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Climate change increasingly affects primary productivity and biogeochemical cycles in
forest ecosystems at local and global scales. To predict change in vegetation, soil, and
hydrologic processes, we applied an integrated biogeochemical model Photosynthesis-
EvapoTranspration and BioGeoChemistry (PnET-BGC) to two high-elevation forested
watersheds in the southern Appalachians in the US under representative (or radiative)
concentration pathway (RCP)4.5 and RCP8.5 scenarios. We investigated seasonal
variability of the changes from current (1986–2015) to future climate scenarios (2071–
2100) for important biogeochemical processes/states; identified change points for
biogeochemical variables from 1931 to 2100 that indicate potential regime shifts; and
compared the climate change impacts of a lower-elevation watershed (WS18) with
a higher-elevation watershed (WS27) at the Coweeta Hydrologic Laboratory, North
Carolina, United States. We find that gross primary productivity (GPP), net primary
productivity (NPP), transpiration, nitrogen mineralization, and streamflow are projected
to increase, while soil base saturation, and base cation concentration and ANC of
streamwater are projected to decrease at the annual scale but with strong seasonal
variability under a changing climate, showing the general trend of acidification of soil and
streamwater despite an increase in primary productivity. The predicted changes show
distinct contrasts between lower and higher elevations. Climate change is predicted to
have larger impact on soil processes at the lower elevation watershed and on vegetation
processes at the higher elevation watershed. We also detect five change points of the
first principal component of 17 key biogeochemical variables simulated with PnET-BGC
between 1931 and 2100, with the last change point projected to occur 20 years earlier
under RCP8.5 (2059 at WS18 and WS27) than under RCP4.5 (2079 at WS18 and 2074
at WS27) at both watersheds. The change points occurred earlier at WS18 than at
WS27 in the 1980s and 2010s but in the future are projected to occur earlier in WS27
(2074) than WS18 (2079) under RCP4.5, implying that changes in biogeochemical
cycles in vegetation, soil, and streams may be accelerating at higher-elevation WS27.
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INTRODUCTION

Global climate has changed considerably over the past few
decades and these changes will likely continue to accelerate due
to increases of greenhouse gas emissions, mainly through burning
of fossil fuels and land disturbance (Intergovernmental Panel on
Climate Change [IPCC], 2014; Center for Climate and Energy
Solutions [C2ES], 2019). Global air temperature between 2081
and 2100 is projected to be 0.3–4.8◦C higher than the average
between 1986 and 2005 with high confidence (Intergovernmental
Panel on Climate Change [IPCC], 2014). Precipitation will likely
increase as well (1–4% more per ◦C increment) with high
spatial variability.

Climate change has impacted and will impact the structure,
function and productivity of forested ecosystems (McKenney–
Easterling et al., 2000; Shugart et al., 2003; McKenney et al.,
2007; Albrich et al., 2020) by altering biogeochemical cycles in
vegetation, soil, and streams within forests that lead to changes
in habitat suitability and species competition. Forests represent
30% of the world land surface and provide a wide variety of
ecosystem services, including carbon sequestration, water supply,
timber products, wildlife habitats and recreational opportunities
(Lindquist et al., 2012; Peters et al., 2013, United Nations,
2020, accessed on 08/01/2020)1. Climate-driven alteration of
biogeochemical cycles will likely impact forests’ ecosystem
services and associated human use. It is important to predict
impact of climate change on forests in order to develop effective
mitigation measures to minimize potential adverse consequences
to ecosystems and humans.

However, such predictions involve large uncertainties as
the response of biogeochemical processes to climate change
is complex due to different controlling factors that interact
at different spatial and temporal scales (Grimm et al., 2013).
Increases in air temperature lead to advancement of spring leaf-
out of temperate and boreal trees, and therefore increase annual
net primary productivity (NPP) (Zohner et al., 2020). Meanwhile,
plant and soil respiration tends to increase with temperature
(Turnbull et al., 2001), which results in uncertainty in the
direction and magnitude of changes of net ecosystem production.
Precipitation and available soil water are critical to forest growth.
Changing climate could reduce soil water content due to higher
evapotranspiration associated with increase in temperature or
changes in plant processes, or it could increase soil water content
due to increased precipitation. The change of soil water content
and temperature alters soil microbial composition, and biotic and
abiotic processes such as decomposition of plant litter and soil
organic carbon, nitrification/denitrification, and mineralization
of plant nutrients (Stark and Firestone, 1995; Knoepp and Vose,
2007; Krishna and Mohan, 2017). Decomposition rates will likely
accelerate, therefore, carbon and nutrient (K, Ca, Mg, and P
except N) release may become more rapid, especially in the
fall and winter (Davidson and Janssens, 2006; Conant et al.,
2011). These biogeochemical changes could further impact water
availability and quality (Delpla et al., 2009). Floods and droughts
will likely become more frequent under climate change (e.g., Wu

1https://www.un.org/en/observances/forests-and-trees-day

et al., 2012, 2014). Water quality may be degraded either because
of drought-caused or flood-induced changes in temperature, pH,
and concentrations of dissolved oxygen, nutrients, and dissolved
organic matter (Stanke et al., 2013).

The response of a dynamic ecosystem such as forests to climate
change can exhibit (1) a smooth change, (2) a threshold at
particular temperature, precipitation and/or other conditions at
which change occurs rapidly, or (3) a transition between two
alternate stable states with two thresholds as the environmental
driver increases or decreases (Hughes et al., 2013). Detecting
the state shift of biogeochemical cycles can be based on rates of
change applying change-point analysis (Pedersen et al., 2020).
Change-point analysis is a valuable tool to detect abrupt changes
in variations or means, and can provide insight on a non-linear
response of forest processes to climate change.

In this study, we aim to address the following questions:
(1) How does climate change affect vegetation, soil and stream
processes and which season shows the largest impact? (2) Do
change points of these processes occur over time? Do they
correspond to change points of temperature and precipitation?
(3) How do the impacts of climate change on forest ecosystem
processes differ between lower and higher elevation watersheds?

MATERIALS AND METHODS

We applied the PnET-BGC (Photosynthesis-EvapoTranspration
and BioGeoChemistry) model, an integrated and dynamic
biogeochemical model (Gbondo–Tugbawa et al., 2001), to
evaluate the impact of climate change on coupled vegetation-
soil-stream processes at two watersheds at the Coweeta Basin
in the southern Appalachian Mountains of North Carolina. We
implemented principal component analysis (PCA) to derive the
main biogeochemical processes that are important to explain
the majority of variance of all ecosystem processes / states and
evaluated their seasonal changes. We next derived the change
points of ecosystem processes over time.

Study Area
The Coweeta Experimental Forest at the Coweeta Basin was
established in 1934 by USDA Forest Service near Otto,
North Carolina and was then renamed as Coweeta Hydrologic
Laboratory in 1948 (35◦03′ N, 83◦25′W, Figure 1). The
climate in this region is classified as marine, humid temperate,
and features cool summers and mild winters, with less than
5% of annual precipitation occurring as snow (Swift et al.,
1988). Two reference watersheds with detailed meteorology,
vegetation, soil, and stream chemistry data were selected for
this study: lower-elevation watershed 18 (WS18) and higher-
elevation watershed 27 (WS27) (Figure 1). WS18 is a 12.5
ha watershed drained by Grady Branch, with an elevation
range from 726 m to 993 m and a northwest facing slope
of 52%. From 1986 and 2015, over half of the precipitation
was exported in streamflow (average of 96 cm yr−1 streamflow
vs. 182 cm yr−1 total precipitation). The average annual
air temperature was 14.0oC with an average minimum of
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FIGURE 1 | Elevation of study area – Coweeta Basin, NC (watershed 18 – WS18 and watershed 27 – WS27 are indicated in red boundaries in the lower left panel).

