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The Amazon forest represents one of the world’s largest terrestrial carbon

reservoirs. Here, we evaluated the role of soil texture, climate, vegetation,

and distance to savanna on the distribution and stocks of soil pyrogenic

carbon (PyC) in intact forests with no history of recent fire spanning the

southern Amazonia forest-Cerrado Zone of Transition (ZOT). In 19 one

hectare forest plots, including three Amazonian Dark Earth (ADE, terra

preta) sites with high soil PyC, we measured all trees and lianas with

diameter ≥ 10 cm and analyzed soil physicochemical properties, including

texture and PyC stocks. We quantified PyC stocks as a proportion of total

organic carbon using hydrogen pyrolysis. We used multiple linear regression

and variance partitioning to determine which variables best explain soil

PyC variation. For all forests combined, soil PyC stocks ranged between

0.9 and 6.8 Mg/ha to 30 cm depth (mean 2.3 ± 1.5 Mg/ha) and PyC,

on average, represented 4.3% of the total soil organic carbon (SOC). The

most parsimonious model (based on AICc) included soil clay content and

above-ground biomass (AGB) as the main predictors, explaining 71% of soil

PyC variation. After removal of the ADE plots, PyC stocks ranged between

0.9 and 3.8 Mg/ha (mean 1.9 ± 0.8 Mg/ha−1) and PyC continued to

represent ∼4% of the total SOC. The most parsimonious models without ADE

included AGB and sand as the best predictors, with sand and PyC having

an inverse relationship, and sand explaining 65% of the soil PyC variation.

Partial regression analysis did not identify any of the components (climatic,

environmental, and edaphic), pure or shared, as important in explaining

soil PyC variation with or without ADE plots. We observed a substantial

amount of soil PyC, even excluding ADE forests; however, contrary to
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expectations, soil PyC stocks were not higher nearer to the fire-dependent

Cerrado than more humid regions of Amazonia. Our findings that soil texture

and AGB explain the distribution and amount of soil PyC in ZOT forests

will help to improve model estimates of SOC change with further climatic

warming.

KEYWORDS

fire, biomass, drought, Holocene, Zone of Transition, Cerrado, soil organic carbon,
fire fuel

Introduction

The Amazon rainforest is one of the world’s largest
terrestrial above- and below-ground carbon (C) pools
(Feldpausch et al., 2012; Ometto et al., 2014). With intensifying
land-use change and severe drought, C emissions due to
fire are increasing (Aragão et al., 2018), thereby reversing
a multi-decadal C sink (Phillips et al., 2009; Brienen et al.,
2015; Feldpausch et al., 2016). The central and northwestern
regions of Amazonia, with high annual precipitation and short
or no dry season, are resistant to burning in non-drought
years (Pontes-Lopes et al., 2021), but in the transitional
forests of southern Amazonia, a combination of lower annual
precipitation, a pronounced dry season, and proximity to
flammable Cerrado vegetation, increase the probability of fire
in the presence of ignition sources (Balch et al., 2008; Nogueira
et al., 2019; Prestes et al., 2020). The conditions promoting fire
and the proportion of closed-canopy forest cover have varied
over time, with palaeo-records for south and southwestern
Amazonia indicating drier conditions during the mid-Holocene
(Burbridge et al., 2004; Kury et al., 2021), followed by an
expansion of closed-canopy forest over the past 2000 years
(Burbridge et al., 2004).

Across the southern Amazon forest-Cerrado zone of
ecological tension (ZOT), therefore, fire has been a long-term
driver of vegetation dynamics (Mayle et al., 2000, 2007; Kury
et al., 2021) and has contributed to the transformation of
a proportion of above-ground biomass (AGB) into charcoal
(Koele et al., 2017). The development of soil pyrogenic
carbon (PyC), a soil organic carbon (SOC) fraction formed
by the incomplete combustion of plant biomass, represents
a SOC fraction resistant to decomposition that may persist
for millennia (Bird et al., 2015). Determining the drivers of
variation in soil PyC stocks is important for understanding past
fire history, the contribution of PyC to total SOC stocks, and
determining SOC sensitivity to current and future fire regimes
and climate change.

