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Wildfire and burn severity influence soil microbial communities during post-fire recovery.
If post-fire differences in microbial communities affect soil carbon (C) pool dynamics,
altered microbial communities could influence the transition of forests from C sources
to C sinks during ecosystem recovery. For example, fire may change the abundance
of copiotrophic and oligotrophic bacteria, influencing the kinetic rates of soil C
pools due to differences in C-acquisition strategies and nutrient requirements. We
assessed differences in soil bacterial communities and soil C pool kinetics 1 year
after a wildfire in a mixed-conifer forest in northern California, United States. We
determined whether differences in bacterial communities and soil C pools were
related to copiotrophic versus oligotrophic life history strategies. Specifically, we
assessed bacterial community oligotrophy versus copiotrophy based on phyla relative
abundances and predicted 16S gene copy numbers. We then determined whether
these life-histories were correlated with C pool kinetic rates. We further determined
whether C degradation metabolic pathways predicted using PICRUSt2 were related
to C pool kinetics. We found that copiotrophic bacteria exhibited greater abundance
in burned areas than unburned areas, evidenced by increases in 16S rRNA gene
copy number and by taxonomic classifications. Furthermore, the abundance of
predicted metabolic pathways associated with fast-cycling C compounds increased
with severity, including carbohydrate, alcohol, and amine degradation pathways,
suggesting increased copiotrophic metabolic strategies. In contrast, the abundance of
metabolic pathways of slow-cycling aromatic C compounds did not change, indicating
oligotrophic metabolic strategies did not increase. The kinetic rate of the active C pool
was positively related to the copiotrophic metabolic pathway of alcohol degradation,
and negatively related to oligotrophic pathways like aromatic compound degradation.
The links between C pool kinetics and phylum-level life-strategy classifications were
ambiguous. Overall, our results suggest that metabolic life-strategies are related to soil
C pool kinetics and could have short- and long-term impacts on soil C persistence

Frontiers in Forests and Global Change | www.frontiersin.org 1 May 2022 | Volume 5 | Article 873527

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://doi.org/10.3389/ffgc.2022.873527
http://creativecommons.org/licenses/by/4.0/
mailto:jaron.adkins@usu.edu
https://doi.org/10.3389/ffgc.2022.873527
http://crossmark.crossref.org/dialog/?doi=10.3389/ffgc.2022.873527&domain=pdf&date_stamp=2022-05-11
https://www.frontiersin.org/articles/10.3389/ffgc.2022.873527/full
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-05-873527 May 13, 2022 Time: 7:3 # 2

Adkins et al. Copiotrophic Bacteria Increase With Severity

during post-fire recovery. In the short-term, increased copiotrophy could increase soil C
efflux via rapid cycling of labile C pools. However, over the longer-term lower prevalence
of oligotrophic strategies could allow aromatic compounds associated with pyrogenic C
to accumulate, increasing stable soil C stocks.

Keywords: microbial metabolism, microbial community composition, fire severity, soil carbon stability, soil carbon
pools

INTRODUCTION

Wildfire frequency and severity have increased in the forests
of the western United States over the past several decades
(Westerling, 2006; Dennison et al., 2014), a trend that is predicted
to continue (Flannigan et al., 2009; Kitzberger et al., 2017;
Podschwit et al., 2018). Increased burn severity influences soil
carbon (C) cycling for years to decades post-fire by altering soil
C pool structure, efflux rates, and decomposition (Holden et al.,
2016; Adkins et al., 2019; Dove et al., 2020). Understanding
drivers of post-fire soil C cycling is important because the balance
between soil C efflux and photosynthetic C gains governs the
transition of ecosystems from C sources to C sinks during
ecosystem recovery (Kashian et al., 2006). Because soil microbes
drive the soil C cycle, it is important to understand how microbial
communities are affected by wildfire.

The amount of C respired versus retained in soils is dependent
on the structure and stability of soil C pools (Trumbore, 2000;
Kuzyakov, 2011; Torn et al., 2013). Soil C can be conceptualized
as distinct C pools with variable turnover times: an active C
pool (Ca) with a mean residence time of days to months and
a non-active pool (Cs) with a mean residence time of years to
decades (Paul et al., 2006). The sizes of the active and non-active
C pools and their associated kinetic rates (ka and ks, respectively)
can be quantified by measuring soil C respiration over long-
term lab incubations (Collins et al., 2000; Kuzyakov, 2011). In
this approach, C pools are a function of biological processes
rather than intrinsic chemical characteristics (see Schmidt et al.,
2011). Microbial activity therefore dictates soil C pool kinetics,
and microbial community structure has been shown to be
predictive of C pool kinetics in some ecosystems (e.g., Alaskan
tundra soils) (Hale et al., 2019). However, whether differences
in microbial community structure influence the kinetics of the
active and non-active C pools during post-fire recovery of
temperate forests is unknown.

Disturbance-induced changes to microbial communities
could alter ecosystem processes if the microbial community is not
resistant or resilient to disturbance or not functionally redundant
with the pre-disturbance community (Allison and Martiny, 2008;
Treseder et al., 2012). In the case of fires, microbial community
composition in forest soil is often not resistant or resilient over
the short- to intermediate-term, as soil microbiomes exhibit
decreases in diversity and changes in community composition
that persist from months to years post-fire (Weber et al., 2014;
Rodríguez et al., 2017, 2018; Whitman et al., 2019; Adkins
et al., 2020; Sáenz de Miera et al., 2020). Post-fire soil microbial
communities appear to be functionally distinct, becoming
predominated by more copiotrophic bacterial taxa compared to
oligotrophic taxa in a variety of ecosystems across the globe,

including evergreen shrublands, eucalypt forests, temperate
mixed-conifer forests, and boreal conifer forests in both North
America and Eurasia (Pérez-Valera et al., 2019; Whitman et al.,
2019; Adkins et al., 2020; Ling et al., 2021; Ammitzboll et al.,
2022). Further increased post-fire predominance of copiotrophs
appears to scale with burn severity (Ferrenberg et al., 2013;
Adkins et al., 2020), although the impacts of severity on bacterial
life strategy has not been extensively studied.

The classification of bacterial taxa as copiotrophic or
oligotrophic represents a trait-based framework for describing
bacterial community structure (Fierer, 2017), and these taxa may
differ in their effects on the soil C cycle. Copiotrophs rely on
labile C for efficient growth, have high nutrient requirements,
and exhibit high growth rates. In contrast, oligotrophs exhibit
slow growth rates, but have high substrate affinity and may
outcompete copiotrophs when nutrient content and/or organic
matter quality is low (Fierer et al., 2007; Ramirez et al., 2012).
These ecological strategies are reflected at the gene level. For
example, high numbers of 16S rRNA gene copies harbored within
a bacteria species is reflective of copiotrophic traits like high
growth rate and low C use efficiency (Roller et al., 2016; Romillac
and Santorufo, 2021). Furthermore, metagenomic and metabolic
approaches have revealed that soils abundant in copiotrophs
harbor more genes associated with carbohydrate utilization and
protein degradation, and fewer genes and enzymes associated
with recalcitrant C degradation, organic N decomposition,
and P scavenging (Fierer et al., 2012; Ramirez et al., 2012;
Hartman et al., 2017). The combined influences of oligotroph
vs. copiotroph abundance, nutrient content, and organic matter
quality may thus alter soil C pool kinetics. The links between
microbial life strategy and preferred C substrates may be
particularly relevant in burned ecosystems because fire can
increase soil pyrogenic C (PyC), a spectrum of fire affected C that
is often enriched in aromatic rings that likely require oligotrophic
microbes for decomposition (Bird et al., 2015).

