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Ecological land classifications serve diverse purposes including sample stratification,
inventory, impact assessment and environmental planning. While popular, data-driven
classification approaches can require large training samples, frequently with limited
robustness to rapid environmental change. We evaluate the potential to derive useful,
durable ecological land classifications from a synthesis of multi-decadal satellite imagery
and geospatial environmental data. Using random forests and multivariate regression
trees, we analyze 1982–2000 Landsat Thematic Mapper (L45) and 2013–2020
Harmonized Landsat Sentinel (HLS) imagery to develop and then test the predictive
skill of an ecological land classification for monitoring Mediterranean-climate oak
woodlands at the recently established Jack and Laura Dangermond Preserve (JLDP)
near Point Conception, California. Image pixels were processed using spectral and
temporal mixture models. Temporal mixture model residual scores were highly correlated
with oak canopy cover trends between 2012 and 2020 (r2 = 0.74, p << 0.001).
The resulting topoclimatic-edaphic land classification effectively distinguished areas of
systematically higher or lower oak dieback during 2012–2020 severe drought, with
a fivefold difference in dieback rates between land classes. Our results highlight the
largely untapped potential for developing predictive ecological land classifications from
multi-decadal satellite imagery to guide scalable, ground-supported monitoring of rapid
environmental change.

Keywords: California, classification tree, Dangermond Preserve, drought, Landsat, oak woodland, Sentinel-2,
temporal mixture model

INTRODUCTION

Global environmental change alters terrestrial vegetation at all ecological scales and levels of
organization (Jackson et al., 2009). At site-to-regional scales especially germane for management,
plant species and communities continually respond to shifting climate norms and extremes,
altered biogeochemical cycles and disturbance regimes, invasive exotic species, and changing
land use and land management (Vitousek, 1994). Anticipating and coping with this rapid and
extensive vegetation change will require integrated monitoring, modeling and experimentation –
carefully designed across spatiotemporal scales so as to effectively capture key ecological traits
(Franklin et al., 2016).
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Satellite remote sensing is now widely used for cost-
effective, landscape-scale monitoring of vegetation and associated
biodiversity (Wang and Gamon, 2019; Cavender-Bares et al.,
2020). To be most ecologically informative, systematic global
satellite image archives must be analyzed in concert with targeted
local ground and/or aerial datasets (Jetz et al., 2016; Barnett
et al., 2019). Obtaining sufficient ground samples for such multi-
scale monitoring is a persistent challenge due to resource and
access constraints (Michaelsen et al., 1994), although evolving
technologies such as drones are helping alleviate these issues
(Lahoz-Monfort and Magrath, 2021). Various approaches have
been developed to improve ground sampling efficiency, most
of which depend on stratified sampling (Brewer and Hanif,
2013; Sparrow et al., 2020). Mapped bioclimate, edaphic factors,
management regime, potential natural vegetation, and existing
vegetation often serve as stratifying variables (Williamson et al.,
2016). But for most regions, the number of possible variable
combinations and sample stratification schemes is practically
limitless. While the choice of variables and variable combinations
can be narrowed by expert opinion or multivariate analysis
(e.g., Rowe and Sheard, 1981; Davis and Dozier, 1990; Hargrove
and Hoffman, 1999), no single consensus approach has yet
been widely adopted. The effective selection of a parsimonious
combination of variables thus remains a fundamental open
question in terrestrial ecology.

Ecological stratification of land surfaces – or more generally,
ecological land classification – is further complicated by ongoing
environmental change. Vegetation-environment associations
may change through time: for example, due to the influence of
new pests and pathogens, extreme climatic events outside the
range of recent historical variation, or even typical interannual
climate variability (Lawler et al., 2015). Robust land classification
schemes must retain predictive skill in the face of such changes.
In theory, current data-driven approaches could overcome this
problem, but to do so would require large, long-term field-based
training datasets. Such expansive, long-term data records can be
expensive to establish, and impossible to collect retrospectively.

Multi-decadal satellite imagery may offer a solution to this
training problem. In principle, historical satellite data can provide
direct observations of vegetation responses to both intermittent
environmental fluctuations and longer-term environmental
change. Examining how regional vegetation dynamics have
varied in recent decades as a function of local biogeophysical
properties could help develop predictive ecological classification
schemes that account for ongoing climate change. Complexities
abound, however, and this hypothesis remains to be tested.

Michaelsen et al. (1994) demonstrated the power of regression
tree analysis of satellite-based phenology to guide stratified
vegetation sampling and monitoring in a temperate grassland
landscape. In that study, seasonally varying Landsat vegetation
indices were treated as the dependent variables and the
landscape was stratified based on combinations of terrain,
land management, and land cover that best predicted the
spectral indices. Similarly, Prince and Steininger (1999) related
3 years of 1-km resolution Advanced Very High Resolution
Radiometer imagery to gridded bioclimatic variables to produce a
biophysical stratification of the Amazon Basin, for the purpose of

helping design ground sampling for the Large Scale Biosphere-
Atmosphere Experiment in Amazonia. In these examples, the
final land classification systems were based on digital maps
of environmental factors most related to imagery, rather than
being based directly on the imagery itself. The reasoning behind
this approach is that multispectral satellite imagery, while
correlated with important biophysical features, also contains
scale-dependent, transient information that limits the power of
classified images for ecological land classification. That being
said, long (multi-decade) satellite image time series could
provide unparalleled information for producing classification
schemes based on spatial association of image series with more
stable, recognizable terrain features such as topography and soil
properties. The potential ecological utility of such long-baseline
time series for stratification across ecological units remains
underexplored.