8.9
◦

C and an average maximum of 19.6◦C. WS27 is a 39-
ha watershed drained by Hard Luck Creek, and its elevation
ranges from 1,061 to 1,454 m with a northeast facing slope
of 55%. From 1986 to 2015, over two third of precipitation
was lost as streamflow (an average of 163 cm yr−1 streamflow
vs. 229 cm yr−1 total precipitation). The average annual air
temperature was 10.2oC with an average minimum of 5.9oC and
an average maximum of 14.5oC (derived from USDA Forest
Service Southern Research Station2 accessed on 08/01/2020).
Soils are deep sandy loams underlain by folded schist and
gneiss. Under the uppermost true and biologically active soils
consisting of Ultisols and Inceptisols, there is a porous, friable,
and unconsolidated saprolite layer above bedrock, which is
believed to be a primary source of base flow and stream
geochemistry (Velbel, 1988). Soil depth decreases with elevation
with whole basin averaged soil depth around 3 m (Swank and
Crossley, 1988). The dominant vegetation at both watersheds is
southern mixed deciduous forests with overstory codominance

2https://www.srs.fs.usda.gov/coweeta/tools-and-data/

by oaks (Quercus), maples (Acer), hickories (Carya) and tulip
poplar (Liriodendron tulipifera L.) and an evergreen understory
of rosebay rhododendron (Rhododendron maximum L.) and
mountain laurel (Kalmia latifolia L.) (Day et al., 1988; Elliott and
Swank, 2008).

These two watersheds have not been subject to human
disturbances since the establishment of the experimental forest
in 1934; however, they have experienced a variety of natural
disturbances, including chestnut blight in the 1930s (Day
and Monk, 1974; Elliott and Swank, 2008), fall cankerworm
infestation in WS27 in the 1970s (Swank et al., 1981), extended
drought in the 1980s (Elliott and Swank, 1994), and Hurricane
Opal in 1995 (Elliott et al., 2002). In addition, the region has
experienced increasing air temperature and extreme precipitation
events over the years (Laseter et al., 2012).

Model Description, Inputs, and
Calibration
PnET-BGC model has been applied, primarily in the northeastern
region of the United States, to study forest primary production,
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water and nitrogen cycling, hydrology, as well as soil and
lake/stream acidification in response to acidic deposition, climate
change, and disturbances (Gbondo–Tugbawa and Driscoll, 2002;
Chen and Driscoll, 2004, 2005a,b; Chen et al., 2004; Zhai
et al., 2008; Wu and Driscoll, 2009, 2010; Zhou et al., 2015a;
Pourmokhtarian et al., 2016, 2017; Robison and Scanlon, 2018;
Valipour et al., 2018). Recently the model has been applied
to watersheds in the southeastern and mid and western U.S.
(National Smoky Mountain National Park, Zhou et al., 2015b,
Niwot Ridge and Loch Vale Watershed, Colorado, and The H.
J. Andrews Experimental Forest, Oregon, Dong et al., 2019).
With the work presented herein, Coweeta Basin represents
the southernmost U.S. application of PnET-BGC. This model
includes two major modules: (1) PnET, a submodel that simulates
water, carbon, and nitrogen cycling through vegetation, soil and
drainage waters, and (2) BGC, a module that includes vegetation
and organic matter interactions of abiotic soil processes,
solution speciation, and surface water process involving other
major elements (Gbondo–Tugbawa et al., 2001). The main
state variables that are simulated include primary productivity,
evapotranspiration, streamflow soil exchangeable cations, carbon
and nitrogen mineralization, litter biomass, concentrations of
sulfate, nitrate, potassium, calcium, magnesium, sodium, and
acid neutralizing capacity (ANC) in stream at a monthly
time step. We applied the model version that accounts for
the impact of CO2 on primary productivity based on the
results from the Duke University’s Free-Air Carbon Dioxide
Enrichment (FACE) project (Schlesinger et al., 2006) where
gross primary productivity (GPP) increases with atmospheric
CO2 concentration until 600 ppm. Increasing atmospheric CO2
has two confounding effects that are depicted in this model:
an increase in maximum photosynthetic rate (Amax) and a
reduction in stomatal conductance (gs). Stomatal conductance
and photosynthesis are coupled (Jarvis and Davies, 1998; Ollinger
et al., 2002, 2009). Stomatal conductance changes in proportion
to the difference between atmospheric CO2 (Ca) and internal
CO2 (Ci) across the boundary of stomata. Ci is estimated from
Ci/Ca (Ollinger et al., 2009, Ci/Ca ∼ 0.7 in Lavergne et al.,
2019). The stomatal conductance and maximum photosynthetic
rate are used to calculate CO2 assimilation. Additionally, water
use efficiency (WUE) is a function of CO2 assimilation and
vapor pressure deficit (VPD), adjusted by Ci/Ca and increases
in Amax (1Amax). When atmospheric CO2 increases, Amax will
increase and gs will decrease, which results in an increase of
WUE. Plant transpiration is constrained by both 1Amax and
adjusted conductance (Delgs) when Ca is high and is calculated
from GPP and WUE. We further modified the PnET-BGC
model by adding a base flow component in order to obtain
more accurate simulations of streamflow. The previous PnET-
BGC model would simulate zero streamflow if no precipitation
occurred in that month, which is not consistent with the
observed streamflow pattern (such as December 2006 at WS18,
and October 2000 at WS27). Based on observed non-zero
streamflow when monthly precipitation was zero between 1936
and present, we added base flows of 0.6 cm/mo at WS18 and
0.9 cm/mo at WS27 to the streamflow originally simulated by
the PnET-BGC.

In order to run the PnET-BGC, meteorology and atmospheric
deposition data of major elements are required as inputs
(Supplementary Tables 1, 2).

Meteorological Data
Meteorological inputs include monthly maximum and minimum
air temperature (Tmax and Tmin, oC), photosynthetic active
radiation (PAR) (µmol·m−2

·s−1), and precipitation (cm·mo−1).
The daily maximum and minimum temperature were available
from 1985 (WS18) /1992 (WS27) to 2015 (see footnote
2 last accessed on 05/28/2020). The longer monthly time
series of temperature was available at Climate Station 1
(CS01) in Coweeta (1935–2015). We derived regression
models based on monthly temperature measured at CS01
and at WS18/27 (WS18: 1985 to 2015, R2 = 0.90 for
maximum temperature: Tmax−WS18 = 0.9968 × Tmax−WS01 –
0.6957, and R2 = 0.91 for minimum temperature:
Tmin−WS18 = 1.0029 × Tmin−WS01 + 1.8471; WS27:
1992–2015, R2 = 0.96 for maximum temperature:
Tmax−WS27 = 1.0137 × Tmax−WS01-6.1392, and R2 = 0.96
for minimum temperature: Tmin−WS27 = 1.0091 × Tmin−WS01-
0.7467). After deriving climate data from 1935 to 1985 or to
1992 for WS18 and WS27 based on the regression models, the
monthly means of maximum and minimum temperature from
1935 to 1985 or to 1992 were used as temperature inputs before
1935 for each watershed. The monthly averages from 2016 to
2100 in the base climate scenario were derived using monthly
mean temperatures from 2006 to 2015 (Hansen et al., 2006).

Monthly precipitation was available from August 1936 to 2015
at WS18 and April 1958 to 2015 at WS27. We derived the average
total precipitation values for each month and applied these values
to before 1936 and to the future (2016–2100) in the base climate
scenario.

