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Small domain estimation (SDE) research outside of the United States has been centered

in Canada and Europe—both in transnational organizations, such as the European

Union, and in the national statistics offices of individual countries. Support for SDE

research is driven by government policy-makers responsible for core national statistics

across domains. Examples include demographic information about provision of health

care or education (a social domain) or business data for a manufacturing sector

(economic domain). Small area estimation (SAE) research on forest statistics has

typically studied a subset of core environmental statistics for a limited geographic

domain. The statistical design and sampling intensity of national forest inventories

(NFIs) provide population estimates of acceptable precision at the national level and

sometimes for broad sub-national regions. But forest managers responsible for smaller

areas—states/provinces, districts, counties—are facing changing market conditions,

such as emerging forest carbon markets, and budgetary pressures that limit local forest

inventories. They need better estimates of conditions and trends for small sub-sets of a

national-scale domain than can be provided at acceptable levels of precision from NFIs.

Small area estimation research is how forest biometricians at the science-policy interface

build bridges to inform decisions by forest managers, landowners, and investors.

Keywords: estimating forest conditions for small areas, using national forest inventory data at small spatial scales,

remotely sensed imagery as auxilliary data for imputation, small area estimation research in Europe, driving forces

spurring small area estimation research

INTRODUCTION

Defining Small Domain Estimation and Small Area Estimation
A study domain is a major segment of some population for which separate statistics are needed.
A domain can be defined in many ways, including a demographic characteristic (e.g., an age
stratum or an ethnic group) or an economic characteristic (e.g., a category of manufacturers) or
a geographical area (e.g., a political jurisdiction, the range of a tree species, a hydrologic basin)
(Lavrakas, 2008).

According to Brackstone (1987), small domain estimation (SDE) began several centuries
ago—in the eleventh century in England and the seventeenth century in Canada. Those were
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based on data from complete enumerations of the population’s
members, commonly called censuses. But today, even what are
called mandatory censuses rarely obtain data from all members
of the population. Further the costs and administrative burdens
of complete enumerations are no longer affordable. Therefore,
surveys based on statistical sampling designs applied to a
population have largely replaced complete enumerations as data
collection tools, and statistical estimation procedures are used to
make inferences from the sample data about the characteristics of
the entire domain’s population. The sampling and statistical plan
for the survey normally specifies the level of detail and reliability
or precision required in the estimates sought from the sample
data. But despite well-constructed sampling and statistical plans
that carefully balance users’ information needs and available
funding, demands from data users continually arise for attribute
estimates for sub-populations in sub-domains that were not
envisioned in the original plans (U.S. Census Bureau, 2021).

A clear definition of SDE and SAE can be obtained by
melding points made by three authors. Lavrakas (2008, p. 675)
distinguished between large domains or areas and small domains
or area, saying, “A domain is considered ‘large’ or ‘major’ if the
domain sample is sufficiently large so that it can provide direct
estimates of the domain parameter, for example, the mean, with
adequate precision. A domain or area is regarded as “small”
if the domain-specific sample is not large enough to produce
an estimate with reliable precision. Areas or domains with
small samples are called small areas, small domains, local areas,
subdomains, or substates.”

Pfeffermann (2013, p. 41) acknowledged and clarified
definitional confusion, “The term ‘small area estimation’ is
somewhat confusing because it’s the size of the sample from the
area that causes estimation problems, not size of the area.”

Ghosh (2020, p. 2) said that what is important in defining
small area is, “. . . the ‘smallness’ of the targeted population
within an area that constitutes the basis for SAE.” He elaborated
further that, “A domain is regarded as ‘small’ if domain-specific
sample size is not large enough to produce estimates of desired
precision.” and “A domain (area) specific estimator is ‘direct’
if it is based only on the domain-specific sample data.” In
comparison, an indirect estimator is one that requires additional
data. The additional data may come from the same geographic
area though not part of the original domain-specific sample or
it may come from related geographic areas and/or time periods.
In all cases, the additional data are used, “. . . to increase the
“effective” sample size. This is usually done through the use of
models, mostly ‘explicit’, or at least ‘implicit’ that links the related
areas and/or time periods . . . ” to the original domain-specific
sample data to yield estimates of acceptable precision.

The raison d’etre for SDE/SAE is that the data in one domain
of information is too sparse to yield acceptable precision—
root mean square error (RMSE) or other error statistic—for a
desired estimate computed from the domain’s sample data. To
improve the precision/reduce the RMSE of the desired estimate,
small area methods “borrow strength” (Ghosh and Rao, 1994)
from auxiliary data, as the quotations from Ghosh (2020) in
the previous paragraph outlined. Direct estimators, using only
plots from within the domain of interest, may also incorporate

auxiliary data for improved precision. However, the sample
within that specific domainmay not be large enough for estimates
to be made sufficiently precise, even with the assistance of
auxiliary data. This review includes methods of SAE as defined
in the Introduction, as well as closely related direct methods that
improve estimates of forest conditions.

When the definitional aspects of U.S. Census Bureau (2021),
Lavrakas (2008), Pfeffermann (2013) and Ghosh (2020) are
melded—all rooted in prior work by Ghosh and Rao (1994),
Pfeffermann (2002) and Rao (2003)—definitional clarity emerges
on two points. First, “small area” in SAE is synonymous with
“small domain,” thus SAE and SDE are identical conceptually.
Although SDE is the still the proper statistical term, when
the domain is defined spatially, it’s become common to refer
to SDE as SAE. In the January 2019 issue of The Survey
Statistician—newsletter of the International Association of
Survey Statisticians—the editors said, “Small area estimation is
one of the most popular topics in survey statistics of the 21st
century.” (Krapavickaite and Rancourt, 2019, p. 3). Following the
custom of the International Association of Survey Statisticians,
the term SAE will be used instead of SDE in the remainder of
this paper. Second and more important definitionally, “area” and
“domain” are surrogates for the fact that the defined geospatial
area or subdomain has a dataset too small to yield credible direct
estimates. Thus, indirect estimators are required where data are
few or even non-existent.

Forest Sector Interest in SAE
In forestry today, the word “area” is commonly considered a
geospatial term that describes the space enclosed by a set of arcs
(lines or boundaries to a closed polygon, defined by a set of
vertices or coordinate points). The space inside the polygon—its
“area”—is measured in units such as acres or hectares.

Whether an area with forests is considered “large” or “small”
is typically a function of the jurisdiction of the public forester
or private forest manager, landowner, or investor. To a forest
manager or landowner responsible for hundreds to several
thousand acres, “small area” might mean a specific stand,
compartment, or management unit—a small subset of a property
composed of tens to a hundred stands or compartments. To
a state/provincial forester responsible for a million hectares
or several million acres of forests, “small area” might mean a
county, municipality, or group of counties and municipalities
within their state or province. The point is the total forest
area within a jurisdiction or ownership creates meaning and
context for those responsible for the jurisdiction or ownership
about what they consider a “large area” vs. a “small area.”
This not only means that different foresters have different
notions about relative sizes regarded as “small,” but their notions
differ conceptually and fundamentally from what a “small area”
means to a forest biometrician or statistician in the context
of SAE. Consequently, there are currently misconceptions and
misunderstandings within the forestry community over what
“small area” in SAE really means. One of the purposes of this
special issue of “Frontiers in Forests and Global Change” is to
clarify conceptions and improve understanding at the science-
policy interface between forest biometricians and statisticians
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on the one hand who have made much scientific progress the
past two decades in SAE, and on the other hand, foresters,
landowners, and investors who need reliable, credible estimates
of forest conditions and trends to make well-informed resource
management and policy decisions for lands within their purview.