Here we evaluate the potential for ecological land
classifications derived from multi-decadal satellite imagery
to inform efforts to monitor and adaptively manage vegetation
response to ongoing climate change. More specifically, we
analyze 30 m Landsat Thematic Mapper (L45) and Harmonized
Landsat Sentinel (HLS) imagery to develop and then test the
predictive skill of an ecological land classification for monitoring
oak woodlands at the recently established Jack and Laura
Dangermond Preserve (JLDP) near Point Conception, California
(see Table 1 for acronyms used in this article). Our study
was motivated by a discussion among preserve managers and
scientific advisors regarding the design of adaptive restoration
trials for coast live oak (Quercus agrifolia) woodlands. In locating
sites for these trials, advisers asked, “Are there systematic
differences in oak woodland environments across the preserve
that should be considered in designing a ground program of
restoration research, monitoring and adaptive management?”

The present study sought to answer this question by using
random forest and multivariate regression tree analyses to classify
oak woodland sites based on the association of L45 imagery
with digital maps of biophysical factors. We tested the power
of the resulting land classification for predicting spatiotemporal
patterns of oak woodland decline that occurred during extreme
drought between 2012 and 2020, as estimated from HLS imagery.
Through image analysis we discovered systematic differences
in oak woodland dynamics in different landscapes of JLDP
related to solar radiation, geology, soils, and local climate. The
resulting land classification should provide a good basis for
designing an oak woodland monitoring and adaptive restoration
program. Our results highlight the largely untapped potential for
developing predictive ecological land classifications from multi-
decadal satellite imagery to guide scalable ground-supported
monitoring of rapid environmental change.

MATERIALS AND METHODS

Study Area
The 9,903 ha JLDP is located at the transition from Northern
to Southern California Current marine ecoregions (N 34.49◦, W
120.44◦). JLDP also bridges the Southwestern and Central Coastal
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TABLE 1 | Imagery and GIS data, with associated acronyms used in the text.

Acronym Term Notes

ARID Aridity index 100 × mean annual precipitation/potential evapotranspiration for the period 1971–2000 (see Flint and Flint, 2012;
Franklin et al., 2013 for details).

C1220 Canopy cover change, 2012–2020 Tree canopy cover difference in air photo samples from May 2012 and June 2020.

DEM Digital elevation model U.S. Geological Survey National Elevation Database, 10 m resolution,
https://gdg.sc.egov.usda.gov/Catalog/ProductDescription/NED.html

FLOW Flow accumulation Derived from the 10 m DEM, FLOW is the area upslope of a cell expected to contribute water to that cell. The
upslope cell’s contribution to the contributing area was weighted by tan(slope). FLOW was re-sampled to 30 m
using bilinear interpolation and then log10 transformed prior to analysis.

GEOL Surficial geology Stratigraphic formations and sub-formations as mapped by Dibblee (1950).

HLS Harmonized Landsat Sentinel Intercalibrated and merged Landsat 8 and Sentinel-2 multispectral imagery, https://hls.gsfc.nasa.gov/

JLDP The Jack and Laura Dangermond
Preserve

Preserve owned by the Nature Conservancy where the present study was conducted.

L45 Landsat 4/5 Landsat Thematic Mapper Collection 2 multispectral imagery available from https://earthexplorer.usgs.gov/

mamsl Meters above mean sea level Elevation (m) as estimated from the 10 m DEM.

MAP Mean annual precipitation Average calendar-year precipitation for the period 1971–2000 (mm).

NAIP National Agriculture Imagery Program Digital ortho photography provided by the U.S. Department of Agriculture Farm Service Agency
(https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-programs/naip-imagery/).

PCLAY Percent clay fraction Mapped percent soil clay fraction based on SSURGO tabular data, USDA Natural Resources Conservation Service.

pH pH Mapped soil pH, based on SSURGO tabular data, USDA Natural Resources Conservation Service.

PSAND Percent sand fraction Mapped percent soil sand fraction based on SSURGO tabular data, USDA Natural Resources Conservation Service.

sEM Spectral endmember Spectrum associated with a specific ground feature class in multispectral imagery. SEMs modeled for this paper
include (1) soil and non-photosynthetic vegetation; (2) illuminated photosynthetic vegetation; (3) shadow or water.

SMA Spectral mixture analysis Method to estimate sub-pixel fractions of spectral end members (sEMs) in a multi-spectral image.

SOIL Soil mapping unit Soil series subdivided by slope classes, as mapped by Shipman (1981) and distributed in SSURGO GIS format by
the USDA Natural Resources Conservation Service.

SOLAR Solar radiation Integrated December – June (inter-solstice) overcast sky radiation (KWH/m2) calculated using the 10 m DEM and
resampled to 30 m in ArcGIS (Fu and Rich, 2002).

TMAX Maximum temperature of the warmest
period

Mean maximum daily temperature (◦C × 10) of the warmest month for the period 1971–2000 (Flint and Flint, 2012;
Franklin et al., 2013).

tEM Temporal endmember Time series of illuminated photosynthetic vegetation fraction, associated with a specific land cover class. Temporal
analog of spectral endmember.

TMM Temporal mixture model Method to estimate sub-pixel fractions of endmember temporal patterns based on a time series of multi-spectral
imagery.

TMR Temporal mixture model residuals The difference between the illuminated photosynthetic fraction of a pixel based on temporal mixture modeling and
the same fraction at each time step based on spectral mixture analysis of 2013–2020 HLS imagery.

TMR(1–3) Temporal mixture residual component 1 Principal component scores for components 1–3 of TMR imagery.

floristic regions of California. Owned and managed by The
Nature Conservancy, JLDP has global significance for coastal,
marine, and terrestrial biodiversity conservation (Butterfield
et al., 2019; Figure 1).