Measured PAR was available only for a limited period: May
2010 to December 2011 at WS18 and 27. To obtain a longer-term
series of PAR, we applied the simulated solar radiation from 1980
to 2010 based on the Daily Surface Weather and Climatological
Summaries (DayMET), we converted solar radiation to PAR
using Eq. 1. (Both et al., 2002):

48.3 W m−2 (solar radiation) = 100 µmol m−2 s−1(PAR)
(Eq. 1)

The derived monthly averages of PAR between 1980 and 2010
were used as inputs for the years before 1980 and after 2011 under
the base climate scenario.

The climate change scenarios were statistically downscaled
from four global atmosphere-ocean general circulation models
(AOGCMs: CCSM4, HadGEM2, MIROC5, and MRI-CGCM3)
with two representative concentration pathways (RCPs, RCP4.5,
and RCP8.5). A station-based asynchronous regional regression
model was based on the long-term, and daily observed climate
data collected from Coweeta WS18 (1985-2015) and WS27
(1992–2015) (Hayhoe et al., 2004, 2007, 2008; Pourmokhtarian
et al., 2016). The spatial resolution of the AOGCMs (∼100 km)
is too coarse for application to WS18 or 27 because small
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watersheds in complex mountainous terrain are strongly affected
by local weather patterns (Pourmokhtarian et al., 2012). The
station-based technique generally returns higher precipitation
projection than the bias correction-spatial disaggregation grid-
based downscaling technique, another common downscaling
approach (Pourmokhtarian, 2013). As climate change scenarios
can contribute considerable uncertainty in model projections
(Huber et al., 2021), it is important to consider multiple
climate change scenarios. The RCP8.5 represents the most
aggressive greenhouse gas (GHG) emission scenario. By 2100,
the atmospheric CO2 concentration is projected to be 1,370 ppm
(Moss et al., 2010). RCP4.5 represents a scenario with
some mitigation plans, and atmospheric CO2 concentration is
projected to reach 580 ppm in 2100. To simplify the study and
follow atmospheric CO2 trends between 1970 and 2016 (a linear
increase from 330 to 403 ppm), we applied a linear extrapolation
to derive annual predictions of atmospheric CO2 concentrations
from 2016 to 2100 as done in other studies (Kienast, 1991), based
on the target CO2 concentrations in 2100 in RCP4.5 and RCP8.5
and CO2 concentration of 403 ppm in 2016. The predicted
temperature and precipitation changes in all four seasons under
climate change are similar between WS18 and 27 under each
RCP scenario, except that the increase of precipitation under
RCP8.5 at WS27 is predicted to be smaller than that at WS18,
especially in spring and summer. The RCP8.5 scenario shows
higher temperature and precipitation increase than RCP4.5 and
temperature is projected to increase from past (1936–1965) to
current (1986–2015) and then to future conditions (2071–2100),
while precipitation initially decreased from past to current then
increase in the future.

We further applied paired t-tests to evaluate whether annual
temperature or precipitation in the future (2071–2100) under
changing climate are significant different from the present (1986–
2015). We first checked the normality and temporal correlation
(acf function in R) for annual time series between 1986 and
2015 and between 2071 and 2100, and found that data followed
normal distribution and there did not exist temporal correlation,
therefore justifying the use of paired t-tests.

Wet and Dry Depositions
The wet and dry deposition of major elements (Na+, Mg2+,
K+, Ca2+, NH4

+, Cl−, NO3
−, and SO4

2−) were obtained from
National Atmospheric Deposition Program (NADP, accessed on
08/01/2020)3 and The Clear Air Status and Trend Network
(CASTNET, accessed on 08/01/2020)4 respectively. The closest
NADP site to the Coweeta Basin is NC25 (35◦03′36.1′′ N,
83◦25′50.7′′W, located within the Coweeta Basin5, accessed
on 08/01/2020) and the wet deposition record is from July
1978 to 2015. For the dry deposition, the CASTNET COW137
station (35◦03′36.1′′ N, 83◦25′50.7′′W) located adjacent to
the NADP station, was used with the data available from
November 1987 to 2015. Atmospheric deposition data before
1978/1987 was reconstructed from national emission record

3http://nadp.slh.wisc.edu/
4https://www.epa.gov/castnet
5http://nadp.slh.wisc.edu/data/ntn/plots/ntntrends.html?siteID=NC25

from 1930 to 1978, and the relationship between emission and
atmospheric deposition of SO2 and NOx between 1978 and
2015 (United States Environmental Protection Agency [USEPA],
2000; Driscoll et al., 2001; Chen et al., 2004; Chen and Driscoll,
2004). From 1850 (pre-industrial) to 1930 when the emission
data were not available, we assume a 50% increase of SO2 and
NOx emission during this period and a linear increment was
applied to reconstruct sulfur and nitrogen emissions and wet
deposition from 1850 to 1930. After wet deposition data were
fully constructed, the monthly average dry-to-wet-deposition-
ratios derived from observed CASTNET and NADP data were
used to reconstruct missing dry deposition data for the period
outside the period of observations from the CASNET station.
In addition to S and N (SO4

2− and NO3
−), other chemical

constituents include NH4+, Ca2+, Mg2+, K+, Na+, and Cl−.
For these elements, re-construction of their deposition data
before and after the observed NADP record period (i.e., before
1978 and after 2016), 5-year averages of monthly values were
applied respectively (i.e., monthly deposition before 1978 was
calculated using observations between 1979 and 1983 while we
used averages from 2011 to 2015 for the time after 2016). For
those elements that are not measured through NADP (dissolved
organic carbon – DOC, Al3+, F−, PO4

3−, and Si), we used the
input data in reference to previous work from the northeastern
U.S6 (accessed on 08/01/02020).

Vegetation Data
The PnET-BGC model previously considered four vegetation
types: Northern Hardwoods, Spruce – Fir, Red Oak-Red Maple,
and Red Pine. In this study, we constructed and applied Southern
Hardwoods vegetation type based on the parameters of the
Northern Hardwoods vegetation type. Particularly, we adjusted
the optimum temperature for photosynthesis (28◦C at Watershed
18 ad 23◦C at Watershed 27), growing-degree-days at which
foliar production begins and ends (400 and 1500 respectively
at Watershed 18, 350 and 1400 respectively at Watershed 27),
and fraction of precipitation intercepted and evaporated (0.20
at Watershed 18, and 0.11 at Watershed 27). The adjustments
are based on previously measured data of NPP and continuous
measured data of streamflow.

Calibration
To calibrate the model, we applied the data provided by the
Coweeta Hydrologic Laboratory, including streamflow, stream
concentrations of Na+, Mg2+, K+, Ca2+, Cl−, NH4

+, NO3
−,

and SO4
2−. Other data used to calibrate different modules

of the model included NPP, net soil mineralization rates,
and soil base saturation available in the literature (Day and
Monk, 1977; Knoepp and Swank, 1998; Knoepp et al., 2016;
Supplementary Table 3).

To quantify how well model simulations matched the site
observations, we applied normalized mean error (NME) and
normalized mean absolute error (NMAE, Janssen and Heuberger,
1995). The NME (Eq. 2) provides the average prediction bias and
NMAE (Eq. 3) indicates the absolute error between predicted

6https://ctdrisco.expressions.syr.edu/pnet-bgc-model/
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FIGURE 2 | (A) Seasonal temperature comparison of past (1936–1965), current (1986–2015), and future (2071–2100) values for Watershed 18 (top) and Watershed
27 (bottom). (B) Seasonal precipitation comparison of past (1936–1965), current (1986–2015), and future (2071–2100) values at Watershed 18 (top) and Watershed
27 (bottom). Spring (March–May), summer (June–August), fall (September–November), and winter (December–February).

and observed values. NME and NMAE closer to 0 indicates a
better model fit.