Consistent patterns have emerged in post-fire differences in
bacterial community composition among many ecosystem types,
and these differences are often reflected by divergent responses of
oligotrophic and copiotrophic taxa to fire and burn severity. The
putative copiotrophic phyla Bacteroidetes, Actinobacteria, and
Firmicutes tend to exhibit higher abundance post-fire, whereas
the putative oligotrophic phylum Acidobacteria exhibits lower
abundance (Weber et al., 2014; Xiang et al., 2014; Pérez-Valera
et al., 2019; Whitman et al., 2019). Changes in bacterial phyla
abundance are likely due to a combination of direct and indirect
effects of fire on soils. For example, spore-forming, heat resistant
taxa such as Actinobacteria and Firmicutes are more likely to
survive soil heating events (Prendergast-Miller et al., 2017). These
and other copiotrophic phyla (e.g., Bacteroidetes, Proteobacteria)
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may also positively respond to the fire-induced increases in total
inorganic nitrogen (TIN) and dissolved organic C (Fernández
et al., 1997; Wan et al., 2001; Wang et al., 2012). Changes to
both microbial communities and nutrient availability have been
demonstrated to scale with burn severity in mixed-conifer forests
(Adkins et al., 2019, 2020); thus, C-cycling processes that are
driven by microbial community structure can be expected to
vary with burn severity. Although a few studies have accounted
for the role of burn severity in shaping microbial communities
(Weber et al., 2014; Whitman et al., 2019; Adkins et al., 2020;
Sáenz de Miera et al., 2020), most have not, and identifying
the influence of severity on post-fire microbial communities
has been identified as a key information need in fire ecology
research (Hart et al., 2005; Pressler et al., 2018). Understanding
the relationship between severity, bacterial life strategy, and soil
C pools may be of particular importance because over short to
intermediate timescales post-fire, copiotrophic bacteria increase
with severity (Adkins et al., 2020), while the slow cycling soil C
pool increases and the fast-cycling (labile) soil C pool decreases
or remains unchanged (Adkins et al., 2019). Thus, fire may cause
community-scale bacterial life strategy to become uncoupled
from the C pools most suitable for supporting that strategy,
an effect may increase with severity and result in changes to
the soil C cycle.

The numerous interacting direct and indirect effects of fire
and burn severity on soil and bacterial properties highlights the
importance of employing a systems approach to understanding
disturbance effects on the soil C cycle. Understanding the
relationships between soil characteristics and the C cycle will
improve predictions of the impacts of changing fire regimes
on the C sink strength of forests, and understanding the
influence of bacterial communities on soil functions is necessary
for improving ecosystem models (Schimel and Schaeffer, 2012;
Treseder et al., 2012; Graham et al., 2016). Here, our overarching
objectives are to (1) determine how C pool structure and kinetics
are related to soil properties and bacterial communities 1-year
post-fire, and (2) how the oligotroph-copiotroph framework
can explain post-fire differences in soil bacterial communities.
In service of these objectives, we addressed four hypotheses.
We hypothesized that (1) changes in C pool structure and
kinetics across a burn severity gradient can be explained by
accounting for soil properties; (2) bacterial OTUs that have
previously been identified as positive fire responders will be
positively correlated with burn severity; (3) copiotrophic bacteria
abundance will be positively correlated with burn severity and
therefore positively related to nutrient availability and labile C
availability; and (4) copiotrophic bacterial life strategies will be
positively associated with ka, whereas oligotrophic strategies will
be positively associated with ks.

MATERIALS AND METHODS

Site Description
Our study was conducted in mixed-conifer forest in the
Klamath National Forest, located in northern California,
United States. The forest type is a California mixed-conifer
forest (Ruefenacht et al., 2008), which consists of Pinus ponderosa

Lawson & C. Lawson, P. lambertiana Douglas, P. jeffreyi Balf.,
Abies concolor (Gord. & Glend.) Lindl. ex Hildebr., Pseudotsuga
menziesii (Mirb.) Franco, Calocedrus decurrens (Torr.) Florin,
Arbutus menziesii Pursh., and Quercus kelloggii Newberry. Soils
of our study area belong to the Skalan series and its associates
(Soil Survey Staff et al., 2015); Skalan is a loamy-skeletal, isotic,
mesic Vitrandic Haploxeralf that forms in weathered gneiss
residuum and is slightly acidic (Soil Survey Staff et al., 2016).
The mean annual precipitation is 1,290 mm and mean annual
temperature is 9.0◦C (NCEI-NOAA, 2017). Our study focuses
on areas affected by the Beaver Fire (Lat: 41.88993, Long:
−122.87056; Supplementary Figure 1), a wildfire that burned
∼13,000 ha between July 30, 2014 to August 31, 2014. Burn
severity estimates based on the Differenced Normalized Burn
Ratio (dNBR) indicate that the Beaver Fire resulted in ∼4,800 ha
of burned area classified as high severity, ∼4,600 ha classified
as moderate severity, ∼3,700 ha classified as low severity, and
∼750 ha within the fire perimeter was unburned (MTBS, 2017).
dNBR severity estimates are based on Landsat reflectance images
collected in the growing seasons immediately before and after fire
occurrence, and reflect post- versus pre-fire changes in vegetation
and soil exposure (Parsons et al., 2010), resulting in continuous
dNBR values assigned to both burned and unburned plots. dNBR
values for unburned plots are typically < 100, whereas the upper
limit for burned plots can exceed 1,000.

Field Methods
Between August 3, 2015 and August 10, 2015 (i.e., 1-year post-
fire), we sampled 10 plots (4 unburned, 6 burned; dNBR 0–
863). At each plot, we determined live and dead tree basal area
and sampled for forest floor and mineral soil. We measured
tree diameters at breast height (DBH) for all live and dead
trees > 10 cm DBH within an 11.3 m sampling radius, and we
used these values to calculate live and dead tree basal area at the
plot level. We sampled forest floor and mineral soil 15 m from the
plot center at azimuths of 0◦, 90◦, 180 ◦ and 270◦, for a total of
40 forest floor and 40 mineral soil samples collected. The forest
floor includes the plant litter and duff layers, and is equivalent
to the combined Oi, Oe, and Oa horizons in the USDA Soil
Taxonomy classification system (Perry et al., 2008). We collected
all forest floor material from within a 15 cm radius circular
sampling frame. We inserted a 5 cm radius metal cylinder into the
mineral soil to 5 cm and collected mineral soil using a stainless-
steel scoop. We collected one additional volumetric mineral soil
sample from the center of each plot to estimate bulk density using
the same sampling method. Forest floor samples were stored at
ambient temperature for ∼14 days prior to being transported to
the lab. Mineral soil samples were stored under refrigeration for
2–7 days and shipped to the lab on ice. Upon arrival at the lab,
the forest floor samples were air-dried, and mineral soils were
sieved (2 mm) and sub-sampled for DNA analysis. Sub-samples
for DNA analysis were stored at−80◦C, and the remainder of the
mineral soils were refrigerated at∼4◦C until analyses.