The area supports a mosaic of grassland, shrubland, woodland,
and forest communities that reflect underlying diversity in
topography, climate, geology, and soils. Here we focus on the
JLDP’s coast live oak (Q. agrifolia) forest and woodlands. Coast
live oak is an evergreen red oak that is widespread in the region,
often dominating closed forests, open woodlands, and savanna
with grass or shrub-dominated understories (Callaway and Davis,
1998). Vegetation classified as coast live oak forest and woodlands
is characterized by >20% tree cover and greater than 50% relative
tree cover of Q. agrifolia, per class definitions based on the
Manual of California Vegetation (Sawyer et al., 2009). Based
on recent detailed mapping, coast live oak woodlands occupy
2,440 ha or 25% of the preserve area (WRA Inc, 2017; Figure 2).

Elevations at JLDP range from sea level to 645 meters
above mean sea level (mamsl), and oak woodlands occur from
roughly 15–520 mamsl. Rugged topography produces large

spatial variation in solar radiation load and surface hydrology
(Figure 2). Modeled JLDP-wide annual temperature for the
period 1971–2000 averaged 13.2◦C, but thermal regimes vary
with elevation and distance from the coast (Flint and Flint, 2012).
The coastal zone is under a strong marine inversion layer with
summer base height typically 250–400 mamsl, and frequently
experiences morning fog and relatively cool temperatures during
summer months compared to more inland areas and areas
above the marine boundary layer (Dorman and Winant, 2000;
Supplementary Figure 1).

Annual rainfall averages 46.7 cm between November and
April, increasing at higher elevations in the northwest and central
portions of the preserve (Supplementary Figure 2). The ratio
of precipitation to potential evapotranspiration (aridity index) is
higher (i.e., more mesic) in these same areas (Figure 3).

Surficial geology and soils can exert a strong control on
distributions of tree and shrub species in the region (Wells,
1962). Dibblee (1950) mapped 26 geologic formations or sub-
formations on JLDP, but 92% of coast live oak woodlands occur
on only 11 units and 70% occur on four geologic formations:
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FIGURE 1 | Location map showing California floristic region boundaries, and 2020 orthophoto of the Jack and Laura Dangermond Preserve (JLDP, N 34.49◦,
W 120.44◦). Shrublands and oak forests are dark green and grasslands are brown in this image.

Monterey shale, Matillija sandstone, Jalama micaceous shale, and
Anita shale (Figure 4). Much of the Monterey formation is
mantled by moderately deep, well drained, acidic, shaly-loam
soils of the Santa Lucia series and Lopez-Santa Lucia complex.
The shallow, well-to-excessively drained Gaviota sandy loam and
San Andreas coarse sandy loam soil series are widespread on
Matillija, Jalama, and Anita geologic formations (Shipman, 1981;
Supplementary Figure 3).

Based on available fire perimeter data the eastern portion
of JLDP has been fire-free since at least 1950. Shrublands in
the northwestern portion of the preserve experienced prescribed
burns designed to increase forage production associated with
cattle operations (i.e., range improvement) in 1981, 1998, and
2000 (Supplementary Figure 4). Wildfires spread into the
western portion of JLDP in 1981, 2002, and 2004 (Supplementary
Figure 5). The 1981 wildfire perimeter encompassed 234 ha

of oak woodland; the 2002 and 2004 wildfire perimeters
encompassed 18 and 1 ha of oak woodland, respectively.

Like most of California, JLDP experienced extreme drought
between 2012 and 2016 and generally droughty conditions
from 2012–2019. Statewide, the drought severely impacted water
supply, forage production, and woody plant health and survival
(Lund et al., 2018; Warter et al., 2021). Elevated, drought-induced
tree water stress and mortality were documented for oak and
conifer species in many regions of California (e.g., Asner et al.,
2016; Das et al., 2020) and were also observed but until this study
not formally analyzed at the preserve.

Satellite Image Analysis
To produce an ecological land classification for JLDP we analyzed
L45 Collection 2 Level-2 imagery (Table 1), including 134 images
acquired between November 1982 and December 2000. Relative
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FIGURE 2 | Map of coast live oak (Quercus agrifolia) woodlands on the preserve superimposed on modeled December–June (solstice-to-solstice) solar radiation
(kWH/m2). Grid resolution of the woodland mask is 30 m and solar radiation is computed from a 10 m digital elevation model.

to Landsat Collection 1, Collection 2 data feature substantially
improved absolute geolocation, as well as cloud-optimized
GeoTIFF format and globally available Level-2 surface reflectance
and surface temperature products (Wulder et al., 2019).

To test the ecological land classification, we analyzed
169 HLS surface reflectance images acquired between April
2013 and December 2020. HLS merges Landsat 8 with the
European Space Agency’s Sentinel-2 constellation to provide
a single intercalibrated multispectral image archive at 30 m
resolution (Masek et al., 2018). Data streams are atmospherically
corrected, spatially co-registered, BRDF (bidirectional reflectance
distribution function) normalized, and bandpass adjusted to
provide a single data stream achieving roughly 3–5 days global
revisit since the 2017 launch of Sentinel-2b.

Remote sensing analysis for both L45 and HLS imagery was
performed in three steps. In the first step, linear spectral mixture
analysis (SMA) was applied to each cloud-free image. For each
pixel in a multispectral image, SMA estimates the areal fractions
of a small number of spectral endmembers (sEMs) (Adams
et al., 1986; Gillespie, 1990; Smith et al., 1990). We used a

set of three generalized sEMs specific to L45 and three sEMs
specific to HLS that represent: (1) soil and non-photosynthetic
vegetation substrates; (2) illuminated photosynthetic vegetation
(V-fraction); and (3) dark targets like shadow and water. Analyses
of diverse compilations of Landsat images have shown that
these three generic sEMs mix linearly to characterize the vast
majority of terrestrial surfaces (Small, 2004; Small and Milesi,
2013). Both sets of sEMs used here were based on extensive,
previously published analyses: the 1982–2000 Landsat sEMs from
Sousa and Small (2017) and the 2013–2020 HLS sEMs from
Small (2018).