NME =
p− o
o

(Eq. 2)

NMAE =
∑n

t=1(
∣∣pt − ot

∣∣)
no

(Eq. 3)

Where p is model prediction and p is the mean of predictions;
o is observation and o is the mean of observations, and n is the
number of observations.

Principal Component Analysis
To reduce the data dimension of the many coupled vegetation-
soil-stream processes studied, we applied principal component
analyses based on 17 vegetation-hydrology-soil-stream variables
simulated from 1931 to 2100 under both RCP4.5 and 8.5 climate
scenarios with the PCA analysis in base R (https://www.r-project.
org/, last accessed on 08/01/2020). The 17 variables considered
are GPP, NPP, total litter mass, streamflow, evapotranspiration,
soil base saturation, soil Al:Ca, net nitrogen mineralization rate,
gross nitrogen mineralization rate, gross nitrogen immobilization
rate, nitrogen uptake rate, concentrations of NO3

−, SO4
2−,

Ca2+, Mg2+, and K+, and the acid neutralizing capacity (ANC)
of streamwater (µeq/L). Note our application of PCA is for data
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TABLE 1A | Seasonal temperature and precipitation in the past, current, and
future (RCP4.5 and RCP8.5) conditions at WS18 and WS27.

Spr Sum Fall Win Mean Differ.2 Var.3

Climate1 Temperature (oC)

WS18 Past 12.9 21.6 13.6 4.8 13.2

Current 13.9 22.5 14.6 5.2 14.1 0.8*

RCP4.5 16.7 25.2 17.1 7.0 16.5 2.5∧ 0.5

RCP8.5 18.6 27.5 19.2 9.2 18.6 4.6∧ 0.4

WS27 Past 9.0 17.9 9.8 0.8 9.4

Current 10.2 18.9 10.4 1.4 10.2 0.9*

RCP4.5 13.1 21.7 13.0 3.1 12.7 2.5∧ 0.5

RCP8.5 15.0 24.4 15.2 5.4 15.0 4.8∧ 0.6

Precipitation (cm/mo)

WS18 Past 16.9 15.6 12.7 19.6 16.2

Current 14.7 13.8 15.3 17.2 15.3 −1.0*

RCP4.5 19.8 15.7 15.8 20.2 17.9 2.6∧ 1.9

RCP8.5 20.2 17.1 16.8 22.8 19.2 4.0∧ 2.0

WS27 Past 20.0 18.4 15.3 23.0 19.2

Current 18.4 17.7 19.4 20.8 19.1 −0.1*

RCP4.5 23.3 18.8 19.7 23.4 21.3 2.2∧ 2.0

RCP8.5 22.5 19.0 20.8 24.9 21.8 2.7∧ 1.6

1Past climate refers to the period between 1936 and 1965, current climate between
1986 and 2015, and future climate between 2071 and 2100 from four GCMs under
either RCP4.5 or RCP8.5 scenario.
2“Differ” refers to mean of difference of climate between scenarios, either current
climate minus past climate (*) or future climate minus current climate (∧).
3Seasonal variability – variance of future climate minus current climate. Seasons:
Spr – March to May, Sum – June to August, Fall – September to November, and
Win – December to February.

dimension reduction and identification of important watershed
process variables. Due to the exploratory nature of this analysis,
normality of the data is not a strict requirement (Vaughan and
Ormerod, 2005; Jolliffe and Cadima, 2016).

Seasonal Analysis
We evaluated the changes of the ecological processes/states under
changing climate for spring (March to May), summer (June to
August), fall (September to November), and winter (December
to February). We tested whether the 17 variables simulated from
the PnET-BGC model are significantly different under changing
future climate (2071–2100) compared to the present (1986–2015)
in each season using paired t-tests. We first checked the normality
and temporal correlation (acf function in R) for annual time
series (one seasonal average for each season of each year) between
1986 and 2015 and between 2071 and 2100, and found that data
followed normal distribution and there did not exist temporal
correlation, therefore justifying use of paired t-tests.

We focused on the variables that are important in Principal
Component 1 and 2 and these include transpiration, GPP,
NPP, soil base saturation, N mineralization, base cation
(particularly potassium and calcium) concentrations, and
ANC in streamwater.

Change-Point Detection
Identifying a change point in the time series is the first step
in identifying a potential driver of change, and, therefore a

TABLE 1B | Statistical test of temperature and precipitation between current and
changing climate scenarios.

Temperature

RCP4.5 vs. Current RCP8.5 vs. Current

Spr Sum Fall Win Spr Sum Fall Win

WS18 *** *** *** *** *** *** *** ***

WS27 *** *** *** *** *** *** *** ***

Precipitation

WS18 *** ** – – *** *** * –

WS27 *** ** – – *** *** – –

*Indicates 0.01 < p < 0.05.
**Indicates 0.001 < p < 0.01.
***Indicates p < 0.001.
– Indicates no significant difference has been detected.
Color green means increasing from current to the future. In each season from 1986
to 2000 and from 2071 to 2100, monthly climate data were averaged first, then
the 30 data points in each of the current and changing climate scenarios were
checked for temporal autocorrelation (“acf” function in R) and normality (Shapiro
test). As the checks show lack of temporal autocorrelation and the data met
normality requirement, t-test was implemented to test whether the seasonal climate
variables under current and changing climate scenarios were statistically significant
different or not.

TABLE 2 | Comparison of observed and simulated streamflow (unit: cm/month)
and stream chemistry variables (unit: µmol/L) at WS18 and WS27.

Observed Simulated Model performance

mean SD* mean SD NME NMAE

WS18

Na+ 40.4 2.0 41.6 2.2 − 0.02 0.08

Mg2+ 12.4 0.6 11.5 0.7 0.01 0.09

K+ 11.3 0.9 10.7 0.4 0.01 0.08

Ca2+ 15.7 1.0 16.4 0.8 0.002 0.08

Cl− 14.6 0.6 16.0 2.2 0.000 0.12

NO3
−_N 0.8 0.5 0.3 0.2 − 0.65 0.74

SO4
2−_S 4.7 1.2 6.0 0.5 0.30 0.38

ANC 83.7 5.7 80.6 5.2 − 0.04 0.08

Streamflow 8.2 2.5 9.0 2.3 0.09 0.15

WS27

Na+ 22.1 1.6 22.3 2.0 − 0.02 0.09

Mg2+ 8.4 0.6 8.7 0.7 − 0.03 0.08

K+ 5.8 0.7 5.6 0.1 − 0.04 0.09

Ca2+ 8.9 0.9 8.4 0.5 − 0.06 0.08

Cl− 13.2 1.4 13.5 1.8 − 0.02 0.08

NO3
−_N 2.3 1.1 1.1 0.9 − 0.50 0.69

SO4
2−_S 11.8 1.6 11.3 1.1 − 0.05 0.13

ANC** 23.6 2.5 25.3 4.0 0.07 0.13

Streamflow 14.1 3.3 14.0 3.0 − 0.003 0.06

The water chemistry data ranged from 1972 to 2014 (ANC from 1973 to 2014),
streamflow ranged from 1936 to 2015 at WS18, and from 1947 to 2015 at WS27.
*SD denotes standard deviation. NME is normalized mean error, NMAE is
normalized mean absolute error. **ANC denotes acidic neutralizing capacity
(Driscoll et al., 1994).

mechanism for a potential regime shift (Anderson et al., 2009),
even though the existence of an abrupt change point does not
necessarily lead to instability, hysteresis or a regime shift. To
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FIGURE 3 | Principal component analysis (PCA) for the 17 variables at WS18 under RCP4.5 (A) and RCP8.5 (B). trans, transpiration; alca, ratio of Al and Ca in soil;
gpp, gross primary productivity; npp, net primary productivity; nuptake, nitrogen uptake by vegetation; netnmin, net mineralization rate of nitrogen; grossnmin, gross
mineralization rate of nitrogen; SO4, sulfate concentration in stream; dis, stream discharge; grossnimmob, gross immobilization rate of nitrogen; k, potassium
concentration in stream; anc, acid neutralizing capacity; ca, calcium concentration in stream; mg, magnesium concentration in stream; bs, base saturation in soil;
no3, nitrate concentration in stream; totlitm, total litter mass.