Global estimates suggest an annual PyC production of
50–270 Tg (Kuhlbusch and Crutzen, 1995; Wei et al., 2018),
with vegetation burning being responsible for up to 28 Tg
year−1. Estimated inputs of PyC by atmospheric deposition
from fossil fuel and biomass burning aerosols in Amazonia

(∼6 kg km−2 yr−1) are low (Coppola et al., 2019), indicating
many thousands of years would be required to develop the
current Amazonian soil PyC stock, estimated to be 2.67 Pg
over 0–100 cm soil depth (Koele et al., 2017). Therefore, the
majority of soil PyC found in forests with no history of recent
fire is likely due to in situ historical fires and/or local edaphic
or topographic conditions favoring the long-term accumulation
of soil PyC. Radiocarbon dating of macro-charcoal fragments
from the soil indicates Amazon forests have periodically burned
throughout the Holocene (Sanford et al., 1985; Goulart et al.,
2017; McMichael and Bush, 2019; Feldpausch et al., 2022), with
some old-growth forests having fire return intervals of hundreds
of years and having experienced no fire for the last ∼800 years
(Feldpausch et al., 2022).

The PyC fraction of SOC is more resistant to degradation
than other SOC forms due to its refractory polyaromatic
composition, as well as potential interactions with the clay
mineral matrix through the formation of organo-mineral
associations (Czimczik and Masiello, 2007). However, there is
still uncertainty about how long PyC persists in soils, or how
global warming will affect soil PyC stocks. Some studies have
shown that most of the larger PyC particles remain in the soil
after fire (Suman et al., 1997; Gustafsson and Gschwend, 1998;
Masiello, 2004). Depending on the temperature of formation
and organic matter of origin of PyC, mineral phase, and soil
texture, PyC can remain in the soil much longer than other
forms of SOC, and in some cases for thousands of years (Singh
et al., 2014; Bird et al., 2015). Dissolved and fine particulate
PyC fractions may be translocated to deeper soil depths and lost
to erosion over years to decades, especially with heavy rainfall
(Major et al., 2010), and these effects may be greater in sandy
soils and forests with steeper slopes (Rumpel et al., 2006).

The ZOT between the two largest Brazilian biomes, the
Amazon forests and the Cerrado, is located in a seasonal climate,
with a dry period of up to 6 months, average temperature
above 25◦C, and annual precipitation predominantly between
1400 and 2000 mm (Silva et al., 2008). While an increase
in temperatures with global warming (IPCC, 2018) is likely
to increase the rate of respiration of SOC to the atmosphere
(Davidson et al., 2006), for recalcitrant PyC fractions losses
could be much lower since PyC stocks are more resistant to
degradation in response to warming (Lehmann et al., 2008). The
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more open vegetation and the low stratum that dries during
the dry season, that are typical of the Cerrado (Ribeiro and
Walter, 2008), favor the entry of fires in transition forests at
higher frequency than moist forests (Balch et al., 2008) and
therefore, likely the production of PyC. Although these seasonal
evergreen forests show relative fire resistance, this resistance
significantly changes with an increase in fire frequency, and
intensity, exacerbated by extreme weather events and land-
use change (Balch et al., 2008; Brando et al., 2020). Thus,
these factors, combined with the precipitation gradient and
differences in vegetation structure such as height (Barbier et al.,
2010; Feldpausch et al., 2011), biomass (Fauset et al., 2015), and
composition (Morandi et al., 2016) across the transition may
interact to affect soil PyC stocks.

Some factors could also act ambiguously to affect SOC
and PyC stocks across the ZOT. For example, AGB stocks are
generally greater with higher precipitation, providing more fuel
for fire and potentially more charcoal during burning (Fearnside
et al., 2001). However, higher AGB and higher precipitation can
maintain higher sub-canopy moisture, preventing combustion
of dead leaves and small branches that act as fine fuel and thereby
reduce the capacity of these components to carry a fire (Ray
et al., 2005). Likewise, soils with more clay can protect PyC
from decomposition through the formation of organo-mineral
compounds (Glaser et al., 2003); however, the lower moisture
content (Metcalfe et al., 2007) of sandier soils may slow the
decomposition of SOC and PyC. Therefore, a combination of
edaphic, climatic, and vegetation factors may interact to affect
soil PyC. Thus, we hypothesize that forests located in regions
with lower annual precipitation, combined with more clayey
soils, will have higher PyC than sandy soils located in regions
with higher precipitation. Furthermore, we hypothesize that
PyC stocks will vary with AGB, as AGB directly reflects the
amount of material that can be converted to PyC during burning
(Fearnside et al., 2001; Preston and Schmidt, 2006). Our study
aims to evaluate the interaction of multiple drivers in controlling
the distribution and stocks of forest PyC across the Amazon-
Cerrado transition. We address the following questions: (1)
How much soil PyC is stored in forests across the Amazon-
Cerrado transition? (2) How do PyC stocks relate to soil texture,
forest AGB, and climate? (3) How does the distance of each
sampled location to the current Cerrado biome border influence
forest soil PyC?