In the second step, cloud-free V fraction images were
compiled into image time series and unmixed using a linear
temporal mixture model (TMM) approach (Quarmby et al., 1992;
Piwowar et al., 1998; Lobell and Asner, 2004). We apply the
specific approach described in Sousa and Davis (2020): briefly,
a Mediterranean-climate oak landscape is considered a mixture
of evergreen perennial, deciduous perennial, annual herbaceous,
and unvegetated temporal endmembers (tEMs). Conceptually,
considering a multitemporal V fraction pixel as a linear mixture
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FIGURE 3 | Modeled mean aridity index (100 × annual precipitation/annual potential evapotranspiration) for the period 1971–2000 at 90 m resolution. Driest areas
(brown) are preferentially distributed toward lower elevations.

of tEMs is analogous to considering a one-time multispectral
pixel as a linear mixture of sEMs.

In the third step, we examined drought impacts on oak
woodlands by applying a novel technique of TMM residual
analysis. We extended the approach of mixture residual analysis
from the spectral domain to the temporal domain (Sousa et al.,
2022). Conceptually, this asked the question: What residual
temporal signal observed in the V fraction time series is not
accurately modeled by a least squares solution of decadally
stable tEMs? This question can be addressed by computing the
difference between the observed V fraction time series and a
modeled V fraction time series based on linear combinations
of tEMs alone. HLS TMM residual time series (TMRs) were
calculated for each oak woodland pixel. The first three principal

component scores of the TMR time series (TMR1, TMR2, and
TMR3) were used to assess spatial patterns of vegetation change
from 2013 to 2020.

The theoretical basis for the temporal mixture residual
approach was conceived as follows:

1. In theory, pixels with interannually stable vegetation
phenologies should be well-represented by a simple
linear mixture of tEMs. Such stable areas should be
characterized by low mixture model misfit and near-zero
TMR time series.

2. In contrast, pixels with interannually unstable vegetation
phenologies – here, areas subject to drought-associated
oak dieback – should be poorly represented by a simple
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FIGURE 4 | Geology underlying mapped oak woodlands. Formation codes: Cretaceous (K), Quaternary (Q), Tertiary (T), alluvium (Qa), Monterey shale (Tm), Cozy
Dell micaceous shale (Tcd), Jalama micaceous shale (Kjsh), Jalama sandstone and siltstone (Kjss), Matillija sandstone (Tma), Monterey shale lower siliceous shale
(Tml), Sacate sandstone and shale (Tsass), Jalama sandstone (Tja), Allegria formation (Ta), Anita shale (Tan).

linear mixture of tEMs. Such unstable areas should be
characterized by high mixture model misfit and large
TMR time series amplitudes. Because the TMR gives
temporally explicit account of this misfit, fidelity is retained
in capturing both progressive and abrupt changes.

3. The low-order principal components of the TMR time
series should provide a concise characterization of the
major spatiotemporal patterns of deviation from the linear
TMM. To the extent that oak dieback is the major multi-
year, landscape-scale vegetation change within the study
area, it should be well represented in the low-order TMR
dimensions (e.g., 1, 2, and 3).

Estimating Oak Cover Change
To calibrate TMR scores against oak canopy cover change
between 2013 and 2020 we quantified live tree canopy cover

in National Agriculture Imagery Program (NAIP) digital
orthophotos acquired on 5 May 2012 and 7 June 2020. The
2020 image was resampled from 60 cm to 1 m resolution to be
consistent with the resolution of the 2012 image. Eighty sample
sites were distributed evenly among decile classes of the TMR1
scores. Samples were confined to mapped oak woodlands and
to TMR1 decile “patches” at least 60 × 60 m in extent to avoid
isolated and edge pixels. We overlaid 25 points in a 5 × 5
10 m grid array over the sample area and visually assigned each
intercepted point location in the photo to 1 of 3 classes: (1) live
tree canopy, (2) not live tree canopy, and (3) shadow that was too
dark to assign the point to Class 1 or 2. Percent live tree canopy
in each sample site was calculated as:

Cy = 100× (n1 + 0.5× n3)/25 (1)
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where Cy is % live canopy in year y, n1 is the number of points
in Class 1, and n3 is the number of points in Class 3. Oak cover
change from 2012 to 2020 (C1220) was calculated as C2020 –
C2012. Canopy change was related to TMR scores by simple linear
regression using the R base function lm (R Core Team, 2019).
Given moderately high test sample linear correlation between
TMR dimensions 1–3 (r = 0.50–0.59), the final calibration was
produced using only TMR1.

We note that in theory this approach could yield a direct
estimate of canopy dieback from aerial imagery alone – if enough
aerial imagery were available to provide repeat coverage of all
relevant oak landscapes, and if enough analyst time were available
to do the manual estimation of canopy change. The value of
the Landsat-based approach is that it can be automated for any
relevant oak landscape on Earth, going back to the 1980s, and
can also provide temporally explicit information about the onset,
rate, and duration of dieback events.

Mapped Environmental Variables
Gridded GIS variables were all resampled to 30 m resolution
to match the spatial resolution and map projection of the
L45 and HLS imagery. We chose a limited set of bioclimatic
and edaphic variables for ecological land classification that are
known to influence Q. agrifolia distribution and dynamics in the
region and that were mapped with sufficient reliability and at
an appropriate scale for landscape analysis. These included three
bioclimatic factors, two topoclimatic factors, and five edaphic
factors (Table 1). While 10 variables may seem manageable at first
glance, note that combinatorial explosion – e.g., as recognized
decades ago in physical chemistry and metabolomics (Morowitz
et al., 2000; Schuster, 2000) – nevertheless results in a deep
parameter space with a vast number of possible thresholds and
inter-variable interactions.