Lab Methods
Soil Processing and Chemical Analyses
We processed the forest floor in a blender to pass a 2 mm mesh
screen and then pulverized a subsample of the blended material in
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a ball mill (SPEX Sample Prep LLC, Metuchen, NJ, United States).
We oven-dried the pulverized forest floor material at 65◦C prior
to determination of total C and N. We used the sieved mineral
soil for determination of total C, N, pyrogenic-C (PyC), NO3-
N, NH4-N, extractable P, and pH. We oven-dried the mineral
soil sample to be used for C and N analysis at 105◦C and then
pulverized the subsamples as described above. We analyzed one
forest floor sample and one mineral soil sample from each subplot
for total C and N concentrations on a dry combustion elemental
analyzer (Costech Analytical Technologies Inc., Valencia, CA,
United States), using atropine as the quantification standard. We
quantified mineral soil PyC concentrations by digesting 0.5 g
mineral soil from each subplot in 10 mL 1.0 M HNO3 + 20 mL
30% H2O2 at 100◦C for 16 h (Kurth et al., 2006) and analyzing
post-digested soils for residual C and N.

We extracted a 10 g sample of fresh mineral soil from
each subplot for NH4

+-N and NO3
−-N in 50 mL 2.0 M

KCl for 1 h. We filtered the resulting soil extracts through
2.5 µm pore-size filter paper (GE Healthcare UK Limited, Little
Chalfont, Buckinghamshire, United Kingdom). We determined
the extract NH4

+ concentrations spectrophotometrically by
reacting with ammonia salicylate and ammonia cyanurate
(Sinsabaugh et al., 2000), and measuring absorbance at 595 nm
(BioTek Elx800, BioTek Instruments Inc., Winooski, VT,
United States). We determined the concentrations of NO3

−

in the extracts spectrophotometrically by reacting the extracts
with vanadium (III) chloride, sulfanilamide, and N-(1-naphthyl)-
ethylenediamine dihydrochloride and measuring absorbance at
540 nm (Doane and Horwáth, 2003). We extracted 2.5 g
subsamples of fresh mineral soils for phosphorus (P) in 40 mL
0.5 M NaHCO3 and determined P concentration using the
Olsen method (Olsen et al., 1954). We measured mineral
soil pH of a 1:2 (w:v) soil slurry with a benchtop pH
meter (Oakton pH 700, Oakton Instruments, Vernon Hills,
IL, United States).

We isolated the light particulate organic matter (LPOM)
fraction from mineral soil to determine SOM composition
via diffuse reflectance Fourier transform infrared (DRIFT)
spectroscopy. To collect LPOM, we first dispersed mineral soil
in DI water via sonication. We then passed the soil solution
through a 53 µm sieve, followed by isolation of LPOM via
flotation in 1.7 g cm−3 sodium iodide solution. We then
pulverized the LPOM fraction using mortar and pestle. We
scanned undiluted LPOM samples in aluminum 96 well-plates
in diffuse reflectance mode using a mid-infrared spectrometer
(Vertex 70, Bruker Scientific LLC, Billerica, MD, United States).
We scanned from 4,000 to 400 cm−1 with a resolution of
4 cm−1 and 64 scans per spectrum. Background spectra from
empty wells were collected with every plate. We background-
subtracted and baseline corrected the resulting spectra in OPUS
7.5 (Bruker Scientific) and calculated the relative areas of
peaks indicative of aliphatic (2,930–2,870 cm−1), carbohydrate
(1,160–1,040 cm−1), aromatic (1,590–1,570 cm−1, 1,550–
1,500 cm−1, 975–700 cm−1), and amide (1,450–1,400 cm−1,
1,320–1,220 cm−1) compounds (Calderón et al., 2011). We
considered the sum of aliphatic and carbohydrate peak areas as
a proxy for labile C.

Determination of Carbon Pool Structure and Kinetics
We incubated soils to determine the size and kinetic rates of
the Ca and Cs pools and potential soil C flux rates (Paul et al.,
2001). We adjusted a 30 g sample of fresh mineral soil from
each subplot to 40% water filled pore space (WFPS) in 120 mL
specimen cups. The specimen cups were placed in 1 L glass
jars, and the soils were incubated in the dark for 300 days at
ambient temperature (∼23◦C) with biweekly adjustments of soil
moisture to 40% WFPS. We measured CO2 evolution on days
10, 14, 28, 42, 58, 90, and every 30 days thereafter until day
300. Prior to each measurement event, we flushed the jars to
ambient CO2 concentrations, then tightly sealed the jars for
24–48 h before sampling a 1 mL gas aliquot through septa
fitted to the jar lids. We measured CO2 concentration of the
aliquot using an infrared gas analyzer (LI-COR Inc., Lincoln, NE,
United States), and calculated CO2-C efflux as the difference in
CO2-C concentrations between the soil containing jars and blank
jars that contained only a specimen cup and DI water.

DNA Extraction and Bioinformatic Analysis
We extracted DNA from 0.25 g of mineral soil from each of
the 40 subplots using the MoBIO PowerSoil DNA isolation kit
(MoBIO laboratories, Carlsbad, CA, United States), according
to the manufacturer’s instructions. The extracted DNA was
amplified using PCR with barcoded 515f/806r universal primers
of the V4 region of the 16S-rRNA gene (Caporaso et al., 2010).
Samples were sequenced on the Illumina MiSeq platform using
the v2 500 cycle Reagent Kit at the Michigan State University
Genomics Core. We processed DNA sequences using the QIIME2
bioinformatics pipeline (Bolyen et al., 2019). We denoised,
merged forward and reverse reads, and removed chimeras using
the q2-DADA2 plugin (Callahan et al., 2016). After sequence
processing there were 20,815–67,314 sequences per sample
(mean = 36,766). We did not rarefy our samples because
rarefying decreases statistical power and is not recommended
when library sizes vary by less than 10-fold (McMurdie and
Holmes, 2014; Weiss et al., 2017). We inferred phylogenetic trees
by applying MAFFT multiple sequence alignment (Katoh and
Standley, 2013) and FastTree 2 (Price et al., 2010) using the
q2-phylogeny plugin. With the q2-diversity plugin, we used the
phylogenetic tree to calculate OTU richness, Faith’s phylogenetic
diversity (Faith, 1992), and a weighted UniFrac distance matrix
(Lozupone and Knight, 2005). We used the q2-feature-classifier
plugin (Bokulich et al., 2018) with the classify_sklearn action
(Pedregosa et al., 2011) to classify taxonomic composition of
our samples employing a Naïve Bayes classifier trained on the
SILVA SSURef database version 132 using a 99% similarity
threshold (Quast et al., 2013). We filtered OTUs associated
with Archaea, Eukaryotes, mitochondria, and chloroplasts. We
calculated oligotroph-to-copiotroph ratio at the phylum level
as the ratio of the sum of relative abundances of all taxa
classified within the phyla Acidobacteria and Verrucomicrobia to
the sum of the relative abundances of all taxa classified within
the phyla Actinobacteria, Firmicutes, and Bacteroidetes (Fierer
et al., 2007, 2012; Ramirez et al., 2012). We predicted 16S rRNA
gene copy numbers using the ribosomal RNA operon database
(rrnDB) (Stoddard et al., 2015). For each OTU, we assigned
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16S gene copy number as the genus mean; if a genus was not
represented in rrnDB we assigned the family mean and so on
up taxonomic levels until all OTUs were assigned a 16S gene
copy number value. We then calculated the abundance-weighted
mean 16S gene copy number for each bacterial community as
another indicator of community-scale copiotrophy (Nemergut
et al., 2016). This approach of predicting 16S gene copy numbers
based on databases has frequently been used as an indicator
of community-scale life-strategy (Nemergut et al., 2016; Roller
et al., 2016; Kurm et al., 2017; Wu et al., 2017; Li et al., 2021),
but these estimates can be biased based on reference genomes
in the database and should thus be interpreted with caution
(Louca et al., 2018).