FIGURE 4 | Principal component analysis (PCA) for the 17 variables at WS27 under RCP4.5 (A) and RCP8.5 (B). trans, transpiration; alca, ratio of Al and Ca in soil;
gpp, gross primary productivity; npp, net primary productivity; nuptake, nitrogen uptake by vegetation; netnmin, net mineralization rate of nitrogen; grossnmin, gross
mineralization rate of nitrogen; SO4, sulfate concentration in stream; dis, stream discharge; grossnimmob, gross immobilization rate of nitrogen; k, potassium
concentration in stream; anc, acid neutralizing capacity; ca, calcium concentration in stream; mg, magnesium concentration in stream; bs, base saturation in soil;
no3, nitrate concentration in stream; totlitm, total litter mass.

further investigate the impact of climate change on watershed
processes, we conducted change-point analyses in the time
series (1931–2100) of PCA score means of the first principal
components (PC1s) that explained the largest variance of the

variables (Anderson et al., 2009), to identify the years when
PC1s exhibited or are projected to exhibit significant shifts, using
the R-package of “changepoint” (Killick and Eckley, 2014). We
have selected the binary segmentation (“BinSeg” in R) method.
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We checked for the normality between each change point
(i.e., years) identified and they all met the normal distribution
requirement (on annual basis). The same change point detection
methods were used for the climate data between 1931 and 2100
with climate data after 2016 being the predictions for each
RCP scenario (RCP4.5 and 8.5). For both PC1s and climate
data (1931–2100) change-point detections, we implemented the
program to allow the number of change points to vary from
three to ten. However, our analysis consistently revealed only
five change points.

RESULTS

Our research revealed three key findings. (1) The impacts
of climate change on the forest ecosystem at Coweeta vary
by season. There is not a particular season during which
impacts are most prevalent, but rather the seasonal response
depends on the biogeochemical processes considered. (2) Five
change points were found over the interval 1930–2100 for
PC1s, which explained 50–60% of the variance of the key

biogeochemical processes/states, driven primarily by temperature
or precipitation. (3) Vegetation seems to be impacted by climate
change more at the higher-elevation WS27 than lower-elevation
WS18, while soil and stream processes seem to be more
impacted at WS18.

Climate Change
For the two studied watersheds in the Coweeta Basin, observed
air temperature increased from the past (1936–1965) to the
current condition (1986–2015) and is projected to continue
to increase between 2.5 and 4.8oC from current conditions
to the future (2071–2100) (Figure 2 and Table 1A). WS27
shows a slightly greater temperature increase than WS18
from current to the future conditions, particularly under
RCP8.5 (+4.6oC at WS18 vs. +4.8oC at WS27). Under
RCP4.5, temperature increase in spring is slightly larger
than in summer followed by fall and winter (increase of
2–3◦C except winter with an increase of < 2◦C). Under
RCP 8.5 summer has the largest temperature increase
followed by spring, fall, and winter (increase of 4.5–5.5◦C

FIGURE 5 | (Continued)
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FIGURE 5 | Probability distribution of simulated transpiration at WS18 (A) and WS27 (B) under future climate compared to values under current climate by season.
Current (blue), RCP4.5 (green), and RCP8.5 (red). The red color of the labels in winter shows different range of y-axis compared to the other seasons.

except winter with an increase of 4◦C) (Table 1A and
Figure 2A).

Observed precipitation decreased from past to current
conditions during all the seasons except for fall. In contrast,
future precipitation is projected to increase ranging from
2.2 to 4.0 cm/mo in all seasons in the future compared
to current conditions with the fall showing the smallest
increment (Table 1). Both air temperature and precipitation
projections for Coweeta follow a similar pattern of regional
climate projections for the southeast U.S. (Intergovernmental
Panel on Climate Change [IPCC], 2014). Noticeably, the
temperature and precipitation projections for each season
under changing climate scenario (2071–2100) are statistically
significantly different from those under current climate scenario
(1986–2015) (Table 1B).

Model Performance
The PnET-BGC mostly effectively simulated monthly and
annual vegetation-soil-stream processes at both WS18 and
WS27 based on the stream chemistry data from 1970s to

2014 and streamflow data from 1930s/1940 to 2014, with
NME ranging from –0.06 to 0.09 (Table 2). However, NO3

−

was underestimated at both WS18 and WS27 and SO4
2−

was overestimated at WS18. The model also underestimated
the variance of NO3

− and SO4
2−. Measured concentrations

of SO4
2− at WS18 showed an increase between 1980 and

1990s that are seemingly inconsistent with long-term decreases
in atmospheric deposition of S during the same period
after implementation of the Clean Air Act (1970) and
Clean Air Act Amendments (1990) (USEPA7 accessed on
08/01/2020). However, this pattern may reflect desorption
of soil SO4

2− to streamwater that was absorbed during
prior decades of elevated atmospheric S deposition (Rice
et al., 2014). The nitrogen cycle is more complex than
other element cycles and it strongly linked to processes of
vegetation and microbial activities, and therefore, PnET-BGC
simulation of stream NO3

− involves larger uncertainties than
other solutes (Fakhraei et al., 2016; Shao et al., 2020). In
addition, contrary to a decrease in both observed nitrogen

7https://www.epa.gov/clean-air-act-overview/evolution-clean-air-act
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deposition and simulated nitrate leaching since the 1970s,
both watersheds show an unexplainable increasing trend of
observed nitrate concentration in streams, which the model
does not reproduce.

In addition to the long-term observed streamflow and
stream chemistry concentrations, our model simulations were
consistent with other published observed data (Supplementary
Table 3), including NPP, soil base saturation, and net nitrogen
mineralization rate. Model simulated average aboveground
NPPs at WS18 and WS27 between 1971 and 1980 are
close to published data from Day and Monk (1977) (8,056
vs. 7,965 kg/ha-yr). For net nitrogen mineralization rate,
the 10-year averages (1971–1980) are 2.5 and 3.1 mg N/kg
soil-mo at WS18 and WS27, which are within the range
reported by Knoepp and Swank (1998) based on the samples
collected along an elevation gradient (<1.2 – 3.8 mg N/kg
soil-mo), and consistent with the pattern that the highest
values occur at elevations over 1,000 m. WS18 at the lower
elevation has higher soil base saturation (BS) of 24.9%
than higher elevation WS27 with a lower BS of 4.0%
with simulated data from 2001 to 2010 (Supplementary
Table 3). This simulated range is close to the data range
obtained from USDA Forest Services in 2008 soil survey
from 9.2 to 19.7%.

Principal Component Analysis
The PCA analysis indicated that the first three principal
components explained ∼ 85% of variance of the 17 variables
analyzed (Supplementary Tables 4, 5 and Figures 3, 4).
Particularly, PC1 explained 63.2 and 68.8% of total variances
under RCP4.5 and RCP8.5 respectively at WS 18. PC1s explained
50.6% and 57.1% of the variances under RCP4.5 and RCP8.5,
respectively, at WS 27. Based on the eigenvectors, the first
principal components (PC1s) represent the contrast between
primary production and transpiration vs. soil and stream ANC,
and the second principal components (PC2s) depict nitrogen
mineralization rate. The third principal components (PC3s)
represent the concentrations of sulfate in stream at WS18 under
RCP4.5 and at WS27 under both RCP4.5 and RCP8.5, while the
PC3 at WS18 under RCP8.5 represents streamflow.