Bioclimatic variables included mean annual precipitation
(MAP), average maximum daily temperature of the warmest
month (TMAX, a proxy for marine layer influence), and aridity
index (ARID, calculated as 100 × MAP/PET, where PET is
modeled potential evapotranspiration). MAP, TMAX, and ARID
for the period 1971–2000 were extracted from statewide 90 m
grids and oversampled to 30 m using bilinear interpolation. The
statewide grids were initially produced by downscaling 4 km
PRISM grids (Daly et al., 2008) using spatial Gradient and Inverse
Distance Squared weighting (GIDS) as described in Flint and
Flint (2012) and Franklin et al. (2013).

Topoclimatic variables included solar radiation (SOLAR) and
hillslope flow accumulation (FLOW). Integrated December–June
(winter to summer solstices) solar radiation was calculated in
ArcGIS using a 10 m digital elevation model (DEM) (Fu and
Rich, 2002; Figure 2). The 10 m DEM was also used to model
flow accumulation in ArcGIS. We weighted a cell’s contribution
to the contributing area by tan(slope). Solar radiation and flow
accumulation grids were re-sampled to 30 m using bilinear
interpolation. Flow accumulation was then log10 transformed
prior to analysis (Supplementary Figure 6).

Surficial geology (GEOL) was simplified to 11 classes that
underly 92% of JLDP oak woodlands. Remaining areas were
lumped into “Other Geology” (Figure 4). Mapped soil series

(SOIL) were similarly simplified to 12 series covering 92% of oak
woodlands, plus a 13th group for all other series (Supplementary
Figure 3). We also analyzed the tabulated physical and chemical
soil properties for all series, including percent sand fraction
(PSAND), percent clay fraction (PCLAY), and pH (pH).

Grids of areas mapped as wildfires or prescribed fires based on
1980–2020 fire perimeter data from CalFire1 were coded based on
the year of the fire event, and treated as categorical variables in
the land classification analysis. For example, a cell could have one
of four values for wildfire: not burned, burned in 1981, burned in
2002, or burned in 2004. For prescribed burns, a cell was coded as
not burned, burned in 1981, burned in 1998, or burned in 2000.

Predictive Land Classification
All 30 m oak woodland pixels with values for all variables (co-
registration edge effects led to missing values for some variables)
were included in the analysis (n = 17,788 spatial pixels).

All statistical analyses were conducted using R v. 3.6.1 (R Core
Team, 2019). We conducted initial exploratory analyses with
Random Forest (R package randomForest v. 4.6-14) to identify
potentially important variables for predicting spatiotemporal
variation in canopy cover in the 1981–2000 L45 imagery
(Breiman, 2001). Based on model pseudo-R2, we set the
number of trees grown to 500 and randomly sampled three
predictor variables at each split of the tree. We examined the
relationship between tree size and model fit – measured as
variance explained – for tree sizes ranging from 2 nodes to 20
nodes. We also produced variable importance plots to evaluate
which environmental factors were consistently influential for
parsimonious tree sizes.

A final ecological land classification was produced by
multivariate regression tree analysis of the first three principal
components of the temporal feature space of the L45 V fraction
time series using the R package mvpart 1.6-2 (Larsen and
Speckman, 2004; De’ath, 2014). Multivariate regression trees are
an extension of regression tree analysis from a single dependent
variable to multiple dependent variables (Larsen and Speckman,
2004). At each node of the tree, multivariate analysis of variance
is used to select the splitting variable that best partitions total
variance in the dependent variables. Large trees were produced
and then pruned back to only those splits that explained at least
2% of starting variance. The resulting stratification was applied to
GIS data layers to map oak woodland land classes on the preserve.

We tested the association of L45-derived land classes with
HLS imagery by measuring the percent of variance in HLS
TMR 1–3 that was explained by the land classification. For
comparative purposes we also undertook the same random
forest and multivariate regression tree analysis performed on
the first three principal components of the L45 V fraction time
series to the first three principal components of the HLS V
fraction time series.

We measured association between HLS TMR1, TMR2, and
TMR3 scores and environmental factors using Pearson’s product
moment correlation (r) and analysis of variance. We evaluated
the skill of the ecological land classification for partitioning oak

1https://frap.fire.ca.gov/frap-projects/fire-perimeters/
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canopy change from 2013 to 2020 by analyzing variance in TMR1
scores and estimated C1220 values at sequential splits in the
multivariate classification tree and for the tree as a whole.

RESULTS

Image Time Series
As described in section “Materials and Methods,” we analyzed
statistical derivatives from two distinct image time series:
the 2000–2011 Landsat 4–5 Thematic Mapper dataset (L45)
and the 2013–2020 HLS dataset. For each time series, we
computed both: (a) the principal components (PCs 1–3) of
the vegetation fraction time series, and (b) the PCs of the
temporal mixture model residual (TMRs 1–3). The first three
principal components explained over 85% of variance in both
L45 and HLS time series. For both L45 and HLS imagery,
spatial patterns of PCs 1–3 revealed broad differences between
oak woodlands in northwestern or southern compared to
central-eastern regions of JLDP (Figures 5A,B). The dominant
modes of variability were evergreen canopy cover (PC1 in
both cases) and seasonal greening with a peak in springtime
and decreasing green canopy cover throughout the remainder
of the calendar year (combination of PC2 and PC3 in both
cases). Topographic variability was also observed, presumably
driven by a combination of real, solar radiation-driven variability
in vegetation structure and composition along with artifacts
associated with illumination and sun-sensor geometry that
persisted despite topographic and BRDF correction.

The spatial pattern of the TMR scores was similar to
patterns in the L45 and HLS TMMs (Figure 5C), but
upon close inspection, mixture residuals exhibited less
topographically related variation and more spatially coherent
local neighborhoods – particularly in the central-eastern
region where large contiguous areas form an east-west belt
of high TMR1 scores (Figure 5C). This belt is underlain by

Matillija sandstone, Anita shale, Gaviota sandstone, and Allegria
sandstone. Much of this area is mapped as Gaviota sandy
loam soil.