Materials and methods

Study area

We conducted this study in 19 permanent forest plots
(forests of the Amazon-Cerrado transition), representing
structurally intact forests with no history of recent fire (at
least since the availability of satellite data) in the southeastern

and southwestern border zone of the Amazon Basin, with
sixteen plots located in Brazil and three in Bolivia (Table 1 and
Figure 1). Plots in Brazil’s forests, in southeastern Amazonia,
are distributed over two states: Mato Grosso, covering
the municipalities of Nova Xavantina, Ribeirão Cascalheira,
Querência, São Félix do Araguaia, Porto Alegre do Norte, Santa
Terezinha, Gaúcha do Norte and Alta Floresta; and in Pará, in
the municipality of Santana do Araguaia. The plots in Bolivia in
southwestern Amazonia, are located in the Department of Santa
Cruz, bordering Mato Grosso/Brazil.

We collected vegetation and soil data following the standard
RAINFOR protocol (Phillips et al., 2010); all plot data
are archived and managed through ForestPlots.net (Lopez-
Gonzalez et al., 2009, 2011) and contribute to regional and
international plot networks (ForestPlots.net et al., 2021). The
average annual precipitation of the region varies between 1,451
and 2,353 mm and the average temperature from 23.9 to 26.9◦C
(Worldclim 1.4, Hijmans et al., 2005; Table 1).

The forests of the Amazon-Cerrado transition grow on
deep, highly weathered soils, mainly represented by Ultisols and
Oxisols with low pH and cation exchange capacity (CEC), as
well as largely occluded P due to the high levels of Fe and Al
oxide minerals (Quesada et al., 2011). As a result of extensive
sandstone and granitic rocks (Sombroek, 1966), the Brazilian
soils are quite sandy and have low fertility (Reatto et al., 2008).
The Ultisols comprise soils consisting of mineral material, with
the presence of a textural B horizon of clay of low or high
activity combined with low base saturation (EMBRAPA, 2006).
Their striking feature is an increase in clay from the surface
horizon A to the subsurface B. The depth ranges from shallow
to deep (IBGE, 2015).

Oxisols are very weathered, deep and well-drained soils.
In general, they are strongly acidic, with low base saturation,
dystrophic or aluminum-rich soils (EMBRAPA, 2006). Together
with the Ultisols, they are the most extensive soils in Brazil
(IBGE, 2015). Many different vegetation types are found on
this soil type, ranging from more open formations, such as
campo cerrado, to forest formations such as cerradão (Marimon-
Junior and Haridasan, 2005), to seasonal evergreen and ever
wet forests (Ivanauskas et al., 2008). Pre-Columbian land-use
also modified vegetation and soils through the production
of Anthrosols (Amazon Dark Earths, ADE, terra preta),
small ancient agricultural patches of up to several hectares
of soil highly enriched in PyC that are now covered by
mature forests (Oliveira et al., 2020). While ADEs are found
throughout Amazonia (Palace et al., 2017), estimates suggest
they only represent a small fraction (∼3%) of Amazonian soils
(McMichael et al., 2014). Pre-Columbian land-use and fire
management appears to have declined sharply across Amazonia
following the Great Dying after 1492 (Goulart et al., 2017;
McMichael and Bush, 2019; Feldpausch et al., 2022) due to
the introduction of Old-World diseases during post-Columbian
European colonization (Dull et al., 2010).
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TABLE 1 Forest plot codes (RAINFOR codes), states (MT, Mato Grosso; PA, Pará; SC, Santa Cruz province), Country (BR, Brazil and BO, Bolivia),
geographic location, annual precipitation (PA), average annual temperature (TA), soil types (Soil Survey Staff, 1999), and soil PyC/Total Organic
Carbon (TOC) of areas sampled along the Amazon-Cerrado transition.