Seasonal Variability
Based on the PCA analysis, the evaluation of the impacts
of climate change on watersheds of Coweeta focused on
the processes that are important in PC1s and PC2s during
different seasons. Particularly we focus on seasonal changes of
transpiration, NPP, and stream ANC in the main text. The figures
for other process variables are described in Appendix Figures

FIGURE 6 | (Continued)
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FIGURE 6 | Probability distribution of simulated net primary productivity (NPP) at WS18 (A) and WS27 (B) under future climate compared to values under current
climate by season. Current (blue), RCP4.5 (green), and RCP8.5 (red). The red color of the labels in winter shows different range of y-axis compared to the
other seasons.

(Supplementary Figures 1–7). As transpiration, GPP, and NPP
are negligible in winter, the probability density distributions are
very concentrated, unlike in other seasons.

For both watersheds, transpiration (Figure 5) is projected
to increase under changing climate. However, the increase in
transpiration at WS18 is smaller than at WS27, probably due to
higher water stress. Even though transpiration increases, annual
streamflow (Supplementary Figure 1) under future climate is
projected to increase with increasing precipitation (26.8 and
32.7% at WS18 under RCP4.5 and 8.5; 11.9 and 14.7% for WS27
under RCP4.5 and 8.5, respectively). Seasonally, winter is the
season that shows pronounced increase at both watersheds.

The simulated impact of climate change on GPP is not as
dramatic as for the water cycle (Supplementary Figure 2).
However, it shows increases in spring and fall under both
climate scenarios, increases in summer under RCP 4.5, but
slight decrease under RCP 8.5. The increase of GPP at WS27 is
more dramatic, especially in spring, summer and fall. Overall,
annual GPP is projected to increase due to the extended growing
season (2071–2100 compared to 1986–2015: increase by 13.8

and 17.9% for WS18, and 26.9 and 43.0% for WS27 under
RCP4.5 and 8.5 scenarios, respectively). The simulated impact
of climate change on NPP is moderate (Figure 6). On an
annual basis, NPP is projected to increase although decreases
are evident in the summer due to increases in respiration.
Under RCP8.5, NPP shows decreases in summer and a larger
variance in winter, with some high values. During summer,
NPP is lowered in WS18 as much as 43.2 g biomass/m2-mo or
23.1% under RCP8.5. For WS27, simulated NPP increases during
all seasons under RCP4.5. With RCP8.5, NPP shows decreases
during summer. NPP is projected to increase to a greater degree
in WS27 than WS18 due to less water stress associated with
temperature increase.

At WS18, stream ANC is projected to decrease during all
seasons under future climate with the larger decrease under RCP
8.5 at WS18 (Figure 7). The impact of climate change on stream
ANC is minimal at WS27, with small decreases under RCP8.5.

Under climate change, the most conservative element, Cl−,
as well as basic cations (Na+, K+, Ca2+, and Mg2+) and
SO4

2− exhibited decreases in concentration but increases in
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total flux associated with streamflow increases. The flux of
the base cations in soil is mainly associated with release from
wood litter. Calcium concentrations (Supplementary Figure 3)
in streamwater decrease dramatically in all seasons at WS18.
A similar decrease is also evident in WS27, but not as marked.
Potassium concentrations decrease (Supplementary Figure 4)
in stream water during all seasons at WS18 with the most
distinct change occurring in winter and spring. Decreases in
potassium are also evident at WS27 in all seasons with the
most distinct change occurring in winter. Sulfate concentration
(Supplementary Figure 5) in stream water decreases in both
watersheds, especially in winter under RCP8.5 and with lower
values than projected under RCP4.5 at WS18. Compared to the
conditions under current climate, future sulfate concentration
will be less varied at WS27 but showing more distinct change
than at WS18. WS18 has the highest median sulfate concentration
in summer while at WS27, the highest concentrations occur in
fall and winter.

Soil processes and properties are predicted to change as well,
including soil base saturation, Al:Ca concentration in soil, and
nitrogen mineralization rate. Soil base saturation is indicative
of the soil acid-base status with lower values symptomatic of

more acidic soil. High concentrations of Al:Ca in soil can
be toxic to biota.

Soil base saturation (Supplementary Figure 6) shows
decreases during all the seasons at both watersheds under
RCP4.5 and 8.5. Decreases are pronounced under both
climate scenarios at WS18, but only marginally under
RCP8.5 at WS27. Al:Ca in soil shows a dramatic increase
in all the seasons, but increases are most pronounced
during summer at WS18 under RCP4.5 and 8.5. Al:Ca in
soil increases particularly during summer at WS27. The
simulated impact of climate change on N mineralization is
small (Supplementary Figure 7). In WS18 under RCP8.5,
the N mineralization rate shows some decrease. At WS27,
the mineralization shows some decrease in winter but
increase in summer.

Overall, the response of individual forest processes to climate
change varies by season. Furthermore, vegetation seems to be
more sensitive to climate change at WS27 than WS18, while soil
processes and stream chemistry seem to be more impacted by
climate change at WS18 than at WS27.

To more comprehensively present the impact of climate
change, we summarized the changes of the 17 model-derived

FIGURE 7 | (Continued)
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FIGURE 7 | Probability distribution of simulated acid neutralizing capacity (ANC) at WS18 (A) and WS27 (B) under future climate compared to values under current
climate by season. Current (blue), RCP4.5 (green), and RCP8.5 (red).

key watershed process variables in each season between current
(1986–2015) and future (2071–2100) for both RCP4.5 and 8.5
scenarios, particularly, the directions of the changes and the
significance levels of the statistical tests (Table 3).

In the vegetation processes, GPP and NPP are predicted to
increase significantly except summer under RCP8.5. This can be
explained by higher water stress during this season.

In the hydrology process, transpiration will significantly
increase during almost all seasons as both precipitation and
temperature are projected to increase from present day to
the end of this century. Streamflow at the Coweeta basin is
trending to increase in winter and spring seasons and decrease
in summer and fall seasons, but the predictions in the future
are not significantly different from current conditions except
winter under RCP8.5.

The soil processes captured in base saturation across both
watersheds and seasons are predicted to significantly decrease,
which indicates a greater loss of base cations from the soil
under changing climate. Along with the reduction of base
saturation, the Al:Ca ratio is predicted to increase at all seasons
under both climate scenarios, and the increase is statistically
significant in all seasons. Additionally, some nitrogen processes

are negatively impacted, such as gross nitrogen mineralization
and immobilization. For the net nitrogen mineralization, results
are complicated due to counteracting processes being involved
at the same time.

In streamwater chemistry, the concentrations of major cations
and sulfate are predicted to significantly decrease, even though
soil losses of cations to nearby water flows (streams) are
predicted to increase, probably due to the higher streamflow.
ANC shows significant decrease in four seasons at WS 18 under
both climate change scenarios and spring, summer, and fall
at WS 27 under RCP8.5. The change of nitrate concentration
mostly shows decrease.

We also found broad-scale climatic variability like El Niño-
Southern Oscillation (ENSO) affected seasonal biogeochemical
processes. Oceanic Niño Index (ONI that indicates ENSO)
had a negative relation with the integrated biogeochemical
processes (PC1) in the winter and early spring (January to
April) at WS18 and WS27 (Supplementary Figure 8). Strong
El Niño years generally had lower PC1 (Supplementary Figures
8, 9), indicating lower productivity and higher ANC in soil
and streams, probably due to lower temperature in winter-
early spring.
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TABLE 3 | Significance test of 17 watershed state variables between current (1986–2015) and future (2071–2100) for the two studied watersheds (GPP, Gross Primary
Productivity; NPP, Net Primary Productivity; Totlitter, Total litter produced; ANC, Acid Neutralizing Capacity; Trans, Transpiration; BS, Base Saturation; GrossNMin, Gross
Nitrogen mineralization rate; GrossNImmob, Gross Nitrogen Immobilization rate; NetNMin, Net Nitrogen mineralization rate; Nupdate, Nitrogen uptake rate).