The temporal trajectory of image mean TMR scores reveals
the JLDP-wide trend in evergreen canopy cover during the multi-
year drought. TMR1 scores decline steeply between 2014 and
2016, then more gradually from 2016 to 2017 before leveling
off from 2018 to 2020 (Figure 6). In contrast, the average
trajectory for TMR2 decreased slightly from 2013 to 2015 and
then increased from 2016 to 2020 (Figure 6). The trajectory for
TMR3 remained relatively flat from 2014 to 2020 (Figure 6).
TMR1 is negatively correlated with MAP (r = −0.44), TMAX
(r = −0.39), and ARID (r = −0.23) and only weakly correlated
with SOLAR, FLOW, and soil physical or chemical properties
(|r| < 0.05) (Table 2).

Oak Canopy Cover Change
Based on air photo analysis, TMR1 is a good proxy for oak
canopy change from 2012 to 2020, explaining 74% of the
variance in observed oak canopy change in 2012–2020 air photos
(Figure 7). Each 0.1 increase in TMR1 represents an estimated
4.8% decrease in live oak canopy over the 8-year interval
(C1220 = 9.23−48.35 × TMR1, degrees of freedom = 78, adj.
r2 = 0.738, p << 0.001).

Ecological Land Classification
Random forest and univariate regression tree analyses of the
first three principal components of L45 TMM scores are
summarized in Supplementary Tables 1, 2. Overall, small trees
(4–5 nodes) captured 22–33% of the variance in each of the L45
TMM principal components. Trees of larger sizes yielded only
minor incremental gains in model performance (Supplementary
Figures 7–9). The most important model variables were the
same for random forest and regression tree models: SOLAR,
GEOL, SOIL, ARID, and TMAX. Fire history variables were

FIGURE 5 | Principal component images. Panels (A,B) show false color composites where PC 1, 2, and 3 correspond to the red, green, and blue channels of each
image. Panel (A) shows PC results for Landsat 4/5 (2000–2011) and panel (B) shows HLS (2013–2020). Panel (C) shows the first principal component only of the
HLS temporal mixture residual (TMR1).
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FIGURE 6 | Time series of dominant spatiotemporal patterns in the temporal mixture residual (red, TMR1; green, TMR2; blue, TMR3). Note variations in both timing
and amplitude of temporal mixture model misfit, with largest changes coinciding with severe drought years (2013–2016).

consistently of low importance. Roughly equivalent variance was
explained by random forest models and pruned regression trees
of the same size.

Multivariate regression tree analysis yields a 5-node tree
that explains 22.5% of the total variance in the first three L45
TMM principal components (Figure 8). Oak woodland sites are
partitioned into high and low solar radiation classes and two
groups of geologic formations. Classes 1, 2, and 4 are dominated
by Monterey shale (Tm) and located mainly in the northwestern
and southern parts of JLDP, while Classes 3 and 5 are dominated
by Matillija sandstone (Tma), Jalama micaceous shale (Kjsh), and
Anita shale (Tan) and form an east-west belt in the central and
eastern parts of JLDP (Figure 9). Classes 1 and 2 are separated
based on aridity (Figure 8). The spatial pattern of these five

TABLE 2 | Correlation of HLS temporal mixture model residual (TMR) scores with
continuous bioclimatic and soil properties.

TMR1 TMR2 TMR3

MAP −0.44 0.27 0.22

TMAX −0.39 0.25 0.19

ARID −0.23 0.13 0.13

SOLAR 0.02 0.01 −0.04

FLOW 0.02 −0.04 0.01

pH 0.03 −0.02 −0.02

PSAND 0.02 −0.01 −0.02

PCLAY 0.05 −0.02 −0.01

classes across the preserve shows obvious similarity to patterns
in the L45 TMM scores as well as to HLS TMM scores and HLS
TMR1 scores (cf. Figures 5, 9).

The five land classes based on 1982–2000 L45 imagery explain
as much or more of the variance in the 2013–2020 HLS TMM PC
images (Table 3). The stratification is also relatively effective at
partitioning variance in TMR1 scores (27%), less so with TMR2
(4.9%), and TMR3 (12.8%).

Random forest models capture 27–50% of the variance in
HLS TMM PCs 1–3. As with the models based on L45 imagery,
SOLAR, GEOL, SOIL, ARID, and TMAX are the most influential
variables, along with MAP, in predicting TMM PC scores. Fire
history is relatively unimportant. Similarly, 3–4 node regression
trees based on SOLAR, soil factors, and ARID account for 38–
48% of variance in HLS TMM PCs 1–3. FLOW also appears as an
important variable for predicting HLS TMM3 scores.

Surficial geology, SOIL, MAP, and TMAX also prove most
important in random forest and regression tree models predicting
TMR scores (Supplementary Tables 1, 2). A 4-node tree based
on SOIL, pH, and MAP explains 36% of the variance in
HLS TMR1 scores.

Association of Land Classes With Oak
Canopy Dynamics
As noted above, stratifying HLS TMR1 scores by land classes
accounts for 27% of the variance in the scores. Mean scores
for Classes 1, 3, and 5 are relatively high (0.41, 0.52, and
0.46, respectively) compared to Classes 2 and 4 (0.24 and 0.25)
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FIGURE 7 | Scatterplot of oak canopy change from 2012 to 2020 (C1220) vs. TMR1 scores based on analysis of 80 sample sites in May 2012 and June 2020 digital
orthophotos. The fitted regression model is: C1220 = 9.23–48.35 ×TMR1. Adj. r2 = 0.74, p << 0.01.