In the forest sector, the domain/population for a national
forest inventory (NFI)1 is typically the entire country. While the
NFI sampling design and intensity may yield credible estimates2

at the national level, often the low spatial sampling intensities for
NFI purposes may yield datasets too sparse for making estimates
with acceptable precision at state/provincial, or smaller spatial
scales. Forest managers and policy makers most commonly turn
to digital aerial photography or data from other passive or
active sensors3 as the auxiliary datasets to “borrow strength”
(Ghosh and Rao, 1994) for improving the RMSEs of desired
NFI data attributes. Through imputation models, including
both parametric (e.g., multiple regression) and non-parametric
models (e.g., k-nearest neighbor), image pixels are assigned to
classes, such as species or cover types or stand heights, or given
values, such as growing stock volume or biomass volume. Then,
after geospatial boundary files are defined for the small area, the
imputed pixel values are summarized using some algorithm to
make an SAE with acceptable RMSE.

Organizers of an SAE-focused technical session at the
2019 Forest Inventory and Analysis (FIA) Stakeholders Science
meeting4 invited the author to present a review of recent

SAE research pertaining to forests by researchers outside the

United States to provide context—both historic and current—for
SAE presentations by U.S. researchers using NFI data from the
FIA program. The invitation set the sideboards and shaped the
survey design for this systematic review of SAE research.

1National forest inventory means an inventory of all the forests in a nation, not an

inventory of just federally owned forests.
2The Forest Inventory and Analysis (FIA) program—the U.S.A.’s NFI—is based on

a three-phase sampling design, the second phase of which is an array of roughly

127,000 hexagons, each 6,000 acres in size with one permanent plot. Precision

standards for phase 2 population estimates are plus/minus 3% per million acres

of Timberland and plus/minus 5% per billion cubic feet of growing-stock volume

in the Eastern United States. See Bechtold and Patterson (2005) for more details.
3Passive sensors measure natural radiation (e.g., reflected sunlight) while active

sensors use their own energy source to emit radiation and record what’s reflected

to the sensor. The term “imagery” usually refers to data collected only by passive

sensors, often called optical sensors because they “see” reflected sunlight across

visible spectral bands or re-emitted sunlight energy across near infrared, thermal

infrared, and/or short-wave infrared bands. An example is the Thematic Mapper

(TM) sensor on LANDSAT that collects data across seven spectral bands. Passive

sensor data are often characterized on two principal ways—by spectral resolution

(the number of bands of reflected/reemitted radiation recorded) or by spatial

resolution of the recorded information [hundreds of meters (e.g., MODIS and

AVHRR), tens of meters (e.g., TM or Sentinel), or meters (e.g., IKONOS)]. In

contrast, data collected by active sensors, such as LiDAR or synthetic aperture

radar, is not usually referred to as “imagery.” Active sensor resolution is usually

characterized as a function of the radiation emitter. Some sensors are satellite-

borne, like GEDI on the International Space Station, TM on LANDSAT orMODIS

on the EOS-AM and EOS-PM satellites. Other sensors are carried by piloted

aircraft or unmanned aerial vehicles (UAVs) or terrestrial-based. See Gutman

(2010) or Canadian Centre for Remote Sensing (CCRS) (2019). See https://www.

gedi.umd.edu/mission/mission-overview for details.
4Held November 19–21, 2019, in Knoxville, Tennessee, USA.

METHODS

Defining the Survey Criteria
Recent
Small area estimation research accelerated in the mid-1990s.
There was an upsurge across many disciplines from basic
statistics to diverse applied statistics disciplines. Starting in 2000,
articles about developing SAE from NFI data began appearing in
the forestry and remote sensing literature. This review assumed
that papers published in the first decade of this century are
already well-known. Thus, 2010 was the threshold chosen for
defining “recent.” However, information is included from the
previous decade (2000–2009) to provide context for the more
recent decade.

Pertaining to Forests
Many articles have been published about SAE research across
many different disciplines. They range from pure statistical
theory to applied statistical research. Regarding applied research,
results of case studies span all domains, from social (e.g., health
care, education) and economic (e.g., poverty, marketing) to
ecological (e.g., farm crop production, meteorology, and forests).
Again, this paper ignores all the excellent work in other domains
and sub-domains to focus tightly on applied statistical research
related to making estimates of forest conditions from small
geographic areas.

Outside the United States
Early SAE research was accomplished within the pure statistics
community by statisticians outside the United States. Leading
statisticians who summarized the state-of-science at various
times were from Canada [J.N.K. Rao (Ghosh and Rao, 1994;
Rao, 2003; Rao and Molina, 2015)], the United Kingdom [Danny
Pfeffermann (Pfeffermann, 2002, 2013), Ayoub Saei and Ray
Chambers (Saei and Chambers, 2003)], and Australia [Azizur
Rahman (Rahman, 2008)]. Although their reviews included
citations of work by statisticians in the United States, many—if
not most—of the articles they reviewed were from researchers in
Europe, India, and elsewhere.

A challenge to focusing on SAE research results from
individuals and teams from outside the United States is
that Ronald McRoberts,5 was deeply involved with colleagues
from other countries in seminal SAE research pertaining
to forests. The early international collaboration emerged
from his activities within the International Union of Forest
Research Organizations (IUFRO). Beginning in the late 1990s,
McRoberts published many SAE articles with international
coauthors. Therefore, it is impossible to tease apart completely
the international SAE research progress pertaining to forests
from domestic SAE research progress because so much of
the early progress here and abroad was led or influenced
by McRoberts.

With these three survey design criteria in place, the rest
of the paper presents an overview of applied research since

5Adjunct Professor, Department of Forest Resources, University of Minnesota,

and Principal, Raspberry Ridge Analytics LLC. Formerly, USDA Forest Service,

Northern Research Station FIA program until June 2019.
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2010 about connecting national- and regional-scale forest
inventories to smaller geographic areas from researchers outside
the United States.

Designing the Review Survey
There is little evidence that auxiliary data other than spatial
information from passive or active sensors have been used
in any of the forestry disciplines in the United States. For
example, census data haven’t been used to improve SAEs
for woodland owners’ characteristics or attributes. Nor have
economic data from the Commerce Department’s Bureau
of Economic Analysis been used to improve SAEs for
forests. Therefore, the search for international SAE activities
will focus mainly on applications using remotely sensed
data as auxiliary data, and secondarily on socio-economic
census data.

The fact that remotely sensed spatial data have been the
prime source of auxiliary data guided the design of the search
for international examples down three pathways. First, a broad-
based search for SAE research and applications by scientists
from other countries was conducted using Google Scholar
and ResearchGate. Two mandatory search terms were used
(“small area estim” and “forest”) to identify journals that
had the large numbers of SAE articles related to forestry.
Second, detailed searches of the archives of the leading journals
publications were conducted. Third, additional searches were
conducted, based on literature cited in articles from the leading
journals, and international authors who had published in the
leading journals and may have published in journals less-
frequently identified in the initial searches. Finally, based
on these results, personal contacts were made with the
leading experts working in NFIs in Europe and Canada to
understand their current research programs underway and
recent progress that perhaps had not yet been published.
The experts were identified through the author’s IUFRO
network connections.

RESULTS

Google Scholar and ResearchGate Search
Engines
These two search engines take different approaches to identifying
relevant content. Google Scholar is a web crawler that provides
citations of articles that have the named search terms in their
titles, abstracts, and keywords. But for full-text articles, the
user must go to the publication’s website. ResearchGate is a
membership application whose members can upload citations
and full-text articles that are then available to other members for
downloading. Guldin (2018) contrasted these two applications
and the relative difficulties they provide to practicing foresters
searching for scientific information to use in their daily work.
ResearchGate provides greater likelihood for free access to full-
text articles.

Analysis of the initial search results showed that two journals
dominated the forest-related applied SAE niche: Remote Sensing

TABLE 1 | Authors and co-authors of articles on small area estimation published

in Remote Sensing of Environment since 2000.