We predicted metagenomic functional potential of soil
bacterial communities using the PICRUSt2 (Phylogenetic
Investigation of Communities by Reconstruction of Unobserved
States) software (Douglas et al., 2019). PICRUSt2 uses HMMER
software (hmmer.org) to perform multiple sequence alignment
via hidden Markov models, places reads in a reference tree
using EPA-ng (Barbera et al., 2018), and outputs a tree file
with Gappa (Czech et al., 2020). PICRUSt2 then performs
hidden-state prediction of gene families (Louca and Doebeli,
2017), and uses MinPath (Ye and Doak, 2009) to infer the
relative abundance of MetaCyc metabolic pathways (Caspi
et al., 2018). MetaCyc is a metabolic pathway database in
which pathways are hierarchically grouped according to
metabolic function. We focused our analysis on degradation
pathway groups related to C cycling, including carbohydrate
degradation, alcohol degradation, amine degradation, amino
acid degradation, aromatic compound degradation, carboxylate
degradation, fatty acid and lipid degradation, nucleoside and
nucleotide degradation, and secondary metabolite degradation
pathways. PICRUSt2 calculates weighted nearest sequenced
taxon index (NSTI), which is an indicator of the average
phylogenetic distance of bacteria within an OTU table compared
to genomes in the reference database, and is correlated
with accuracy of metagenome predictions (Langille et al.,
2013). The mean weighted NSTI for our samples was 0.12
(SD = 0.04), which is similar or better to that in other soil studies
(Canarini et al., 2021; Toole et al., 2021; Wang et al., 2021), and
indicates that metagenomic functional profiles can be accurately
predicted in our dataset.

Statistical Analysis
Fire and Severity Effects on Soil Properties and Tree
Basal Area
We performed all statistical analysis in the R statistical computing
environment (R Core Team, 2019). We used linear mixed
models (R Package: nlme; Pinheiro et al., 2019) to determine
the impacts of wildfire occurrence and burn severity (dNBR)
on live and dead tree basal area, total C and N, C:N ratio,
PyC, NH4

+-N, NO3
−-N, TIN, extractable P, pH, gravimetric

soil moisture, forest floor mass, and relative DRIFT peak areas.
To account for potential legacy effects of soil properties related
to topography, all models initially included elevation, slope,
and aspect as covariates. Topographic variables that were not

significant at α < 0.05 were sequentially removed from the
models. All models included plot-identifier as a random effect,
and the NH4

+-N, NO3
−-N, and TIN models included total N

as a covariate. We determined that inorganic N variables did
not meet assumptions of normality, so we normalized these
variables using Box-Cox transformations (Box and Cox, 1964).
We determined whether wildfire occurrence or dNBR was a
better predictor of differences by fitting separate models that
included either fire occurrence (burned or unburned) or burn
severity as an explanatory variable and comparing model AIC
values. We selected fire occurrence or severity as the better
predictor if the model containing that variable was ≥ 2.0 AIC
points lower than the alternative model.

Fire and Severity Effects on Soil Carbon Pools and
Fluxes
We assessed the impacts of fire and severity on soil C flux rates
and cumulative soil C flux over our soil incubation using the
following fixed effects portion of linear mixed models:

C Flux (cumulative or rate)

= βo + β1 × Incubation Day + β2 × ln(Incubation

Day) + β3 × Fire Variable + β4 × ln(Incubation Day)

× Fire Variable (1)

where βi represents the model-fitted intercept or slope coefficient
and fire variable is either fire occurrence or burn severity. Each
model also initially included all topographic variables and a plot-
identifier random effect. Non-significant topographic variables
were sequentially removed, and selection of fire occurrence or
severity as a more suitable predictor was performed using AIC
values as described above.

We assessed the size and mineralization rates of the Ca and
Cs pools using non-linear mixed models. We assessed the sizes of
the Ca and Cs pools and their mineralization rate constants using
the following fixed effects portion a two-compartment first-order
kinetics model (Kuzyakov, 2011):

RateCO2 = Ca × kae(−ka×day)
+ Cs × kse(−ks×day) (2)

where RateCO2 is the soil CO2 efflux rate at each measurement
event, Ca is the size of the active C pool, ka is its mineralization
coefficient, Cs is the size of the non-active C pool and ks is its
mineralization rate coefficient. In this model, Cs is constrained to
be CSOC – Crma, where CSOC is total soil organic C content.

We determined whether fire occurrence or severity affected
soil C pools by first fitting a global non-linear model that included
all 40 incubation replicates. We performed model selection
procedures for random effects in non-linear models as described
by Pinheiro and Bates (2000), which resulted in the inclusion
of a plot identifier as a random effect associated with Ca and
ks, and no random effect associated with ka. We assessed how
wildfire impacted the size or kinetic rates of the Ca and Cs
pools by adding fire occurrence or severity as a covariate to
the non-linear models. Selection of fire occurrence or severity
as a more suitable predictor variable was performed using AIC
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values as previously described. In addition to the global model,
we fit separate non-linear models for each incubation replicate
to obtain independent estimates of Ca, ka, and ks for use in elastic
net regularization analysis and structural equation modeling. Five
incubation replicates (two replicates from separate unburned
plots, and one each from plots with dNBR values of 108, 350,
and 478) did not converge during non-linear regression due
to consistently high respiration rates throughout the incubation
and were excluded from further analysis. After exclusion, each
of the ten plots still had C pool parameter estimates from at
least three subplots.

Fire and Severity Effects on Soil Bacterial
Communities and Imputed Metagenomes
We assessed the impacts of wildfire and burn severity on
Faith’s phylogenetic diversity, OTU richness, Shannon’s diversity,
Pielou’s evenness, O:C, weighed 16S rRNA gene copy number,
and the relative abundance of the ten most abundant bacterial
phyla using linear mixed models and AIC model-selection
as described above. The ten most abundant bacterial phyla
represented all phyla that exhibited > 0.5% relative abundance
and 94.1% of the total abundance. We used multivariate
statistical approaches (R Package: vegan; Oksanen et al., 2019)
to determine the impacts of fire occurrence, burn severity,
and soil properties on bacterial community structure. Using a
weighted UniFrac distance matrix of the bacterial community, we
employed principle coordinates analysis (PCoA) to determine the
relationships between plant and soil characteristics and bacterial
communities. Additionally, we performed PCoA on a Bray-
Curtis distance matrix of imputed MetaCyc metabolic pathways,
hierarchically grouped into common C-degradation pathways.

We identified positive and negative fire responsive bacterial
OTUs using species indicator analysis with fire occurrence as the
explanatory variable, relative abundance of OTUs as response
variables, and point biserial correlation as the output statistic
(R Package: indicspecies; De Caceres and Legendre, 2009). We
assessed which positive fire-responder OTUs were also positively
related to severity by performing linear mixed-model analysis
on the relative abundance of each fire-responsive OTU with
dNBR as the explanatory variable and unburned plots excluded
from the analysis.

Links Between Ecosystem Characteristics and Soil
Carbon Pools
We determined properties linked to the size and kinetic rates of
soil C pools using structural equation modeling. We constructed
an initial SEM meta-model composed of linear mixed models
that included live tree basal area, dead tree basal area, forest
floor mass, total C, PyC, total N, TIN, extractable P, pH, and
soil moisture as response variables (R Package: piecewiseSEM;
Lefcheck, 2016). We assessed relationships of soil properties,
live and dead tree basal area, and topography with C pools
using separate SEMs for each C pool parameter (i.e., Ca, ka, ks).
Additional methodological details and results of our SEMs are
provided in Supplementary Note 1.