(Figure 10). Based on the linear relationship to oak canopy cover
change (Figure 7), this equates to an average reduction in live oak
canopy of 10–16% in Classes 1, 3, and 5 between 2012 and 2020
compared to a 2–3% decline in Classes 2–4. These differences are
not related to solar radiation, as the first split of the tree into
high and solar radiation classes explains less than 0.1% of total
variance. Instead, the association of TMR1 score and land classes
is due to subsequent splits by geology and aridity.

DISCUSSION

Ecological land classifications are produced for various purposes
such as sample stratification, ecosystem inventory and mapping,
environmental planning and impact assessment. Whether based
on expert opinion or multivariate statistics, classification analyses
are best undertaken for exploration or prediction, rather
than for inference about ecological processes. Although land
classifications should be grounded in ecological theory and
knowledge (Rowe and Sheard, 1981), it is not appropriate
to assign a causal or mechanistic basis to land classes.
A classification scheme is purpose-driven and successful to the
extent that it is predictive of variation in ecological attributes
or processes of interest across the landscape. The classification

produced here using 1982–2000 L45 imagery demonstrated
predictive utility in distinguishing areas of the preserve where
oak woodlands have similar defining features (geology, soils, and
topoclimate) and manifested significantly different impacts from
severe drought that occurred between 2012 and 2020.

Oak Woodland Dynamics
Our case study focused on classifying coast live oak woodland
sites for sampling, monitoring, and siting restoration
experiments. As is often the case, predictor environmental
variables co-varied spatially, making it difficult to single out any
one factor controlling oak woodland changes through time. Such
co-variation should contribute to a more robust stratification
than one based on a single factor, particularly as that co-variation
occurs at site-to-landscape spatial and temporal scales.

The ecological land classes differed systematically in the extent
of drought-associated oak canopy dieback. Our hypothesis is
that this reflects systematic class differences in rooting-zone
water availability. This could be tested by monitoring plant
water status (i.e., pre-dawn Xylem Pressure Potential) for oaks
in different land classes during extreme drought vs. non-drought
water years. A second hypothesis is that class differences in oak
canopy dynamics will also be manifested as class differences in
associated understory plant community composition. This could
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FIGURE 8 | Multivariate regression tree for the first three principal
components from temporal mixture modeling of L45 imagery, 1982–2000.
Numbers in the blue boxes are total deviance and percent of the starting
sample (n = 17,788). Splitting criteria are in the green boxes. At each split,
subsets to the left meet the criterion (Y) and those to the right do not (N). See
Table 1 for explanation of variables and acronyms. Bold numbers at the
bottom correspond to class numbers in Figure 9.

be tested by class-stratified sampling of plant community species
composition, functional trait diversity, and structure.

Our analysis also revealed areas (Classes 2 and 4) that showed
little or no drought impact. Restoration could focus on sites
with similar environmental properties where oak canopy has
been reduced by historical clearing. Those areas would bet-
hedge against future warming trends and drought episodes. Our
analysis also revealed areas with high oak canopy loss (Classes 1,
3, and 5). Those areas would appear to be good candidates for
restoration based on historical conditions, but would be more
vulnerable to future warming and episodes of extreme drought.

Recent fire history also co-varied with edaphic and bioclimatic
variables but, somewhat surprisingly, was not influential in most
of the random forest or regression tree models or in the final
land classification. This may be because fires were incompletely
mapped, because mapped fires had only minor impacts in coast
live oak woodlands, and/or because fire effects in oak woodlands
occurred at a finer scale than could be represented with fire
perimeter data. This highlights the point that we did not formally
address the issue of spatial scale-dependence in our analysis.
Research is underway to test how well the approach used here
performs across larger spatial extents or with finer- or coarser-
grain terrain data or satellite imagery.

Topographic, edaphic and bioclimatic controls on coast live
oak distribution and cover have been previously documented for
central coastal California, and the influence of these variables in
the random forest and regression tree models is consistent with
what is known about the species’ environmental associations.
Although coast live oak occurs on a wide variety of substrates in
many settings, the species reaches relatively high cover regionally
on specific rock types such as the siliceous shale of the Monterey
Formation (Wells, 1962) and the arkosic sandstone of the

Matillija and Gaviota Formations (Callaway and Davis, 1993).
At finer scales, oak cover increases on slopes with lower solar
radiation loads and on lower footslopes and riparian habitats
(Davis and Goetz, 1990).

Less well understood is how coast live oak population and
canopy dynamics differ within and between landscapes as a
function of site properties. At the Dangermond Preserve we
observed areas of extensive dieback of coast live oak between
2012 and 2020 almost certainly related to a multi-year severe
drought event (but see Chacon et al., 2020). We documented
pronounced, systematic differences in coast live oak canopy
trends on different sites. The strong association of canopy
dynamics with surficial geology and soils suggests that differences
in subsurface water storage capacity as well as precipitation input
could have played a role in the extensive oak dieback in some
areas and stable or increasing canopy in others (e.g., Hahm
et al., 2019). McLaughlin et al. (2020) observed variation in blue
oak (Quercus douglasii) mortality during the 2012–2016 drought
related to bedrock lithology as well as to variation along hillslope
hydrologic gradients. The land classification derived here could
be useful to designing future ecohydrological studies to assess
differential vulnerability of coast live oak populations to projected
warmer drier conditions under 21st century climate change. It
could also help to direct restoration efforts (e.g., away from areas
that appear especially sensitive to extreme drought).

Solar radiation is a primary variable in the land classification,
but oak canopy trends during the drought event were not
obviously related to local solar radiation load. In heavily impacted
areas, dieback and mortality appear to be as likely on north-
facing slopes – and on lower hillslopes with higher modeled flow
accumulation – as on other topo-facets. Both solar radiation and
flow accumulation can only be approximated with DEMs and
the algorithms used here, so additional ground surveys would be
required to confirm this result.