Author/Co-author Number of Publications

2010–2021 2000–2009

McRoberts (USA) 8 5

Tomppo (Finland) 3 6

Magnussen (Canada) 2 2

Astrup (Norway) 3 0

Breidenbach (Norway) 3 0

Finley (USA) 2 1

Katila (Finland) 0 3

Chirici (Italy) 2 0

Næsset (Norway) 2 0

Rahlf (Norway) 2 0

Ståhl (Sweden) 1 1

Stehman (USA) 0 2

Waser (Switzerland) 2 0

Authors Mentioned Once 28 13

Total authors/Co-authors 57 33

of Environment6 andRemote Sensing.7 Therefore, the review dove
deeply into their article archives.

Remote Sensing of Environment
Leading Authors
The query of this journal’s database yielded 12 articles from 2010
to May 2021 that had a total of 57 coauthors and an additional
13 articles from 2000 to 2009 that had 335 coauthors. Several
researchers were authors or coauthors on multiple publications,
Table 1.

Looking at all 25 articles since 2000, McRoberts was an author
or coauthor on half of them (sole author on 5, lead author on
2, and coauthor on 6). Leading authors from other countries on
three or more articles included Erkki Tomppo (Finland, 9), Steen
Magnussen (Canada, 4), Rasmus Astrup (Norway 3), Johannes
Breidenbach (Norway, 3), Andrew Finley (USA 3), and Matti
Katila (Finland 3).

The data illustrate that although the number of publications
in the two time periods were roughly equivalent (12 from 2000 to
2009 vs. 13 from 2010 to 2021), manymore researchers have been
involved as coauthors in the latter period. This highlights the
recent growth in interest and a broadening of the talent studying
this issue.

From a networking perspective, Tomppo andMcRoberts were
central figures. Tomppo’s work began earlier, and his seminal
contributions were recognized with the Marcus Wallenberg
Prize in 1997.8 Tomppo and McRoberts coauthored six articles

6Published by Elsevier (https://www.journals.elsevier.com/remote-sensing-of-

environment).
7Published by MDPI (https://www.mdpi.com/journal/remotesensing).
8His citation read, in part: “. . . his unique method of integrating available

information sources into one system that is reliable and also allows accurate estimates
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together (2007, twice in 2009, 2011, and twice in 2016).
McRoberts coauthored two articles with Magnussen, two with
Gherardo Chirici, and single articles with Breidenbach, Astrup,
and Finley. Beyond publishing with McRoberts, Tomppo
published three times in this journal with Katila, twice in this
journal with Magnussen, Chirici, and Waser, and once with 12
others (all but one from Europe).

Leading Topics
The primary foci of these articles were to combine NFI
field plot data with remotely sensed data from satellite-
borne sensors [e.g., LANDSAT’s Thematic Mapper (TM)] and
aircraft-borne passive sensors (both panchromatic and infrared
digital cameras) or active sensors (e.g., LiDAR). Through non-
parametric (primarily) or parametric (secondarily) methods,
detailed forest attributes in the field plot data were imputed
to pixels in the remotely sensed data. Then the imputed pixel
attributes were aggregated to estimate forest conditions (e.g., tree
cover area, forest type) for small areas with too few field plots to
make estimates with acceptable RMSEs without the sensor-based
imputed information. Satellite-borne sensor data were used in 10
of the papers; aerial photography and LiDAR once each.

The k-Nearest-Neighbor (k-NN) algorithm was used in 6 of
the 24 papers. The k-NN approach is based on similarity in the
space of the selected auxiliary variables to impute a value to a
pixel when a value is missing. The plot observations and the
image pixels’ spectral values for the field inventory plots are the
“training data set.” An image pixel that isn’t associated with a field
inventory plot is assigned a value based on how closely its pixel
spectrum resembles the spectrum of pixels in the training data
set for plot locations in in the space of the auxiliary variables.
In summary, every pixel in an image with missing values—
pixels not associated with known forest inventory plots—can be
assigned a value by finding its closest neighbors whose spectra
closely resemble it and imputing a weighted mean of its nearest
neighbors to it. Most of the early publications about k-NN were
from the 2006–2010 era. Tomppo, McRoberts and/or Magnussen
were the lead author or coauthors in all six papers. The most
recent paper in the journal on k-NNwas a review paper by Chirici
et al. (2016).

A key factor in using the k-NN approach is the geospatial
accuracy of the field plot centers/perimeter coordinates vis a vis
the geospatial coordinates recorded by the sensor. This aspect was
examined in several papers.

The variables whose values were most frequently imputed
were the volumes of timber or growing stock and the area
and types of forest cover. Estimating changes in cover—types
of changes, their rates, and intensities—were discussed in
two articles.

For 2010 to 2019, satellite or aerial photography were the
auxiliary data used in eight of the 13 papers to study various forest

for smaller areas than the traditional field inventories. Tomppo’s system considerably

enhances the total information value of data sources used and also allows for

ecological data to be effectively assessed. In the context of national forest assessment,

it is now possible to obtain inventory data at the community and owner levels as well

– which has previously not been possible without extensive field work.” (http://www.

metla.fi/tiedotteet/1997/wallenberg-eng.htm).

attributes, including timber volume estimates (twice), tree cover
(twice) and land use change. The precision of various models and
estimators was examined in eight of the papers.

Remote Sensing
The second leading journal was the open-access MDPI journal
Remote Sensing. This journal began publication in 2009. It
classifies articles and special issues by broad sections, one
of which is “Forest Remote Sensing.” In that section, 389
articles have been published since 2009, including articles in
37 special issues related to the section (https://www.mdpi.com/
journal/remotesensing/sections/Forest_Remote_Sensing). Sixty-
two of the articles in the category Forest Remote Sensing have
“forest inventory” as a key word. Only one mentioned small
area/domain estimation.

Latifi and Heurich (2019) edited a special issue of 10 papers
titled, “Remote Sensing Based Forest Inventories from Landscape
to Global Scale.” Two of the papers discussed SAE-related
questions. Durante et al. (2019) focused on a 2.8-million-acre
region in southwestern Spain, combining Spanish NFI field
plot data, high-precision airborne laser scans (ALS), and bio-
geophysical spectral variables from MODIS.9 Novo-Fernández
et al. (2019) described estimation procedures that combined
Spanish NFI data and ALS data to predict growing stock volume
for three major commercial tree species growing in northwestern
Spain. Details for both these papers are discussed further in
the section on Spain’s NFI, below. Hill et al. (2018) reported a
case study from northwestern Germany, discussed further in the
section on Germany’s NFI, below.

Other papers having “forest inventory” as a key word had
limited relevance to the SAE issue. In general, the articles tested
ways of using NFI data to improve estimates from airborne or
terrestrial LiDAR point clouds and data from various passive
sensors. In many cases, the NFI field plot data were used to
either demonstrate the utility of new sensors or sensor-platforms
(e.g., small UAVs aka “drones”) or to improve various types of
estimates made from the remotely sensed data. Some estimates
were classification calls, such as forest cover type or forest vs.
non-forest. Other estimates focused on stand characteristics, such
as growing stock volume or above-ground biomass volume, or
stand indices, such as leaf-area-index or normalized difference
vegetation index. Some articles focused on individual tree
characteristics, such as tree species identification. The aim of
improving classification algorithms or stand estimates based on
NFI data was to make estimates and inferences with acceptable
RMSEs for larger geographic areas—regions or countries—from
wall-to-wall remotely sensed data or to create geospatial data
layers or map products. But in general, the novelty of the research
reported either arose from applying a technique developed
elsewhere to a new landscape or from showing howNFI field data
could be used to calibrate remotely sensed data and save time
and resources in developing larger spatial scale products—the
opposite of the SAE issue for which this paper was invited.