Relationships Between Bacteria, Carbon Pools, and
Soil Nutrients
We used correlation analyses to assess relationships between
log2 bacterial abundance at the levels of phylum and genus
with C pools, soil TIN and P, pH, and relative DRIFT
peak areas associated aromatic and labile compounds in the
LPOM fraction. We selected these soil variables because they
indicate soil nutrient availability and the amount of labile
vs. recalcitrant C, and are therefore associated with bacterial
copiotrophic versus oligotrophic life-strategies. We performed
univariate correlations between all bacterial phyla and the
selected soil variables. At the genus level, we performed
correlations within phyla that our linear mixed-models indicated
were related to burn severity and that previous research
indicates exhibit either copiotrophic or oligotrophic life strategy
(i.e., Acidobacteria, Actinobacteria, Bacteroidetes, Proteobacteria,
and Verrucomicrobia). All correlations were performed using
Spearman’s rank correlation to account for non-normality
of bacterial abundance data and we considered correlations
significant at α = 0.05.

We performed elastic net regularization (R Package: glmnet;
Friedman et al., 2010) to identify bacteria phyla that are predictive
of C pool parameters. Elastic net regularization selects the best
set of predictors for a given response by using LASSO and ridge
regression, but does not assign significance values to selected
predictors; elastic net regularization is frequently used with sparse
datasets when the number of potential predictors is larger than
the number of observations, as is often the case for genomic
data (Friedman et al., 2010; Wagg et al., 2019). We used linear
mixed-models to determine relationships between C degradation
metabolic pathways and C pool parameters.

RESULTS

Relationships Between Fire, Tree Basal
Area, and Soil Properties
Linear Mixed Models
Our AIC-based model selection indicated that fire occurrence
had more explanatory power for models assessing total soil C,
NH4

+-N and TIN, whereas severity had more explanatory power
for dead tree basal area, forest floor mass, total N, pH, and soil
moisture (Table 1). Neither explanatory variable had more power
for live tree basal area, C:N, NO3

−-N, extractable P, or relative
DRIFT peak areas.

Concentrations of NH4
+-N, NO3

−-N, and TIN were higher
in burned stands than unburned stands (Table 1). Additionally,
total N was a significant covariate for NH4

+-N, NO3
−-N,

and TIN, all of which were all positively related to total N
(p < 0.001, p = 0.041, and p < 0.001, respectively). Dead tree
basal area increased with severity (p = 0.005), whereas live
tree basal area was not related to severity. Forest floor mass
was negatively associated with severity (p = 0.002). Mineral
soil gravimetric moisture was negatively related to severity
(p = 0.004). Soil pH increased in association with severity
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TABLE 1 | Relationship of fire occurrence and burn severity (dNBR) to soil properties as determined via linear mixed models.

Unburned
mean ± SE

(n = 4)

Burned
mean ± SE

(n = 6)

dNBR
coefficient

Fire
occurrence
model AIC

dNBR
model AIC

Aboveground properties

Live tree basal area (m2 ha−1) 77.7 ± 26.5 a 33.3 ± 11.6 a −0.046 100.19 98.79

Dead tree basal area (m2 ha−1) 5.4 ± 5.4 b 21.6 ± 5.6 a 0.044* 78.60 76.07

Forest floor mass (kg m−2) 2.60 ± 0.48 a 0.95 ± 0.39 b −0.0026* 485.46 463.69

Soil properties

Bulk density (kg m−3) 1.17 ± 0.19 a 1.26 ± 0.16 a −0.000045 13.05 13.18

Soil moisture (g kg−1) 88.9 ± 16.0 a 56.6 ± 20.7 a −0.0041* 216.60 208.42

Sand content (g kg−1) 598 ± 15 a 595 ± 28 a 0.0078 225.51 223.17

Silt + clay content (g kg−1) 325 ± 22 a 336 ± 20 a −0.0039 221.86 221.11

POM content (g kg−1) 56 ± 7 a 53 ± 11 a −0.0022 207.09 206.21

Total C (g kg−1) 66.2 ± 13.3 a 68.8 ± 10.3 a 0.0043 206.30 208.35

Total N (g kg−1) 2.7 ± 0.5 a 2.8 ± 0.8 a −0.0011 −61.16 −64.56

C:N 34.0 ± 11.5 a 37.9 ± 8.0 a 0.023 356.07 357.73

pH 6.14 ± 0.05 a 6.54 ± 0.11 b 0.00090* 64.11 58.43

Soil nutrients

NH4
+-N (µg g−1)9 1.28 ± 0.52 a 11.9 ± 4.6 b 0.0016* 45.06 49.90

NO3
−-N (µg g−1)9 0.29 ± 0.29 a 5.21 ± 3.18 b 0.00057* 16.28 15.97

TIN (µg g−1)9 1.57 ± 0.75 a 17.1 ± 7.7 b 0.0019* 61.20 65.88

Extractable P (µg g−1) 35.0 ± 4.2 a 45.0 ± 4.6 a 0.0084 334.54 336.47

Carbon chemistry

PyC proportion (% total C) 14.3 ± 3.3 a 12.8 ± 2.0 a −0.000065 −94.95 −96.16

Labile C (relative peak area) 0.34 ± 0.007
a

0.33 ± 0.005 a −0.000026 −155.28 −157.00

Aromatic C (relative peak area) 0.40 ± 0.005
a

0.41 ± 0.006 a 0.000020 −153.54 −154.51

Linear mixed models also included elevation, hillslope, and aspect as topographic covariates. Relationships between soil properties and topographic variables are
described in the main text. Lowercase letters represent differences in soil properties between unburned and burned forest stands at α = 0.05. dNBR coefficient is the
model-determined slope parameter and represents change in soil property per unit increase in dNBR. Bold text indicates that 1AIC was ≥ 2 between models that
included burn status versus dNBR, indicating that one of these variables should be preferred for predicting change in the relevant soil property. 9 Response variables for
inorganic N models were box-cox transformed prior to statistical analysis and slope value is on box-cox scale. Unburned/burned means are on original scale. Inorganic N
models included total N concentration as a covariate. * Coefficient significantly different from zero at α = 0.05.

(p = 0.007). Mineral soil total C and N, C:N, PyC, extractable P,
and relative DRIFT peak areas were not significantly affected by
fire occurrence or burn severity. Our SEM meta-model revealed
relationships between severity and soil properties that were not
captured by linear mixed-models (Supplementary Note 1 and
Supplementary Figure 2).

Relationship of Wildfire and Burn
Severity to Soil Carbon Pools and Fluxes
AIC-based comparisons of mixed-models assessing soil CO2
efflux rate over our 300-day incubation did not suggest a
preference for fire occurrence versus severity-based models
(Figure 1). However, AIC values indicated fire occurrence had
more explanatory power when assessing the same data as
cumulative CO2-C flux (Supplementary Figure 3). There was
a negative main effect of fire occurrence on flux rate (p = 0.01)
and a positive interaction effect of fire occurrence × ln(day)
(p = 0.007). Together, these effects indicate that initial flux
rates were lower in soils in burned areas, and, over the
course of the incubation, flux rates decreased more slowly
in burned soils compared to unburned soils. Flux rates
were positively related to elevation, but, when the data was

assessed as cumulative CO2-C flux, elevation was not a
significant predictor.