Ecological Land Classes From
Multi-Temporal Satellite Imagery
Ecological land facets have been advocated for conservation
planning and decision making in the face of climate change (e.g.,
Anderson and Ferree, 2010; Beier and Brost, 2010). Challenges
with this approach include the relative importance of biotic
vs. abiotic drivers of species distributions and dynamics, spatial
and temporal scale-dependence, as well as spatial and temporal
variation in the relationship between landforms and local climate
conditions (Lawler et al., 2015). In areas lacking detailed ground
surveys and monitoring, land classification using long-baseline
satellite imagery may contribute to a refined definition of, and
operational approach to, mapping and monitoring landscape-
specific land facets.

Imagery-guided land classification may also support mapping
and monitoring of local climate refugia (Hannah et al.,
2014). Refugium identification and protection is of obvious
importance for 21st century environmental conservation, but
often necessarily relies on indirect landscape cues due to absence
of detailed historical records. The duration of the Landsat archive
may now provide ecologists with sufficient statistical power
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FIGURE 9 | Ecological land classes for areas currently occupied by coast live oak woodland at the preserve. Class numbers refer to terminal nodes in the
classification tree shown in Figure 8.

to state with quantitative confidence the location, extent, and
historical stability of potential refugia (Dubinin et al., 2018).
Such information could prove valuable to land managers and
conservationists, especially in scenarios with limited resources
and competing interests where accurate prioritization is critical.

We note that analysis based on either the remote sensing or
the environmental datasets alone could provide a useful land
classification in its own right. However, using the remote sensing
data alone would ignore the depth of information about the
landscape which has been compiled over decades of study in
the area, and using the environmental data alone would not
leverage the decades of effort and billions of dollars dedicated

to building, calibrating, and maintaining satellite image archives.
Our analysis thus seeks to leverage both datasets – the GIS
layers and the independent RS time series – in the hopes that
each would provide complementary information that the other
dataset does not. The skill of this method in predicting spatial
patterns in drought-associated canopy dieback provides evidence
that such an approach can be useful, at least for the location and
duration of this study.

Although Landsat imagery has been used by ecologists
for decades, recent advances have considerably increased the
feasibility of long-baseline ecological studies. The temporal
depth and image-to-image stability of satellite time series
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TABLE 3 | Image variance explained by the 5-class land stratification derived from
Landsat imagery, 1980–2000.

Imagery Variable % variance explained

L45 TMM 1 23.3

TMM 2 19.53

TMM 3 14.7

HLS TMM 1 21.8

TMM 2 43.6

TMM 3 15.1

HLS model residuals TMR 1 27.0

TMR 2 4.9

TMR 3 12.8

FIGURE 10 | Boxplots of TMR1 scores split by five ecological land classes
identified by multivariate regression tree analysis of L45 TMM imagery. The
right axis shows the predicted change in percent oak canopy cover from 2012
to 2020 based on linear regression (cf. Figure 7).

now enables a fundamentally different type of analysis than
was previously possible. While TMMs gave satisfactory
results for the study reported here, the optimal way (or
ways) to exploit this information for given applications
remains an active area of research. Recent advances in non-
linear dimensionality reduction and manifold learning may
be especially fruitful in capturing ecologically important
phenomena that are subtle but coherent contributors to
image data (Small and Sousa, 2021; Sousa and Small, 2021,
2022).

We are encouraged by the image-guided land classification
results for the Dangermond Preserve and see several
opportunities for additional research. Ground sampling of
vegetation structure and composition can test the association
of the land classes with plant biodiversity on the preserve.
Further, our approach should be tested in other landscapes and
for non-oak vegetation types. An important reason underlying
the success of this approach was likely the phenologically
distinct nature of coast live oak canopies relative to other

plants at JLDP. Landscapes hosting plant communities with
less distinct phenologies are less likely to yield such effective
monitoring results.

Remote sensing technology is rapidly evolving in spatial,
temporal, and spectral dimensions. This study focused on
the power of long-baseline multispectral image time series,
but important work remains to harness emerging datasets
with shortened revisit time, finer spatial detail, and more
comprehensive spectral coverage. In addition to the extension
of established records through follow-on governmental missions
like Landsat 9, commercial operators like Planet and open-
source aggregator partnerships like Collect Earth2 offer important
new avenues for research. That being said, and as evidenced
by the Long-Term Ecological Research (LTER) program, some
questions in terrestrial ecology can only be addressed long-
term measurements. For these questions, the Landsat image
archive will remain invaluable as a record of multi-decade
environmental change.

Lastly, the mid-late 2020s hold substantial potential for
the promise of repeat satellite-based imaging spectroscopy
(hyperspectral imaging) to become a reality. NASA’s plans for
an Earth System Observatory replete with a Surface Biology
and Geology mission (Margetta, 2021) are complemented
by precursor missions like EMIT (Green et al., 2020) and
international partner missions like JAXA’s HISUI (Matsunaga
et al., 2016), DLR’s DESIS and EnMAP (Guanter et al., 2015;
Krutz et al., 2019), and ESA’s PRISMA and CHIME (Candela
et al., 2016; Nieke and Rast, 2018). Preparation for these
spaceborne missions will involve substantial effort directed
toward repeat airborne surveys to demonstrate the ability of
such sensors to capture seasonal variations in important plant
traits. Aircraft and ground data from the National Ecological
Observatory Network (NEON) (Schimel et al., 2007) are
increasingly available to address such questions across diverse
United States landscapes. And indeed, just such a NASA-led
campaign, the SBG High Frequency Time Series (SHIFT) is
currently underway at JLDP. Efforts like these beg for additional
studies integrating field, airborne, and satellite datasets to help
ecologists understand how multi-temporal imaging spectroscopy
can best inform ecological land classification for ground-based
plant biodiversity management and monitoring.
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