9Moderate Resolution Imaging Spectroradiometer sensor aboard the Terra and

Aqua satellites. https://modis.gsfc.nasa.gov/about/.
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Google Scholar Citations Since 2010
The first 200 “hits” returned by Google Scholar to the search
terms “small area estim” and “forest” identified 21 articles
published since 2010 within the scope of this review that were
not published in either Remote Sensing of Environment or Remote
Sensing. The Canadian Journal of Forest Research had one-third
of them, the Scandinavian Journal of Forest Research and Forest
Ecology andManagement together had another third, and the last
third were spread across six other journals.

The expanding impact of Nordic researchers in SAE is
evident in the articles published in both the Scandinavian
Journal of Forest Research and Canadian Journal of Forest
Research. The former isn’t surprising. The latter illustrates
increased collaboration among Steen Magnussen (Canada)
and researchers in Norway and Denmark. Magnussen et al.
(2014) and Magnussen and Nord-Larsen (2020) illustrate the
international collaboration on SAE that currently exists, with the
lead author being from Canada and coauthors from Norway,
Switzerland, and Denmark. The former article introduced five
facets that can improve inference in SAE: (1) model groups; (2)
test of area effects; (3) conditional EBLUPs,10 (4) model selection;
and (5) model averaging. Two contrasting case studies with data
from the Swiss and Norwegian NFIs were used to demonstrate
the five facets. The latter article used data from the Danish
forest inventory to demonstrate how spatial model strata for
post-stratification (e.g., for SAE) can be identified from design-
based model-assisted inference with either lasso or finite mixture
modeling methods.

Other articles published the past 3 years that illustrate the
Nordic and Canadian collaboration include Rahlf et al. (2021),
Strîmbu et al. (2021), Breidenbach et al. (2020), Astrup et al.
(2019), and Haakana et al. (2019a,b). Rahlf et al. (2021) found
that maps based on NFI data augmented by ALS data can be used
in lieu of maps developed from forest management inventory
(FMI) data to estimate timber volumes inmature spruce stands—
potentially saving the cost of doing an FMI. Strîmbu et al.
(2021) dealt with the issue of inconsistency that arises when one
attempts to aggregate parameter estimates for SAEs to a larger
domain and the sum differs from the directly estimated domain
parameter. Breidenbach et al. (2020) used Sentinel-211 mosaics
along with NFI data to model and map Norwegian conifer
types. The models were then used to create species-specific range
maps for smaller geographic areas, such as municipalities. Astrup
et al. (2019) described how photogrammetric point cloud data
were combined with NFI point cloud data to produce a 16 ×

16m raster map with selected modeled attributes that could
be used in FMIs. The two articles by Haakana et al. (2019a,b)
focused on using post-stratification as an alternative way to use
auxiliary information to estimate parameters for municipalities
from Finland’s NFI data.

10EBLUP is an acronym for Empirical Best Linear Unbiased Predictor.
11Sentinel-2 is a European Space Agency mission of two polar-orbiting satellites

monitoring variability in land surface conditions. Their wide swath width (290 km)

and high revisit time supports monitoring of Earth’s surface changes. https://

sentinel.esa.int/web/sentinel/missions/sentinel-2.

ResearchGate Citations Since 2010
The first 50 citations returned during a search (“small area
estima” and “forest”) had 20 articles since 2010 and 6 from 2000
to 2009 that matched the sideboards of this review. Seventeen of
the articles had been previously identified in searches of Remote
Sensing of Environment, Remote Sensing, Scandinavian Journal of
Forest Research and Canadian Journal of Forest Research. Of the
other 24 articles outside the sideboards of this review, 18 dealt
with research on North American forests and 6 with research
about forests in Asia and Oceana.

Two articles providing overviews were found in the
ResearchGate search; Kangas et al. (2018) and Jiang and Rao
(2020). Kangas and her 10 coauthors reviewed the state of
science in Nordic country NFIs and how remotely sensed
data are being used to augment NFI and FMI data and
reduce uncertainties in parameter estimates—nationally and sub-
nationally. More importantly, the article also lays out a roadmap
for future research and development work and proposes a
common research program for the Nordic countries focused
on six identified problem areas. Although not focused on
forest inventories, the overview of SAE methods by Jiang and
Rao (2020) is a good current synopsis of the current state
of statistical research. It is a good entry point for readers
desiring an organizing framework for the many different
SAE methods.

DISCUSSION

Online searches using Google Scholar and ResearchGate for
recent research pertaining to SAE of forest conditions in
countries outside the United States shed some additional light
on the state of science. There was a notable lag, often several
years, between journal publication and when the search engines
reported it. Besides Remote Sensing of Environment or Remote
Sensing, three other journals have published a growing number
of articles on SAE, notably the Canadian and Scandinavian
Journals of Forest Research and Forest Ecology and Management
(e.g., McRoberts, 2012; McRoberts et al., 2017). This suggests
that researchers desiring to follow SAE advances should focus
first on those five journals, before relying on broader search
engines to find new international research on SAE pertaining
to forests.

The emergence of journal policies to publish accepted journal
on-line prior to articles appearing in printed volumes often
results in two different years for citations. For example, Haakana
et al. (2019b) was published on-line on 10 December 2019 but
didn’t appear in print until the April 2020 issue. The citations
in this article use the on-line publication date rather than the
in-print date.

Status of Small Area Estimation in National
Forest Inventories: Global Overview
Barrett et al. (2016) summarized the operational use of remotely
sensed data in NFIs, based on the responses of 45 countries’
experts (representing 65% of global forest area) to a questionnaire
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circulated as part of the COST Action FP1001.12 They found
that remotely sensed data—from many different sensors—were
widely used to enhance estimates for many parameters but called
for further research on ways to improve uncertainty estimation
by better integrating remotely sensed data and field data.

Thirteen countries used spatial datasets (e.g., digital elevation
models, soils, and geology maps, ownership data) from other
sources beyond the NFI program to enhance forest map data
layers that were constructed from satellite-borne sensors and
field data. The most common map layers produced were land
cover/land use, forest cover type, and species group maps.

Where insufficient field data were available, nine countries
reported that imputation models were used to integrate other
spatial datasets and available field data to predict ground
attributes (from which maps can be created) and calculate
local estimates. Many different prediction techniques were
used. Eight countries used supervised parametric techniques
(maximum likelihood, discriminant analysis, and linear, non-
linear, and logistic regression). Seven countries used non-
parametric methods (k-NN) and unsupervised approaches
(neural networks, isodata, or k-means). But only 12 countries
attempted to estimate uncertainty for map attributes they
estimated or imputed, and only nine countries attempted to
include uncertainty estimates for area statistics associated with
forest area vs. non-forest area maps.

From the articles reviewed that were published in the last 5
years (2016 to 2021), it’s apparent that the focus of forest-related
SAE research outside the USA is shifting. Three major threads
have emerged:

1. Using model-based approaches and NFI data to make

estimates at smaller spatial scales—provinces, forest

management units, municipalities. The focus is on
demonstrating that existing well-funded and well-designed
NFIs can supplant less-well funded FMIs for many
regional/local purposes. While stand-level inventories
still have their place in planning management activities,
the NFI-based SAEs show promise in helping offset lack
of support and funding for FMIs. In some cases, NFI-
based models are being used to sort out priorities for
stand/compartment exams.

2. Increased focus on methods for reducing uncertainties of

estimates and improving precision of estimates. Several
articles described using simulation approaches, based on
NFI data, to explore alternative estimation procedures that
reduce uncertainties/improve precision. Creating simulations
is faster and less expensive than gathering plot data to test
alternative SAE approaches.

3. Estimating above ground biomass (AGB) volume has

become a prominent parameter of interest for SAEs,

eclipsing interest in estimating timber volumes. Recently
adopted global policies, such as greenhouse gas reporting
and REDD+, have driven this shift. Public and governmental

12COST is a European framework for improving Cooperation in Science and

Technology. COST action FP1001 focused on improving information about

potential supplies of wood.

interest in understanding better the roles of forests in
sequestering carbon and tracking forest carbon stocks and
fluxes at the sub-national level have also played a role.
Changes in the objectives of grant programs have been used
to shift the focus of SAE research.