AIC-based model selection of our global non-linear mixed
models quantifying soil C pool structure and kinetics indicated
that a fire occurrence model had more explanatory power than
a severity model (1AIC = 3.08). ks decreased from 0.00017 in
unburned soils to 0.000070 in burned soils (p = 0.002). This is
equivalent to Cs mean residence time increasing from 16.1 years
to 39.2 years. The sizes of the Ca and Cs pools and ka were
not significantly different between burned and unburned soils.
Modeled Ca was 1220 ± 210 mg kg soil−1 (2.08 ± 0.37% of total
C), and ka was 0.028 ± 0.002 (mean residence time = 35.7 days).
The SEMs indicated that Ca, ka, and ks were all directly or
indirectly linked to severity (Table 2; Supplementary Note 1).

Relationships Between Wildfire,
Bacterial Communities, and Imputed
Metabolic Pathways
Bacterial Diversity and Life History Strategy
Fire occurrence and severity negatively impacted Faith’s
phylogenetic diversity, with AIC values indicating no preference
for fire occurrence or severity-based models (Figures 2A,B).
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FIGURE 1 | Mean (±SE) CO2-C efflux rate (points) over a 300-day laboratory
incubation of mineral soils (0–5 cm) grouped by fire-occurrence (A) and
severity (B). Colored lines represent change in CO2-C efflux rates between
sampling days and vertical bars represent standard errors. (A) SE is based on
n = 4 unburned plots and n = 6 burned plots. (B) SE is based on n = 3 or 4
subplots per plot. For each sampling day, sample points are offset on the
horizontal axis to aid in interpretation, but gas sampling for all microcosm jars
were performed on the incubation day.

AIC values indicated that the severity model better explained
OTU richness, which was negatively correlated with severity
(Figures 2C,D). Fire occurrence had more explanatory power for
changes in phyla-level oligotroph-to-copiotroph ratios, which

decreased from 1.08 in unburned soils to 0.48 in burned soils
(Figures 2E,F). Fire occurrence and severity were positively
associated with 16S rRNA gene copy number, with AIC
values indicating no preference for either explanatory variable
(Figures 2G,H).

Bacterial Community Structure
We performed PCoA on a weighted UniFrac distance matrix
and found that the first axis explained 54.9% of variation, and
the second axis explained an additional 8.7% (Figure 3). Fire
occurrence (r2 = 0.24, p < 0.001) and severity (r2 = 0.57,
p < 0.001) were both significantly correlated with the PCoA
ordination. Several soil properties were also significantly
correlated with the ordination, including NH4-N concentration
(p = 0.002), TIN concentration (p = 0.008), P concentration
(p = 0.009), pH (p < 0.001), soil moisture (p = 0.010), forest floor
mass (p = 0.003), and labile C peak areas (p = 0.020) and aromatic
C peak areas (p = 0.024) in the LPOM fraction.

We assessed the relationship between wildfire occurrence and
severity and the relative abundances of the ten most abundant
bacterial groups using univariate linear mixed models. AIC values
indicated that the fire occurrence models had more explanatory
power for assessing differences in Bacteroidetes, Acidobacteria,
Verrucomicrobia, and Planctomycetes relative abundance.
The relative abundances of Bacteroidetes, Actinobacteria,
and Firmicutes were higher in burned areas than unburned
areas (Figure 4). The relative abundances of Acidobacteria,
Verrucomicrobia, and Planctomycetes relative abundance
were lower in burned areas than unburned areas. There
was no significant effect of fire occurrence or burn severity
on α-Proteobacteria,γ-Proteobacteria, δ-proteobacteria or
Gemmatimonadetes relative abundance.

Bacterial OTUs
Indicator species analysis identified 53 OTUs as indicators of
burned soils (i.e., positive fire responders) and 74 OTUs as
indicators of unburned soils (i.e., negative fire responders)
(Supplementary Tables 1, 2). The positive fire responders most
commonly belonged to the Actinobacteria and Bacteroidetes
phyla, as well as to the α-proteobacteria class, which, respectively,
accounted for 28.6, 23.2, and 26.8% of the positive responder
OTUs. The seven OTUs that exhibited the strongest positive
response to fire (point biserial correlation > 0.60) came
from the genera Massilia (γ-proteobacteria), Roseomonas
(α-proteobacteria), Segetibacter (Bacteroidetes; 2 OTUs),
Blastococcus (Actinobacteria), unclassified Micrococcaceae genus
(Actinobacteria), and unclassified Burkholderiaceae genus (γ-
proteobacteria). The negative fire responders most frequently
belonged to the Planctomycetes phylum, which accounted for
14.7% of these responders, and to the α-proteobacteria and
γ-proteobacteria classes, which accounted for 18.7 and 17.3%,
respectively. The five OTUs that exhibited the strongest negative
response came from the genera Cytophaga (Bacteroidetes),
IS-44 (γ-proteobacteria), Mycobacterium (Actinobacteria),
uncultured Elsteraceae genus (α-proteobacteria), and uncultured
Gemmataceae genus (Planctomycetes). OTUs identified as
positive fire responders had a significantly higher mean 16S
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TABLE 2 | Structural equation models explaining direct and indirect links to C-pool parameters.

Response variable Structural equation model dNBR compound coefficient Fisher’s C (p-value)

Ca Ca = 1.68dNBR – 1.45DBA + 0.63FFM + 0.70N + 0.85ELEV (m. r2 = 0.54)
FFM = –0.37dNBR + 0.46ELEV (m. r2 = 0.84)
N = –0.92dNBR + 0.89DBA (m. r2 = 0.69)
DBA = 0.93dNBR + 0.79ELEV (m. r2 = 0.72)

0.03 6.29 (0.39)

ka ka = 0.51pH (m. r2 = 0.24)
pH = 0.51dNBR (m. r2 = 0.35)

0.26 1.64 (0.44)

ks ks = 0.39N + 0.52PyC + 0.24LabC (m. r2 = 0.65)
N = –0.98dNBR + 0.94DBA (m. r2 = 0.69)
DBA = 1.04dNBR + 0.79ELEV (m. r2 = 0.68)

−0.002 22.49 (0.13)

Path coefficients were standardized and only coefficients exhibiting p-values ≤ 0.05 were retained in the models. DBA, dead tree basal area; FFM, forest floor mass; LBA,
live tree basal area; N, total nitrogen; PyC, pyrogenic carbon; LabC, relative peak area of labile carbon determined from mid-infrared spectroscopy.

gene copy number than negative fire responders (3.41 vs. 2.64;
p = 0.020).

We identified 15 OTUs as positively associated with severity
based on linear mixed models (Supplementary Figure 4). Of the
15 OTUs, six were from the Bacteroidetes phylum, two were from
Actinobacteria, and one was from Verrucomicrobia. Four severity
responders were from the α-proteobacteria class, one was from
the γ-proteobacteria class, and one was from the δ-proteobacteria
class. The abundances of all of the severity-associated OTUs were
positively correlated with either TIN or P (data not shown).

Carbon Degradation Metabolic Pathways
Using PICRUSt2, we identified 135 MetaCyc metabolic pathways
associated with C-degradation functions. PCoA on a Bray-
Curtis matrix of the MetaCyc pathways grouped into common
C-degradation functions indicated that the first axis explained
45.1% of variation and the second axis explained 22.1%
(Figure 5). Fire occurrence (r2 = 0.16, p < 0.001) and severity
(r2 = 0.41, p < 0.001) were significantly correlated with the
ordination. Additionally, several soil properties were significantly
correlated with the ordination, including total C (p = 0.009), C:N
ratio (p = 0.044), NH4-N (p = 0.008), TIN (p = 0.047), extractable
P (p = 0.002), pH (p = 0.010), and forest floor mass (p = 0.007).