WS18 WS27

RCP4.5 RCP8.5 RCP4.5 RCP8.5

Spr Sum Fall Win Spr Sum Fall Win Spr Sum Fall Win Spr Sum Fall Win

GPP *** *** *** *** *** – *** *** *** *** *** ** *** *** *** ***

NPP *** – *** *** *** *** *** *** *** *** *** – *** *** *** ***

Totlitter *** *** *** – *** *** *** *** *** *** *** *** *** *** *** ***

Mg2+ *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

K+ *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

Ca2+ *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

NO3
− *** *** *** *** *** *** *** *** *** *** *** *** *** ** *** ***

SO4
2− *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

ANC *** *** *** *** *** *** *** *** ** – – *** *** * * –

Streamflow – – – – – – – * – – – – – – – **

Trans *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

Al/Ca *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

BS *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

GrossNMin – – – ** *** *** *** *** – – – ** – ** – **

GrossNImmob *** *** *** *** *** *** *** *** * – – * * – ** ***

NetNMin *** *** – – *** *** * – – – – *** – *** * –

Nuptake *** *** * ** *** *** ** *** * – – – *** *** *** ***

For significance level: ‘*’ for p < 0.05 and >0.01; ‘**’ for p < 0.01 and > 0.001; ‘***’ for p < 0.001; and ‘–’ for p > 0.05.
Green color indicates an increase and red color indicates an decrease from current to the future climate scenarios.

Temporal Trend of Biogeochemical
Processes and Change Points
From the time series of the scores of the PC1s that explained more
than 50% of the total variances, we derived five similar decadal
change points for WS 18 and 27 (Table 4 and Figure 8). The
change points occurred earlier at WS18 than at WS27 during
1980s and 2010s but are projected to occur at similar time
points or even earlier at WS 27 relative to WS18 under future
changing climate. This shift may imply that future climate might
accelerate changes of biogeochemical processes at the higher-
elevation WS27 site. The last change points are predicted to
occur 20 years earlier under RCP8.5 (2059 at WS18 and WS27)
compared to those under RCP4.5 (2079 at WS18 and 2074 at
WS27) at the lower- and higher-elevation forests, respectively.
The groups based on the time of change points of the PC1s
confirmed their validity due to minimum overlaps between these
different groups (Figures 3, 4).

When we compared the change points of temperature and
precipitation to those of PC1, we found the first few change
points of PC1 matched those of temperature at WS18, implying
temperature change is likely an important driver of watershed
response (Table 4 and Supplementary Figure 10). However,
precipitation change appears to be the main driver for the change
points of PC1 in 2079 at WS18. At WS27, precipitation is likely
the main driver for the change points in 2010s and the 2070s,
while temperature is the main driver for the change points in
1989, 2030s and around 2060. The climatic driver is not clear for
the change point in 1969. In general, the last change points of

PC1 under RCP4.5 (2070s) at both watersheds are likely driven by
precipitation, while they seem to be driven by temperature under
RCP8.5 (2050s–2060s).

DISCUSSION

Spatial and Seasonal Variability
In this analysis, we found vegetation is affected by climate
change more at the higher elevation than at lower elevation,
consistent with Lamprecht et al. (2018). The impacts of climate
change on the hydrochemical processes have shown large spatial
variability. Evapotranspiration and streamflow are predicted to
increase under both moderate (RCP4.5) and high-end (RCP8.5)
climate change scenarios at both WS18 and WS27. The predicted
increase of evapotranspiration with climate change is consistent
with patterns found in seven forest watersheds across four
northeastern states in the United States (Pourmokhtarian et al.,
2017). Annual streamflow, however, is highly variable among
these watersheds, with some watersheds predicted to increase
while others predicted to decrease, depending on whether
the increase of evapotranspiration is offset by the increase
of precipitation (Campbell et al., 2011). The hydrological
predictions are different at the Andrews Experimental Forest in
the northwestern U.S., where it is predicted that there will be a
20–71% decrease in annual transpiration under future climate
change corresponding to 49–86% decreases in foliar biomass
due to drought stress (Dong et al., 2019). The decrease in
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TABLE 4 | Change points of the scores of the first principal components (PC1s)
and climate (temperature and precipitation).

CP1 CP2 CP3 CP4 CP5

WS18 PC1-RCP4.5 — 1981 2010 — 2039 — 2079

PC1-RCP8.5 — 1985 2010 2023 2039 2059 —

Temperature-RCP4.5 — 1984 — 2023 — — —

Temperature-RCP8.5 — — 2010 — 2038 2067 —

Precipitation-RCP4.5 — — — — — — 2076

Precipitation-RCP8.5 — — — — 2043 — 2081

WS27 PC1-RCP4.5 1969 1989 2015 — 2038 — 2074

PC1-RCP8.5 1969 1989 2017 — — 2059 —

Temperature-RCP4.5 — 1989 — — 2038 — —

Temperature-RCP8.5 — 1997 — — 2038 2067 —

Precipitation-RCP4.5 — 1998 2012 — — — 2076

Precipitation-RCP8.5 — 1998 2012 — — — 2081

The results are average of four climate models for two future climate scenarios.

evapotranspiration could contribute to higher streamflow at this
forest. In the western U.S. where future climate is projected to
become warmer and dryer, gross and net nitrogen mineralization
are predicted to increase, and NPP is also predicted to increase,
due to feedbacks between warmer temperatures and enhanced
nitrogen mineralization in forests. In the Coweeta Basin,
Knoepp and Swank (1998, 2002) found that temperature and
temperature-moisture interactions significantly affected net soil
nitrogen mineralization based on a series of long-term studied
plots at different elevations. When temperature was warmer and
soil moisture content was higher, nitrogen mineralization was
reported to be greater, consistent with our findings (Table 3).
From the relatively low elevation oak-pine dominated watershed
to the higher elevation watershed dominated by northern
hardwoods, net nitrogen mineralization rate showed a strong
spatial pattern with the highest rate observed at the highest
elevation site, even though other factors (e.g., C:N ratio in soil)
besides temperature and soil moisture influenced soil nitrogen
processes both in the laboratory and in situ.

Climate change is projected to have variable effects on
ecosystem responses across the seasons. Even though annual
streamflow is projected to increase, these increases are less
pronounced in the growing season. Spring may be impacted
substantially because of loss of snowpack (Reinmann et al., 2018)
and early leaf-out timing that can extend the growing season
and exacerbate drought stress. A hotter summer together with
a warmer spring, coupled with temporally unevenly distributed
precipitation, could increase drought stress and risks of wildfire
(Table 3). The drought stress could extend to other seasons. The
fall season presents the lowest percent increase of precipitation
among all the seasons. With higher evapotranspiration driven by
higher temperature, streamflow is projected to decrease thereby
causing more droughts. During winter, relative temperature
(three times greater at WS27 in winter under RCP8.5) increases
are particularly pronounced, which decreases precipitation
inputs as snow and the magnitude and duration of snow coverage
(Table 1A, Campbell et al., 2011; Pourmokhtarian et al., 2017).