Switzerland’s National Forest Inventory:
Overview of SAE Research Since 2010
Recent work done in Switzerland’s NFI programwas summarized
by Pulkkinen and Zell (2019).

Background
The Swiss foundation on sampling theory for forest inventory
rests upon the design-based Monte-Carlo approach, where
sampling is carried out for an infinite population of the points
within a region of interest (see Chapters 4 and 5 in Mandallaz,
2008). Target parameters are spatial means computed as tree-
population totals (sums of tree characteristics over all the trees
within the region) divided by the area of the region. The spatial
means are equal to the expectations of the local densities of the
target variables over the uniform distribution of points within
the region. The local density of a target variable is defined at each
point of the region as the ratio of theHorvitz-Thompson estimate
of the tree population total of the variable, based on a probability
sample of trees taken at the point, to the area of the region.

In the population of the points within the region, a two-
phase sampling approach is typically used. First, many uniformly
randomly located sample points are drawn independently of
each other and auxiliary information is collected at these points.
Second, a simple random sample from the first-phase points is
used to locate field plots where data are collected on the target
variables (i.e., their local densities). In a three-phase sampling
approach, there are two nested phases for collecting auxiliary
information before field plots are identified. In practice, points
are located at the intersections of systematic grids whose starting
point and orientation of the largest grid being considered are
chosen randomly. Therefore, the variance estimators derived
from the assumption of uniform random locations can be
considered generally conservative. The Swiss NFI follows this
design-based Monte Carlo paradigm with its two-phase simple
random sampling for post-stratification estimation, where the
auxiliary information is used to do the post-stratification.

The Swiss NFI is now in its fifth cycle. The methodology of
the fourth cycle (2009–2017) was detailed by Fischer and Traub
(2019). The 5th cycle continues the continuous mode adopted
for the fourth cycle by systematically measuring 1/9th of the field
plots over the whole country each year. The field plots are located
on a 1.41 × 1.41 km grid, whereas the auxiliary information,
mostly based in digital aerial images, is currently available on a
100× 100 m super-grid.

For small-area estimation, the design-based model-assisted
approach is used. Design-based inference relies on probability
samples for validity and its estimators of population parameters
are generally unbiased. Design-based inference relies on three
assumptions: a probability sample incorporating some form
of randomization is used; each population unit has one and
only one possible value; and selection of population units into
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the sample is based on positive and known probabilities of
selection (McRoberts et al., 2019). Brewer (2013) equated design-
based with randomization-based inference, and contrasted it
to model-based inference, which he equated with prediction-
based inference.

Model-assisted means that a model is used to support
estimation following probability sampling (Ståhl et al., 2016).
A prominent example of model-assisted survey sampling in a
forest inventory context was highlighted by Gregoire et al. (2016),
who described how the point cloud of airborne LiDAR height
measurements can be linked by statistical regression to estimates
of forest biomass from a ground sample of forested plots whose
trees have their heights measured and above-ground biomass
volumes computed from equations. Pulkkinen and Zell (2019)
reported that end-users and stakeholders in the Swiss NFI prefer
the design-based, model-assisted approach, albeit using digital
aerial photography rather than airborne LiDAR, over a model-
based/model-dependent approach.

Development of New Design-Based Model-Assisted

Small Area Estimators
At ETH Zurich, Mandallaz and his students have developed
new design-basedmodel-assisted estimators that involve: (i) non-
exhaustive auxiliary data (auxiliary data not available wall-to-wall
but coming from a sample); and (ii) external models of any type
(models constructed in the data that are entirely independent of
the current field plot data of the small area) or internal linear
models (linear models fitted to the data containing the current
field plot data of the small-area). The estimators consist of the
means of the: (i) model predictions over the auxiliary data points
(null/first-phase sample); and (ii) model residuals over the field
plots (second-phase sample) within the area. When using an
internal model, the idea is to fit a model “globally” in a large
region containing the area of interest, and to apply it “locally”
to the specific area. In this case, like in the classical regression
estimators developed for finite populations, the variation of the
model parameter estimates over (hypothetical) repeated samples
is considered in the variance estimators of the new small-area
estimators. Further, the uncertainty due to employing estimated
auxiliary variable means instead of (unavailable) true means is
incorporated in the variance estimators. The researchers also
present an approach where the internal linear model is extended
with the indicator variable(s) of the area(s), thus eliminating the
residual-dependent part of the estimator, which greatly simplifies
the calculation of the variance.

Mandallaz (2013) introduced the new small-area estimators
for two-phase sampling, with both exhaustive and non-
exhaustive auxiliary data and including the special case of cluster
sampling. He illustrated the estimators with a small case study
and with a simple simulation example. Mandallaz et al. (2013)
completed this work by presenting the estimators for the case
where some auxiliary variables are available exhaustively (wall-
to-wall) and others non-exhaustively. They tested the estimators
with a simulation example like the one in the earlier paper but
with a larger case study using data from the Swiss NFI. Hill
et al. (2018) applied the estimators for timber volume estimation
in forest management units of two levels (forest districts and

sub-districts) in the German state of Rhineland-Palatinate using
data from the German NFI.

Mandallaz (2014) extended the two-phase small-area
estimators with partially exhaustive auxiliary data to three-phase
sampling, where the auxiliary variable values come from nested
null- and first-phase samples. He illustrated the estimators with
a simulation example like those in the earlier papers.

Massey et al. (2014) applied these three-phase estimators
to estimate timber volumes in the five production regions
(summing up to the entire country) of the fourth Swiss NFI,
when only three annual panels (out of nine) of field plot
data were available. The reduced second-phase sample size was
compensated by using the full field plot data from the third
inventory as the first-phase auxiliary data, in addition to the
usual aerial photography used as the null-phase auxiliary data.
Steinmann et al. (2013) applied the two-phase synthetic and
difference estimators (involving external models) for forest area
and timber volume estimation in the Swiss canton of Aargau
using data from the Swiss NFI. Two doctoral theses have resulted
from this research (Massey, 2015; Hill, 2018). Hill et al. (2021)
have implemented the estimators discussed above in the R
package forestinventory.

Construction of SAE System for Swiss NFI
In an ongoing project, Pulkkinen, Lanz, and Zell are developing
an operational system for producing estimates of several target
parameters for small areas/domains in the Swiss NFI. Auxiliary
information comes from several sources, the most important
being a vegetation height model estimated from a digital
elevation model of tree canopy height and a LiDAR-based terrain
elevation model. The small-area estimators included in the
system are the design-based model-assisted estimators discussed
above, with (i) internal linear models or (ii) external models of
any type, and with estimated auxiliary variable means. When
internal models are used, they are built/fitted separately for each
small area/domain. Currently, the system estimates forest area,
total growing-stock volume, and total growing-stock biomass
above ground for the cantons, forest districts and municipalities
in Switzerland.

Norway’s National Forest Inventory: Small
Area Estimation on Multiple Scales
Breidenbach et al. (2019) presented the status of SAE research
and use in the Norwegian NFI. national forest inventory field
plot inventory data are combined with 3D remotely sensed data
to estimate forest characteristics at different spatial scales. ALS
and image matching are currently used as auxiliary information
to create the NFI’s forest resource map SR16, a raster map with
a pixel size of 16 × 16m (Astrup et al., 2019). While model-
dependent methods were used on the scale of pixels and forest
stands (Breidenbach et al., 2015), model-assisted estimators were
used on the scale of municipalities and larger area of interests
(Breidenbach and Astrup, 2012).