AIC values indicated that severity had more explanatory
power for differences in carbohydrate degradation, alcohol
degradation, amine and polyamine degradation, carboxylate
degradation, and nucleotide and nucleoside degradation. Severity
positively impacted the relative abundance of imputed pathways
associated with carbohydrate degradation, alcohol degradation,
amine and polyamine degradation, carboxylate degradation,
and secondary metabolite degradation (Figure 6). The relative
abundance of amino acid degradation pathways was higher in
burned areas than unburned areas (p = 0.021). The relative
abundances of aromatic compound degradation pathways and
fatty acid and lipid degradation pathways were not related to fire
occurrence or severity.

Relationships Between Bacterial Life
History Traits, Soil Carbon Pools and
Kinetics, and Soil Nutrients
Weighted mean 16S gene copy numbers were positively
associated with soil TIN (p = 0.003) and pH (p = 0.006) and also

tended to increase with soil P (p = 0.061). 16S copy numbers
were not associated with soil C pool parameters determined via
lab incubation or with DRIFT spectroscopy. The relationships
between bacterial taxa at the phylum and genus level with soil C
pools and soil nutrients are discussed in detail in Supplementary
Note 2. Briefly, phyla typically classified as copiotrophs were
frequently positively correlated with soil nutrients, and, in some
cases, with Ca. Firmicutes, a putative copiotrophic phylum, was
identified as positively associated with ka via simple correlation
analysis and elastic net regression (Figure 7 and Supplementary
Table 3). Phyla typically classified as oligotrophs were generally
negatively correlated with soil nutrients, but none were associated
with ks. When considered at the genus level, taxa harbored
within phyla typically classified as copiotrophs or oligotrophs
exhibited a wide variety of relationships between soil nutrients
and soil C pools.

Linear mixed models indicated that ka was positively
associated with metabolic pathways of alcohol degradation
(p = 0.004) and fatty acid and lipid degradation (p = 0.003),
and negatively associated with pathways of aromatic compound
degradation (p = 0.005) and nucleoside and nucleotide
degradation (p = 0.009). Ca pool size was negatively associated
with alcohol degradation pathways (p = 0.040) and positively
associated with aromatic compound degradation (p = 0.015). ks
was not related to any metabolic pathways.

DISCUSSION

Hypothesis 1: Carbon Pools Are Related
to Differences in Soil Properties Across a
Burn Severity Gradient
Our SEMs indicate that soil properties including forest floor
mass, total N, pH, and organic matter chemistry were related
to C pools, but live and dead tree basal area also played an
important role in explaining differences in C pools (Table 2).
Dead tree basal area was related to several soil properties 1-
year post-fire, exhibiting direct links to total N and soil moisture
and an indirect link to TIN (Supplementary Figure 2). We
also observed a positive relationship between dead tree basal
area and total N in a previous study (Adkins et al., 2020),
an effect that could be caused by decomposition of dead tree
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FIGURE 2 | Relationship between fire occurrence and severity for selected
microbial community characteristics, including Faith’s phylogenetic diversity
(A,B), OTU richness (C,D), oligotrophic-to-copiotrophic taxa ratio (E,F), and
weight 16S gene copy number (G,H).

roots leading to increased soil N inputs (Fahey et al., 1988).
Root dynamics could also explain the direct negative link
between dead tree basal area and Ca (Table 2), potentially
a result of decreased root exudation (Boddy et al., 2007;
de Graaff et al., 2010). Along with forest floor mass and
total N, dead tree basal area offset the direct positive link
between severity and Ca, suggesting vegetation dynamics play
an important role in mediating the response of soil C stability
to fire. We provide additional discussion on the relationships
between soil properties and C pools captured by our SEMs in
Supplementary Note 1.

FIGURE 3 | Principle coordinates analysis (PCoA) plots based on a weighted
UniFrac distance matrix of bacterial communities in mineral soils (0–5 cm).
Each point represents the bacterial community from a single subplot. Vectors
represent variables that are significantly correlated with one of the PCoA axes,
and vector lengths are scaled based on r2 values. Solid and dashed hulls
depict the ordination space that encompasses all burned and unburned
samples, respectively.

Hypothesis 2: Bacteria Previously
Identified as Fire Responders Are
Positively Associated With Burn Severity
In support of our hypothesis, some of the genera harboring
the severity-responsive OTUs (Supplementary Figure 4)
have previously been identified as fire-responsive taxa (e.g.,
Adhaeribacter, Roseomonas, and Flavisolibacter) (Weber et al.,
2014; Whitman et al., 2019). All of the genera harboring the
severity-responsive OTUs were positively correlated with either
TIN or P, suggesting copiotrophic life-strategies. To the best of
our knowledge, other OTUs we identified as severity-responders
have not previously been characterized as fire-responders. For
example, Segetibacter accounted for two severity-responsive
OTUs (and three positive fire-responsive OTUs) but has
not been identified as fire-responsive in previous studies.
However, Segetibacter was identified as responding positively
to PyC additions in a lab incubation study, suggesting post-fire
affinity (Woolet and Whitman, 2020). We identified several
genera as positive fire-responders that other studies have also
identified, including Aeromicrobium, Blastococcus, Massilia,
Phenylobacterium, and Devosia (Weber et al., 2014; Whitman
et al., 2016; Huffman and Madritch, 2018). Our identification
of unique severity responsive OTUs suggests that high burn
severity may cause soil function to become dissimilar from
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FIGURE 4 | Relative abundance of the ten most abundant bacterial phyla
across a gradient of burn severity in mineral soils (0–5 cm). The ten most
abundant phyla accounted for ∼94% of the total bacterial community.
Abundances at each dNBR level are the means of four subplots.

pre-fire conditions. This is further evidenced by the positive
associations of several imputed C-metabolism pathways with
severity (Figure 6).

Hypothesis 3: Copiotrophic Bacteria
Abundance Is Positively Related to Burn
Severity
Numerous lines of evidence suggested that burned areas
had greater abundance of copiotrophic bacteria compared to
unburned areas, and this effect increased with severity. Our
finding of increased copiotroph abundance post-fire agrees
with other research from ecosystems across the globe (Pérez-
Valera et al., 2019; Whitman et al., 2019; Ling et al., 2021;
Ammitzboll et al., 2022). Some researchers found that the
increased copiotrophic predominance dissipated by 1-year post-
fire (Pérez-Valera et al., 2019; Ammitzboll et al., 2022), whereas
here we found copiotrophic abundance remained higher than
in unburned areas at 1-year post-fire, and in previous research
we found higher copiotrophy 3-years post-fire in a Sierra
Nevada mixed-conifer forest (Adkins et al., 2020). The differences
in timeframes at which copiotrophic abundance returns to
pre-fire levels may be explained by the positive relationship
between copiotrophs and severity. The larger magnitude of
the effect of high burn severity on copiotroph abundance
may require more time to return to pre-fire levels, but burn
severity is often not incorporated into studies on fire’s effects on
microbial communities. Along with a few other studies that have
considered burn severity (Whitman et al., 2019; Adkins et al.,
2020), our findings suggest that researchers should consistently

FIGURE 5 | Principle coordinates analysis (PCoA) plots based on a
Bray-Curtis distance matrix of imputed MetaCyc pathways grouped into
common C-degradation functions. Vectors represent variables that are
significantly correlated with one of the PCoA axes, and vector lengths are
scaled based on r2 values. Solid and dashed hulls depict the ordination space
that encompasses all burned and unburned samples, respectively.

account for severity when investigating the influence of fire on
microbial communities.

