.05, **P < 0.01, and ***P < 0.001. Positive links are

displayed in blue, negative links in red and insignificant links in transparent color. Paths with coefficients fixed to one for computational reasons (Dh and DBH) are

displayed as dashed arrows. See Table 1 for abbreviations.

2009; Li et al., 2016)]. It is further notable that in agreement
with the null model of Francis et al. (2017), no direct WD
effects on biomass increment could be identified. The lack of
WD effects on productivity may be a consequence of assessing
it on a biomass increment basis, which implicitly accounts for
construction costs. It is worth noting that WD and hydraulic
efficiency together only explain a comparatively low fraction of
variance in sap flux density in our dataset (r²= 0.24, cf. Figure 5),
which puts a limit on the magnitude of their indirect effect on
biomass increment and water use. If, as our data suggest, a large
part of the correlation between biomass increment, water use
and wood properties results from their common dependence
on tree size, the question arises whether their importance for
parameterizing dynamic vegetation and earth system models
and for understanding responses to environmental change (e.g.,
Fisher et al., 2018; Griffin-Nolan et al., 2018; Olson et al., 2018;
Mencuccini et al., 2019) may be overstated.

Accounting for Confounding Size Effects in
Ecological Datasets
The present study illustrates that focusing on pairwise
relationships between plant traits without accounting for
the complex, multivariate nature of ecological datasets can

result in fundamentally different interpretations. Our approach
highlights that many commonly observed plant performance-
hydraulic trait relationships may be attributed to a confounding
effect of tree size (cf. Poorter et al., 2010; Fan et al., 2012; Hietz
et al., 2016; Gleason et al., 2018). The latter influences the
hydraulic efficiency of the vascular system through its effects
on a species’ wood anatomical properties, while simultaneously
being strongly associated with biomass increment and water use.
To be able to interpret functional plant trait relationships in the
context of plant performance, it is therefore necessary to account
for the effects of tree size, which has been reportedly neglected
in the past. A common strategy to avoid confounding size effects
is to compare species under “optimal” growth conditions and
at maturity, when species are more likely to express their full
trait potential (Poorter and Bongers, 2006; Pérez-Harguindeguy
et al., 2013). However, the definition of both “mature” trees and
“optimal” growth conditions across various ecosystems remains
disputable, especially since observed hydraulic adaptations
are inevitably interlinked with climate and the maximum
potential height a tree can reach (Liu et al., 2019; Medeiros et al.,
2019; Šímová et al., 2019). Given the intrinsic complexity of
ecological datasets, where tree size is only one of many potential
confounders, it may often be preferable to explicitly account
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for the network of relationships between variables. Adopting a
structural equation modeling approach did not only enable us to
account for the aforementioned size effects, but also permitted
to differentiate between direct and indirect effects, and to test
the hypothesis that our model as a whole is consistent with the
observed data.

CONCLUSIONS

Our study provides empirical evidence that the biomass
increment and water use of tropical trees are highly coordinated.
We show that for tree species of a given average size, differences
in stem increment and water use are explained by hydraulic
adjustments resulting from differences in wood structure. The
highly significant relationship between wood anatomy and
sap flux density and the significant effect of the latter on
growth provide evidence that the vascular water transport
system indeed can be considered as a “functional backbone
of terrestrial productivity” (Brodribb, 2009). However, their
explanatory power is dwarfed by the magnitude of size effects,
illustrating the importance of average tree size as a driver of forest
productivity. This highlights the need to account for confounding
size effects when interpreting species-level relationships between
size-related variables such as water use and biomass increment.
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