Developing Forest Resource Map SR16
Development of SR16 tested new methods for using ALS to
make stand-level estimates and comparing those estimates with
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independent data from a FMI. Astrup et al. (2019) described
the development and utility of the SR16 in greater detail. They
used photogrammetric point cloud data with ground plots from
the Norwegian NFI. First, an existing forest mask was updated
using object-based image analysis methods. Within the updated
forest mask, a 16×16m raster map was developed with Lorey’s
height (hL),13 volume, biomass, and tree species as attributes.
All attributes were predicted with generalized linear models that
explained about 70% of the observed variation and had relative
RMSEs of about 50%. The raster map was then segmented into
stand-like polygons that internally were relatively homogenous
with respect to tree species, volume, site index, and hL. When
SR16 was used as auxiliary information to NFI field plot data
and a model-assisted estimator, the precision was on average
2–3 times greater than estimates based on field data only.
In conclusion, SR16 was useful for improved estimates from
the Norwegian NFI at various scales. The mapped products
may be useful as additional information in forest management
Inventories (FMIs).

Applying SR16 to Small Area Estimation
One of the biggest challenges for the Norwegian NFI is satisfying
the interests of stakeholders in forest attribute information for
small sub-populations, such as municipalities or protected areas
(Breidenbach and Astrup, 2012). Auxiliary information that is
correlated with attributes of interest can improve the precision
of estimates. Two examples have been recently reported in the
literature. In the first one, Breidenbach and Astrup (2012) used
the height and volume information in SR16 to improve the
estimates of mean above-ground biomass for small areas. In the
second (Breidenbach et al., 2019), ALS and SR16 data layers were
used to improve the precision of information for FMIs. FMI
data required local adjustments to obtain the desired precision.
Mixed-effects models were fit, using fine-scale ALS data. SR16
data layers used to make SAEs were compared to FMI stand-
level estimates. The RMSD between FMI and SR16 estimates
of timber volume on stand-level ranged between 11 and 17%.
While no systematic deviation was visible for stands in mature
pine forest types, SR16 data underestimated timber volume in
mature spruce forests by 12%, especially in ALS projects where
the NFI data did not cover the full range of explanatory variables.
They concluded that the accuracy of SR16 map data layers may
be sufficient for most small-scale forest owners and for some
strata for larger forest enterprises. Accuracy can be improved, and
systematic errors removed by integrating auxiliary information
where a limited number of NFI plots do not cover the range of
explanatory variables within an ALS coverage area.

13Lorey’s height (hL) is amean height estimate that is weighted by basal area, which

allows the larger trees to contribute more to the mean. It is a commonly used mean

height estimator outside the USA. Lorey’s height is computed as the sum of tree

height multiplied by tree basal area for all trees, divided by the basal area of the

stand. Because variable radius plot sampling (Bitterlich or prism sampling) selects

trees proportional to their basal area, the mean height of trees included in one or

more prism sample counts gives an estimate of hL.

Germany/s National Forest Inventory:
Small Area Estimation at the District Level
Hill et al. (2018) described a double-sampling extension of the
GermanNFI tomake design-based SAE at the forest district level.
They used an ALS-estimated canopy height model and a tree
species classification map based on satellite data as auxiliary data
with a regression model to produce timber volume predictions.

The German NFI is based on a nationwide 4 × 4 km grid.
But some states (Rhineland-Palatinate in Hill et al., 2018) have
intensified the sample to a 2 × 2 km grid. At each grid point,
field crews collect data from a cluster of four sample plots,
arranged in a square with 150m sides. The number of actual plots
measured in a cluster can vary between one and four depending
on the forest/non-forest decisions made by the crew. At each
sample point, trees to tally are identified using a BAF 4 m2/ha
prism/relascope, and included if their DBH is >7 cm.

Wagner et al. (2017) used SAE methods to estimate
spruce timber reserves in the Rhineland-Palatinate’s forest
districts. The state forest inventory and an ALS-based canopy
height model provided the data. A new spline-based SAE
method was proposed. It provided stable estimates that met
specialized constraints. Results were compared with existing
spruce timber estimates.

Rationale for SAE Research
Rhineland-Palatinate is one of the two most densely forested
German states, with 8,400 km2 of forest comprising 42% of the
land area. Two characteristics dominate Rhineland-Palatinate
forests. Mixed forest stands dominate (82% of the forest area).
Public ownership dominates private ownership−27% are state-
owned forests and 46% are municipally owned vs. 27% that
are privately owned. The state forest agency has a mandate
to sustainably manage state and municipal forests, including
planning, harvesting, and selling wood. Therefore, the state has
been further sub-divided into 45 districts (averaging 43,777
ha), and 405 sub-districts (averaging 4,624 ha). A key question
for the state agency is where and how to gather information
suitable for managing at the state, district, and sub-district
levels. While the NFI information is helpful at the state level,
estimators at the district and sub-district level derived from the
NFI have unacceptable RMSEs for planning and implementing
management activities. Many states have solved this problem
by establishing forest district-level inventories (FDI) with much
greater sampling intensities than the NFI (e.g., the quadruple
intensification of NFI in Rhineland-Palatinate). But FDIs are
costly, and many states are facing increasing restrictions on
budgets and personnel. Therefore, states are seeking more cost-
efficient inventory methods, among them SAE methods.

Researchers from ETH Zurich and the Rhineland-Palatinate
State Forest Service partnered to test SAE approaches for cost-
efficiency. They considered three types of design-based regression
estimators suggested by Mandallaz (2013) and Mandallaz et al.
(2013): Pseudo-small, extended pseudo-synthetic, and pseudo-
synthetic. Auxiliary data were a canopy height model from
nationwide ALS and a tree species classification map to be used
for regression estimation within tree species strata. A double-
sampling approach was used, for five reasons discussed in detail
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in Hill et al. (2018). At the district level, results showed that both
the pseudo-small and the extended pseudo-synthetic estimators
led to substantial reductions in estimation error compared to
the standard one-phase estimator. But the sub-district level was
too small geographically and had too few sampling points to
achieve the same estimated error reduction as at the district
level. However, estimation errors at the sub-district level were
still smaller than the standard one-phase estimator (20 vs. 40%).
But the authors acknowledged that further research is needed
to determine whether the achieved reductions in error levels are
enough to support forest planning decisions.

A complicating factor in the case study was that the ALS data
were of various ages—some relatively recent, others a decade old.
Beyond the obvious issue of tree height growth over a decade,
a tougher challenge was that laser sensor technology advanced
rapidly over the decade, resulting in much denser point clouds
for recent years compared to older years. As older scans are
replaced by newer scans, the power of the auxiliary information
will improve—both in terms of consistent tree canopy height
models across the landscape and within the tree species strata.

The methods introduced by Hill et al. (2018) are being tested
on NFI data from other states. In 2019, data from Thuringia were
being tested and data from Mecklenburg-Pomerania was next.
The intent is to have these new estimation features operational
by 2023, at the latest, after completion of the 2021/2022
inventory cycle.14

Finland’s National Forest Inventory:
Efficiency of Post-stratification for Small
Area Estimation
Tomppo (1990, 1991) was the global pioneer in combining NFI
data, satellite data, and k-NN for making estimates. His research
formed the intellectual foundation for Finland’s NFI, and for SAE
work in many other countries, including the United States.

Haakana et al. (2019a,b) reported on recent research in
Finland, using southern Finland provinces and municipalities
within provinces as test regions both for making point estimates
(e.g., growing stock volume by tree species groups) and
evaluating variances estimated by alternative methods. They
found that post-stratification, based on remotely sensed data,
even if old and incomplete, improves efficiency in estimating
selected variables at the provincial and smallermunicipality levels
when compared to results from making estimates using only
current NFI data. Work by Tomppo, McRoberts, andMagnussen
was extensively cited.

The two papers explored several options for obtaining
auxiliary information to use in post-stratification. Sweden
was cited as an example where official statistics are based
solely on field plots, but estimates are developed using
design-based post-stratification, based on k-NN maps or other
map products.