Increased copiotrophic bacterial abundance was driven by
nutrient dynamics rather than C dynamics. For instance, the
higher mean weighted 16S gene copy number in burned areas
was positively associated with TIN and pH, but not with
labile or aromatic C pools. Additionally, our findings that
positive fire responders have more 16S gene copies than negative
fire responders, and that all severity-responsive OTUs were
positively correlated TIN and/or P suggest that fire-induced
increases in soil nutrient concentrations promote copiotrophic
bacteria. This is further supported by the positive relationship
of the copiotrophic phyla Bacteroidetes with TIN. Although
Bacteroidetes abundance was also positively associated with Ca –
an indicator of labile C availability – Ca did not differ between
burned and unburned areas and thus cannot explain the greater
Bacteroidetes abundance in burned areas. This suggests that
copiotrophic bacteria do not necessarily respond to labile C
and nutrient availability simultaneously and that higher TIN
concentrations maintain the greater copiotroph populations in
burned areas despite limited supply of preferred C substrates.

The mismatches between life history traits and C
availability could influence soil C cycling during ecosystem
recovery. In fact, imputed C degradation pathways suggest
that copiotrophic metabolic strategies (i.e., carbohydrate,
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FIGURE 6 | Relationships between burn severity and the relative abundance of imputed C-degradation pathways including (A) carbohydrate, (B) alcohol, (C) amine,
(D) amino acid, (E) aromatic compound, (F) carboxylate, (G) fatty acid, (H) nucleoside, and (I) secondary metabolite degradation pathways. The relative abundance
of all C-degradation pathways was estimated using PICRUSt2.

alcohol, and amine decomposition) increased with fire and
severity, while pathways associated with decomposition
of recalcitrant substances (i.e., aromatics) did not change
(Figure 6). Although metabolic functions predicted by
PICRUSt2 are not as reliable as direct metagenome approaches,
studies comparing predicted metabolic profiles with direct
metagenomics have found robust agreement between the
approaches (Hartman et al., 2017; Douglas et al., 2020;
Toole et al., 2021). Additionally, there have been very few
metagenomic studies performed on post-fire soils (but see
Taş et al., 2014; Johnston et al., 2016), so our results here
represent valuable initial evidence of the influence of fire and
burn severity on metabolic pathways that can be used to drive
future research.

Over the short term, increases in labile C metabolic pathways
could increase C cycling rates as microbes quickly utilize labile C
sources. However, if aboveground biomass loss leads to decreased
labile C inputs, this effect may be short-lived. This notion is
supported by soil enzyme studies performed in Mediterranean
shrublands and pine forests that have found elevated activities
of carbohydrate-targeting enzymes within 1-month post-fire
(Rodríguez et al., 2018; Pérez-Valera et al., 2019). In contrast,
measurements performed 1–3 years post-fire have found
carbohydrate-targeting enzymes activities that are depressed or
no different than unburned controls (Rodríguez et al., 2017,
2018). Although we did not find greater amounts of PyC
or aromatic compounds in burned compared to unburned
areas (Table 1), inputs of recalcitrant C compounds to soil
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FIGURE 7 | Correlations betweenbacterial phyla and active carbon pool size
(Ca) and kinetic rate (ka), non-active carbon pool kinetic rate (ks), total
inorganic nitrogen (TIN), phosphorus (P), pH, and amide, labile C, and
aromatic C regions of MIR spectra of light particulate soil organic matter.
*Indicate correlations that were significant at α = 0.05.

are often high after fire due to the formation of pyrogenic
organic matter and wood deposition resulting from tree mortality
(Miesel et al., 2015; Maestrini et al., 2017). If the input of this
recalcitrant C is not accompanied by increases in the metabolic
pathways associated with its degradation, recalcitrant C could
accumulate in soil, leading to larger Cs pools and soil C stocks
over the long-term.

Hypothesis 4: Bacterial Life Strategies
Are Associated With Carbon Pool Kinetic
Rates
Our hypothesis that ka would be positively associated with
copiotrophic life strategy is supported by the positive relationship
between ka with the copiotrophic-associated metabolic pathways
of alcohol degradation. Further, ka decreased when there
was a greater abundance of the oligotrophic metabolic

pathway of aromatic compound degradation. Additionally,
Crma size was negatively associated with alcohol degradation
pathways and positively associated with aromatic compound
degradation pathways, indicating the size of the labile C
pool is influenced by relative investment in copiotrophic vs.
oligotrophic metabolic strategies. Support for links between
copiotrophy and ka was more limited when considered from a
taxonomic perspective. Firmicutes was the only phylum that was
positively associated with ka, and, although Firmicutes is often
considered copiotrophic (Ramirez et al., 2012), we found that
it exhibited both copiotrophic and oligotrophic characteristics.
For example, positive associations between Firmicutes with
inorganic nutrients suggest copiotrophy, whereas correlations
between Firmicutes and C pools suggest oligotrophy (Figure 7).
Whether ks is associated with a specific bacterial life strategy is
similarly ambiguous. We found that ks was positively associated
with Elusimicrobia abundance. Although Elusimicrobia has not
been classified as either copiotrophic or oligotrophic, previous
research has identified oligotrophic tendencies with regard to
C use for this phylum. For example, Elusimicrobia have been
found to preferentially utilize recalcitrant forms of C as substrate
(Chávez-Romero et al., 2016), and have been identified as lignin
degraders (Wilhelm, 2016). However, we found Elusimicrobia
was negatively correlated aromatic C and positively correlated
with labile C, suggesting copiotrophy with regards to C use. This
contrasts with the negative association of Elusimicrobia with TIN
and P, which suggest oligotrophy. Overall, life-history strategy
appears to influence C pool kinetics, but metabolic pathways may
be a more useful indicator of this relationship than bacterial taxa.

CONCLUSION

Copiotrophic bacteria abundance was greater in burned areas
than unburned areas, and copiotrophic metabolic pathways
increased with burn severity. Because copiotrophic metabolic
pathways were positively related to ka, these changes could
lead to short-term increases in post-fire soil C cycling.
However, metabolic pathways associated with cycling of
aromatic C substrates did not differ between burned and
unburned areas, despite the fact that aromatic compounds
often increase after fire due to the formation of PyC. An
increase in aromatic C without a corresponding increase in
pathways associated with its degradation could allow soil C
to accumulate during post-fire recovery, contributing to the
stable C pool. In fact, our results suggest that soil C is more
persistent in burned than unburned areas 1 year after fire
(as indicated by lower ks). The increase in C persistence –
and potential accumulation of aromatic C – may partially
offset ecosystem C losses from biomass combustion while
vegetation recovers.

Overall, our results indicate that bacterial communities and
life history strategy are associated with C pools and kinetics,
primarily attributable to changes in C degradation pathways.
Future research could confirm these findings by employing direct
metagenomic or metabolomic approaches. Such information
could be incorporated into global ecosystem models to help
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anticipate the effects of fire regime change on the global
C cycle. In contrast to clear links between metabolic
pathways and C kinetics, links between taxonomic-based life-
history classifications and C pool kinetics were somewhat
ambiguous. Differences in bacterial community structure
between burned and unburned areas could be explained by the
copiotroph-oligotroph life-history framework when considered
at the phylum level or with 16S gene copy number, but was
less effective in explaining differences at the genus level. This
suggests that coarse life-history classifications fail to capture the
metabolic breadth of bacterial taxa and may therefore limit the
ability to predict the influence of microbial communities on
ecosystem function during post-fire recovery. Future research
could incorporate isotopic tracing techniques to further elucidate
which bacterial taxa drive differences in C cycling during
post-fire recovery and whether life-history strategy explains
these differences.
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