Effects of climate change are difficult to evaluate during the
“shoulder seasons” due to the large year to year variability. As
a result, impacts during these periods are generally ignored,
however, more and more research shows transitional seasons are
affected by climate change to a greater degree than previously
thought (Xie et al., 2015; Goss et al., 2020). Traditional
definition of seasons and transition between seasons are predicted
to become less clear as we may experience shorter spring
and fall, while winter and summer will become longer, and
most of the year will fall into more extreme hot and cold
temperatures (Thomson, 2009). The impact of climate change on
biogeochemical process during the shoulder transitions needs to
be studied further.

The Impact of CO2 on Ecosystems
Elevated CO2 associated with climate change tends to increase
plant WUE, i.e., increases primary productivity and reduces
evapotranspiration (Reyer et al., 2015), which benefits forests
by increasing their drought tolerance although there are
counteracting effects to consider. Elevated CO2 could
also increase plant leaf area, therefore, making trees less
drought tolerant (Ghannoum and Way, 2011). Reduced
evapotranspiration could also lead to increases in leaf
temperature, thereby increasing temperature stress. Increased
productivity under elevated CO2 may increase litter (Hyvonen
et al., 2007), leading to increased litter accumulation (if
decomposition cannot catch up) and higher vulnerability to fire.
Many studies on the response of forest habitats to increased
CO2 are made at the small scale of individual trees or small
plots. Scaling up the effect to the ecosystem scales involves
considerable uncertainty. Furthermore, the fertilization effect
of CO2 is commonly found only in young trees (Korner et al.,
2007). In our study, we assume elevated CO2 increases primary
productivity at the entire watershed without considering other
counteracting effects (e.g., leaf temperature increase or age of
trees), therefore our prediction of primary productivity under
climate change is likely an optimistic estimate.

Uncertainties of Model Predictions
It is important to predict climate as accurate as possible in
order to make valid predictions of ecosystem function change.
This has been facilitated using downscaling method in our
study. However, broad-scale climate variability like ENSO may
enhance changes in temperature or precipitation (El Niño and
La Niña Years and intensities at8 and accessed on 08/01/2020) at
local spatial scales, and therefore has impact on biogeochemical
processes as what we found out in this study. Generally,
during El Niño years, the southeastern U.S. experiences cooler
temperatures and wetter conditions in winter-early spring9

accessed on 08/01/2020. Together with the North Atlantic
Oscillation (NAO), it was found that the southern Appalachians
have higher snowfall and cooler temperature in winter during El
Niño and negative NAO phases (Eck et al., 2019). In contrast, La
Niña and positive NAO years result in warmer and drier winter

8https://ggweather.com/enso/oni.htm
9https://www.weather.gov/tae/enso
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FIGURE 8 | Change points of the first principle component of the simulated biogeochemical variables at WS18 and WS27 (top left – WS18 RCP4.5, bottom left –
WS18 RCP8.5, top right – WS27 RCP4.5, and bottom right – WS27 RCP8.5).

weather. As the prediction of El Niño’s intensity using current
climate models involves large uncertainty (Wang et al., 2019),
predictions of temperature, precipitation and biogeochemical
processes are particularly challenging under climate change.
In order to reduce uncertainties of predicted biogeochemical
processes, broad-scale climate variability needs to be accounted
for in the climate change models.

PnET-BGC is a watershed-scale model that is operated on
a monthly time step, so it is not well suited to address finer
spatial and temporal resolutions (Merganicova et al., 2019).
This model treats the vegetation in the watershed as a big
leaf, therefore, it does not consider the difference among tree
types and fine structures (Elliott et al., 2015), adaption (Jandi
et al., 2019), or explicitly accounts for shift of vegetation types.
Previous studies show that the critical transitions of vegetation
type in mountain forests (Reich et al., 1995; Albrich et al.,
2020) may change the fundamental relationships between foliar
N concentration and maximum photosynthesis rate, which is
one of the two fundamental relations that PnET-BGC is built
on (Gbondo–Tugbawa et al., 2001). Furthermore, the function
of understory shrub vegetation in cycling nutrients, carbon, and
water (Rothstein, 2000) is another component not considered
in this model. Different stages of vegetation not only have
different capabilities of nutrient uptake, photosynthesis, cycling
of carbon and water, but larger and older trees may be also
more susceptible to stress such as drought and storms (Clinton

et al., 1993, 2003; Clinton and Baker, 2000), which is not
depicted in the model.

This PnET-BGC model requires a number of empirical data
to calibrate, some of which are not available for the study
watersheds (such as Al and DOC concentrations), making
calibration for these parameters less robust. In addition, the
model under-predicts nitrate concentrations in streamwater,
suggesting the need to critically review this submodule
for applications at Coweeta watersheds. Other simulations
using PnET-BGC have been challenged to accurately simulate
nitrogen dynamics (e.g., Shao et al., 2020). This model is
designed to predict long-term hydrologic and biogeochemical
function at the watershed scale (Aber and Federer, 1992;
Gbondo–Tugbawa et al., 2001), combined with the lack
of feedback between vegetation and climate, it is not an
ideal tool to derive regime shifts. Other components lacking
in the PnET-BGC further contribute to uncertainties in
the simulations. These include the lack of multiple soil
depths (two-layer model available but harder to calibrate
so we used one-layer model), and lack of consideration of
phosphorus dynamics.

Despite these aspects that can be improved, PnET-BGC
provides a useful tool to evaluate the impact of climate change
on forested ecosystems over long time scales (multiple decades
to centuries). When depicting complex ecosystems, as many
other ecological models have done, it is necessary to make
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assumptions and acknowledge inherent uncertainties (Aber and
Federer, 1992). In order to capture the uncertainty, we have
applied two climate change scenarios. The consistent response
of biogeochemical cycles provides higher confidence in our
predictions on the climate change impact.

Implications for Forest Management
This research will provide useful information for resource
managers in anticipation of the potential risks forests may face
under climate change. Forest managers can consider possible
measures such as tree planting and forest restoration, wildfire
control, establishment of mixed stands, planting better adapted
species or varieties to mitigate adverse impacts in the future. For
monitoring, the forest managers may consider watershed specific
and seasonal specific evaluations instead of focusing on growing
seasons or one process in soil or vegetation only.

We are facing an uncertain future based on (1) the greater
uncertainty in prediction for precipitation than for temperature
(Intergovernmental Panel on Climate Change [IPCC], 2014),
and (2) precipitation will be the main driver for future change
points under RCP4.5. Considering the change that may occur in
high-elevation forests directly influences ecosystems downslope
and downstream and the highly uncertain future projections,
measures should be taken to protect, conserve and restore these
high-elevation forests. The improved understanding of forests’
non-linear responses to a changing environment gained from this
research can potentially guide decisions in forest management
even with large uncertainties, for example, detection of early
warning signs of potential regime shifts and selection of species
planted in restoration.

CONCLUSION

We predict both positive and negative impacts of climate
change on hydrochemical processes, for example, we predict
increases in acidification of soil and streamwater despite
an increase in primary productivity under climate change.
The predicted hydrochemical changes show strong seasonal
variability depending on biogeochemical processes. We also
find climate change will likely have a greater impact on soil
processes at the lower elevation watershed and on vegetation
processes at the higher elevation watershed. The change-point
analysis suggests biogeochemical cycles in vegetation, soil, and
streams may be accelerating at higher-elevation. These findings
that include integrated hydrochemical processes in temporal and
spatial (lower-elevation vs. higher-elevation) contexts provide
multi-dimensional metrics that can be used in part or as a
whole by southern forest managers to evaluate the benefits

and disadvantages in anticipation of future climatic change to
improve the resilience of forest ecosystems and downstream
surface water in the future. Additionally, the integrated
modeling framework can be applied to specific management
practice scenarios of interest to yield more detailed quantitative
predictions for in-depth analysis of these management plans.
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