Haakana et al. (2019a) presented a case study on estimating
growing stock volumes by tree species groups. The auxiliary
information was derived from NFI volume maps available for
provinces in southern Finland. These maps were developed from

14Personal communication with Dr. Sebastian Schnell, Thünen Institute of Forest

Ecosystems, Eberswalde, Germany.

the data gathered in the previous NFI iteration (2005–2008) and
LANDSAT 5 TM imagery from 2007. Full-coverage raster maps
with 20m pixels were created by combining satellite images,
digital map data, and NFI sample plot data and then using the k-
NN method to estimate growing stock volume, by species group,
for each pixel in a forest land mask. Procedures described by
Tomppo et al. (2012) were used.

One of the challenges discussed was the use of older
volume maps from the prior NFI iteration combined with
older LANDSAT 5 TM data. The primary reason for using
older maps based on older remotely sensed data was to use
independent auxiliary data. But during the intervening time,
many forest management activities, such as thinnings and final
harvests, occurred, which reduced the correlation between the
older auxiliary data and the current NFI data. But the reduced
correlation and potential reduction in estimation efficiency
weren’t quantified—just recognized—because updating the prior
information was thought too costly for the project.

Post-stratification by mean volume improved the precision of
both area and volume estimates for forest area and growing stock
volume compared to using NFI data alone. Relative efficiencies
ranged between 2.3 and 3.5. As expected, post-stratification
resulted in a smaller decrease in mean relative standard error
for the smaller areas than for the larger areas. This result held
both for the forest area variable as well as for total growing stock
volume and volume by tree species stratum (pine, spruce, birch,
and other deciduous strata). Further, the small area estimates
from post-stratification were robust compared to the field plot
data estimates because the largest variances improved more than
the average variances.

Haakana et al. (2019b) acknowledged that the k-NN method
can provide a model-based estimator for small geographic areas,
but not a designed-unbiased estimator for RMSE. Thus, in this
article they focused specifically on municipalities to explore the
lower limits in geographic size that could still yield estimates of
forest area and growing stock volume with adequate precision.
They explored the differences in estimation efficiency and error
estimates for various sizes of areas—ranging from 5,700 to
921,600 ha—made possible by post-stratification.

The major conclusions of the two articles were that: (1)
utilizing old forest resources maps in a fully operational
approach for national level estimation improved estimates;
and (2) although post-stratification enabled forest area and
growing stock to be estimated more accurately for much
smaller geographic areas than with field plot data alone, post-
stratification should be limited to the smallest municipalities
where model-based estimation is still needed. Haakana et al.
(2019a) acknowledged that precision could be further improved
by updating maps to account for thinning, regeneration cuttings,
and final harvests; segmenting maps and remotely sensed
data into homogenous segments; and by having improved
boundary files for municipality land use classes. But overall, these
opportunities didn’t detract from the overall results.

Katila and Heikkinen (2020) reviewed the time-series of k-NN
estimates over two decades for municipalities, based in NFI data.
Their interest was in the variation among estimates from different
time periods—exceeding 10% in mean volume—which they
believed indicated a systematic error in SAEs. They combined
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NFI estimates from three points in time−2011, 2013, and 2015—
and found that multi-temporal data fusion made small but
consistent improvements in the estimates.

France’s National Forest Inventory:
Three-Dimensional Auxiliary Data
Since 2005, the French NFI has used a two-phase sampling design
on a 1 km grid. Each year, one-tenth of the plots are photo-
interpreted for land use and land cover in the first phase. Then
in a second phase, a sample is drawn as a function of land
cover types, resulting in about 6,500 plots being measured each
year nationwide.

Vega et al. (2021) introduced a new estimation algorithm
to balance between statistical precision and spatial scale. The
algorithm identifies the smallest possible groups of domains
satisfying prescribed sampling density and estimation error. The
research used NFI data from oak-dominated areas in the Sologne
and Orléans areas of central France, covering 157 municipalities
of varying sizes. Auxiliary data were a national forest cover type
map, a canopy height model from digital aerial photographs,
and LANDSAT imagery. The algorithm depends on the statistical
strength between the field attributes—growing stock volume and
basal area in this case—and on auxiliary variables and the spatial
heterogeneity of the forests. Results illustrate the balance between
desired precision and the spatial scale required to attain that
precision in attribute estimates.

Fortin (2020) explored the problem caused by annually
sampling only a portion of the NFI population of plots and
the impact on variance of point estimates for a geographic area
when plot data are from 1 to 10 years old. Fortin proposed
overcoming the difference in time since last remeasurement by
using an individual tree forest growth model (MATHILDE) to
update older plot measurements to account for growth since
last measurement. But this seemingly simple solution leads to a
hybrid inferential model where uncertainty arises not only from
the sample design but also from the growth model used to update
measurements (Kangas et al., 2019). Fortin tested the updating
approach on French NFI data from the Lorraine region and
concluded that under certain conditions, using a forest growth
model can increase the precision of inventory estimates.

Irulappa-Pillai-Vijayakumar et al. (2019) used three-
dimensional (3D) variables from photogrammetric-estimated
canopy height models, a forest type map, vegetation indices, and
LANDSAT 8 spectral bands as auxiliary data to lend strength
to French NFI data for a 733,500-ha region in central France
that is 48% forested. Adding complexity was the fact that much
of the forest in the region was a mixed broadleaved species
cover type that was more diverse in species composition and
therefore in form, structure, and fragmentation than the typical
conifer forest. The objective of the research was to test whether
multivariate k-NN imputations could improve the precision of
estimates for 11 forest attributes beyond the precision based
solely on NFI data.

The NFI data came from 755 plots measured from 2010
to 2014. Irulappa-Pillai-Vijayakumar et al. (2019) goes into
considerable detail about the significant effort invested and

difficulties encountered in: (1) transforming digital aerial
photography and ALS into 3D digital terrain models that could
be used to estimate canopy height models for two different time
periods (2008 and 2014); and (2) using the estimated changes in
height between 2008 and 2014 to estimate changes in other forest
attributes, such as stand density, basal area and several different
types of volume. Finally, auxiliary data for all 11 variables were
converted to a spatial resolution of 30m to conform with the
spatial resolution of the TM sensor aboard LANDSAT.

Results were that volume attributes had the greatest reduction
in errors. Using 3D change estimates contributed to the
substantial increase in precision and improved neighbor selection
within the k-NN method. The authors reported that these results
open possibilities for improving forest attribute estimation for
smaller areas. Their downscaling work continues.

Spain’s National Forest Inventory:
Integrating NFI Field Plot Data With
Airborne LiDAR Data
Four recent papers have discussed research in Spain, including
Condés and McRoberts (2017), Esteban et al. (2019), Durante
et al. (2019), and Novo-Fernández et al. (2019).

Condés and McRoberts (2017) reported new methods to
update NFI-based estimates when the year of the most recent
NFI survey doesn’t match the required year for international
reporting requirements. Their main aim was to develop an
unbiased method to update NFI estimates of mean growing
stock volume (m3/ha) using models to predict annual plot-level
volume change, and to estimate the associated uncertainties.
Because the final large area volume estimates were based on plot-
level model predictions rather than field observations, hybrid
inference was necessary to accommodate both model prediction
uncertainty and sampling variation. Specific objectives were to
compare modeling approaches, to assess the utility of Landsat
data for increasing model prediction accuracy, to select the most
accurate method, and to compare model-based and design-based
uncertainty components. For four forest types, data from the
2nd and 3rd Spanish NFI surveys together with site variables and
Landsat imagery were used to construct models to predict NFI
information for the year of the 4th NFI survey. Data from the 3rd

and 4th surveys were used to assess the accuracy of the model
predictions at both plot-level and large area spatial scales. The
most accurate method used a set of three models: one to predict
the probability of volume removals, one to predict the amount
of volume removed, and one to predict gross annual volume.
Incorporation of Landsat-based variables in the models increased
prediction accuracy. Differences between large area estimates
based on plot-level field observations for the 4th NFI survey and
estimates based on the model predictions were minimal for all
four forest types. Further, the standard errors of the estimates
based on the model predictions were only slightly greater than
standard errors based on the field observations. Thus, model
predictions of plot-level growing stock volume based on field and
satellite image data as auxiliary information can be used to update
large area NFI estimates for reporting years for which spectral
data are available, but field observations are not.
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Esteban et al. (2019) described an approach to model-assisted
inference, using a random forests (RF) approach. RF has recently
emerged as a popular approach because it’s able to select and rank
many predictor variables and it relies on an ensemble of trees as
a strategy to improve model robustness. Random forest consists
of a combination of decision trees where each decision tree
contributes a single prediction for each population unit with the
final prediction for each unit calculated as the mean over the RF
decision tree predictions. Although RF has been used by others,
little literature is available on model-based mean square error
(MSE) estimation for population parameters with this algorithm.
The study had three objectives:

1. Construct RF models to predict response variables (volume
and above-ground biomass) and changes in the response
variables for population units (ALS cells);

2. Compare multiple bootstrap estimators of the model based
MSE of the estimate of the population mean; and

3. Construct change maps and change uncertainty maps.

Two study areas were used, one in the La Rioja region of
Spain and the other in Våler municipality, southeastern Norway.
The Spanish data included plot-level volume datasets acquired
at different times for different plots as well as corresponding
multi-temporal ALS (2010–2016) and multi-spectral data. The
Norwegian data included plot-level biomass datasets for two
times for the same plots and temporally consistent ALS data
(1999, 2010). The authors concluded that RF models adequately
described the relationship between field plot measurements of
volume and biomass per unit area and remotely sensed data. They
also found that model-assisted andmodel-based estimators based
on RF predictions produced similar estimates of population
means and change estimates and smaller MSEs than expansion
estimators. Some insights into two bootstrapping approaches
were provided too.

Durante et al. (2019) focused on a 2.8-million-acre region
in Spain, combining Spanish NFI field plot data, fine-precision
ALS, and bio-geophysical spectral variables from MODIS. The
novelty of the study was testing a two-stage upscaling approach
where above-ground biomass estimates from ALS data were first
calibrated with NFI field plot data from 242 NFI field plots,
then used to train a machine-learning method that could be
applied to MODIS-estimated indices and topographic factors
to develop wall-to-wall maps of above-ground biomass for the
region. In one sense, this is the reverse of usual SAE approaches,
borrowing strength from the NFI field plot data to improve
biomass estimates made from laser point clouds and then link the
improved biomass estimates to MODIS data to create a regional
map. The authors again highlighted the difficulties created by
lack of precision in field plot center coordinates (5–15m nominal
accuracy) compared to ALS data. The biomass model was based
on four types of information: (1) 2m resolution ALS data; (2)
sketches of field plot layout; (3) high resolution ortho-imagery
from the Spanish National Plan for Aerial Orthophotography;
and (4) total height, species type, and location of each tree
in the field. Earlier work in case studies in western Finland
by Maltamo et al. (2009) and Norway by Nelson et al. (2012)
were cited.

Novo-Fernández et al. (2019) carried out similar work in
northwestern Spain. The area studied contains forest plantations
that contribute 58% of the annual national timber harvest
and thus are important to commercial enterprises producing
panelboard, sawn lumber, and pulpwood. Dominant species
are Eucalyptus globulus Labill, Pinus pinaster Ait., and Pinus
radiata D. Don. Therefore, the main objective of this study was
to generate a fine-resolution raster database with information
about key forest yield variables such as total over bark volume
(m3/ha) and total aboveground biomass (t/ha), by species.
Secondary objectives—necessary to achieve the first objective—
included: (1) development of a procedure to harmonize the
Spanish NFI and ALS data; (2) selection of the best empirical
models of relationships between field measures and ALS-derived
metrics, by comparing a parametric machine learning technique
(multiple linear regression) and several well-known non-
parametric techniques; and (3) to estimate spatially-continuous
maps of yield variables. The same methodology has been used in
Austria, Denmark, Sweden.

SUMMARY

Small Domain Estimation research in the forest sector has
focused almost entirely on spatial domains to the exclusion of
other domains, hence the term SAE has replaced SDE in the
forest inventory literature. SAE research and applications are
underway in many European countries to improve estimates—
reduce the RMSE or confidence intervals—of forest attributes
based on sample data collected on NFI field plots.

Airborne LiDAR data are becoming increasingly popular
as auxiliary data, especially where country-wide laser scanning
has replaced country-wide aerial photography as the raw
data for national topographical mapping, transportation, or
other agencies.

Design-based model-assisted SAE inference methods are
being used in several countries, but pure model-based or hybrid
inference methods are also being explored. Each methodology
has advantages in specific situations. Regardless of methodology,
the k-NN approach is the current “standard,” although with
tweaks here and there. Various two-stage or double-sampling
approaches are popular for post-stratification.

The intellectual leadership in SAE research in the forest sector
is broadening. In the 1990s and first decade of the twenty-
first century, only a few researchers—notably Erkki Tomppo
and Ronald McRoberts—had published more than two articles
on the topic. Since 2010, the forest SAE literature documents
increased trans-national collaboration by many more authors
and coauthors in advancing the use SAE. This review found
that the influence of Daniel Mandallaz and his students from
ETH-Zurich is growing.

McRoberts pointed out15 that as scientific disciplines mature,
they inevitably move through a three-step sequence of phases:

1. Descriptive studies (estimating means and variances);
2. Predictive studies (creating models and maps); to

15Personal communication, 17 Nov 2019.
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3. Inferential studies (determining confidence intervals for
population parameters, testing of hypotheses).

National forest inventoriesmoved early into the inferential phase,
but remote sensing is just now moving into that phase. The
point is that as remote sensing research and applications in the
forest sector mature, they will inevitably become more rigorous
statistically and characterized by use of more sophisticated
statistical techniques. Greater statistical sophistication will of
necessity entail greater attention to uncertainty issues in
estimates, models, and predictions. There is some evidence from
this review of international research that this progression of
phases is occurring; as it also is currently progressing in the
United States.

The increase since 2010 in research and applications of SAE
methods is being driven largely by NFI stakeholders’ needs for
information about forests at sub-national and sub-state/sub-
province spatial scales. Two driving forces stood out in the
literature reviewed. First, the costs—financial and staffing—of
forest management unit inventories are pinching the budgets
of state/provincial forest managers. They are searching for cost-
cutting measures and using NFI data to make more precise
estimates at sub-national levels is emerging as a viable solution.

Second, international carbon-accounting reporting
expectations are growing. Carbon stocks and fluxes now
need to be estimated from spatially and species-specific forest
inventory data rather than simply applying broad-based,
generalized, per-area carbon estimates to forest cover type area
estimates. Hence, greater emphasis on obtaining above-ground
forest biomass estimates specific to forest-cover-types or species
for discrete regions of a country (accounting for site differences,
such as soils, geology, topography, and land use patterns). If
smoothly functioning markets emerge that compensate forest
landowners for carbon sequestered in forests, agencies, and
landowners want to have site- and species-specific, statistically
reliable information available to support their payment contracts.

Three final points. None of the recent literature reviewed
cited the need for or use of SAE estimates to satisfy forest
certification criteria. Second, as interest in forest carbon markets
continues to grow, it will be interesting to see if SAE estimates
of forest carbon stocks and fluxes become acceptable to market
investors. The emergence of interest in estimating AGB portends
this issue. Third, although this paper focused on forest-sector
literature dominated by authors and applications outside the
United States, there is much SAE underway inside and outside
the forest sector within the United States. Researchers for the U.S.
Census Bureau (2021) can provide useful entrees to SAE outside
the forest sector, just as similar SAE research outside the forest
sector is reported by the European Union and national statistical
agencies of individual European countries.
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