Plot code Municipalities/
province

State/
Country

Lat Lon PA (mm) TA (◦C) Soil types PyC/TOC

ALF-02 Alta Floresta MT/BR –9.58 –55.92 2,353 25.6 Entisols 0.065

FLO-01 Ribeirão Cascalheira MT/BR –12.81 –51.85 1,613 25.5 Oxisols 0.042

FLO-02 Ribeirão Cascalheira MT/BR –12.76 –51.88 1,621 25.6 Oxisols 0.046

FRP-01 São Félix do Araguaia MT/BR –11.48 –51.52 1,634 26.9 Oxisols 0.029

GAU-02 Gaúcha do Norte MT/BR –13.43 –53.31 1,701 24.1 Oxisols 0.045

GAU-04 Gaúcha do Norte MT/BR –13.1 –53.35 1,795 24.7 Oxisols 0.030

GAU-05 Gaúcha do Norte MT/BR –12.98 –52.92 1,757 24.9 Oxisols 0.063

GAU-06 Gaúcha do Norte MT/BR –13.31 –53.41 1,729 24.7 Oxisols 0.059

HCC-21 José M. de Velasco SC/BO –14.53 –60.74 1,513 21.4 Ultisols 0.039

LFB-01 José M. de Velasco SC/BO –14.58 –60.83 1,451 23.9 Ultisols 0.058

LFB-02 José M. de Velasco SC/BO –14.58 –60.83 1,451 23.9 Ultisols 0.046

POA-01 Porto Alegre do Norte MT/BR –10.96 –52.17 1,774 26.1 Ultisols 0.030

SAA-01 Santana do Araguaia PA/BR –9.79 –50.43 1,815 26.8 Ultisols 0.064

SAA-02 Santana do Araguaia PA/BR –9.64 –50.45 1,778 26.6 Ultisols 0.060

SAT-01 Santa Terezinha MT/BR –9.84 –50.46 1,821 26.7 Ultisols 0.025

TAN-02 Querência MT/BR –13.08 –52.38 1,625 24.9 Oxisols 0.025

TAN-03 Querência MT/BR –12.83 –52.35 1,679 25.1 Oxisols 0.046

TAN-04 Querência MT/BR –12.92 –52.37 1,662 25.0 Oxisols 0.044

VCR-02 Nova Xavantina MT/BR –14.83 –52.17 1,512 25.2 Oxisols 0.028

RAINFOR= Amazon Forest Inventory Network (ForestPlots.net).
Soils were classified according to the RADAMBRASIL soil map (RADAMBRASIL, 1982).

Plot selection
We selected 19 one hectare forest plots that were within the

forest-cerrado ZOT, with plots in intact forest at maximum and
minimum distances of 52.2 and 0.2 km from cerrado. The Alta
Floresta plot (ALF-02) is geographically the farthest into the
Amazon forest biome and the Nova Xavantina plot (VCR-02)
closest to the Cerrado biome. The plots span a 1540 km length
of the ZOT representing large-scale variations in vegetation
and environment.

Data collection

Data collection and processing
For the soil analysis, we collected soil samples at 0–5, 5–10,

10–20, and 20–30 cm depth distributed over five random points
in each plot using a Edelman soil auger. We stored samples in
plastic bags and dried them in the laboratory. After drying, we
analyzed the samples for textural characteristics (granulometry),
including sand, silt, and clay, using the analysis protocol for
assessing soil of Empresa Brasileira de Pesquisa Agropecuária
(Silva et al., 1998; EMBRAPA, 2011). To quantify soil PyC
abundance, we prepared soil for analysis by grinding 10 g of
soil with a ball mill. Using hydrogen pyrolysis (Meredith et al.,
2012), we quantified the polycyclic aromatic component of PyC

as a proportion of total organic carbon (in g/dm3). Initially,∼1 g
of ground soil was catalyst loaded, subsequently pressurized to
150 bar of hydrogen gas and heated from 250 to 300◦C over
1 min, then ramped at 8◦C per minute to a final temperature of
550◦C which was maintained for 2 min (Koele et al., 2017). This
technique is assumed to remove all non-PyC from the sample
and elemental analysis of the original and treated samples
provide an accurate estimate of the abundances of of SOC and
PyC. PyC results from this technique are highly reproducible,
with determinations from triplicate analyses within±2% across
all samples (Meredith et al., 2012).

Pyrogenic carbon stock and above-ground
biomass of vegetation

We quantified the PyC stocks (0–30 cm) using mean
bulk density by FAO major soil grouping (Batjes, 1996), and
converted this to tons per hectare (Mg/ha) for each forest. We
determined the biomass for each plot using the pantropical
allometric model of Chave et al. (2005), AGB= 0.0509× ρD2H;
where the coefficient F (0.0509) is dependent on the diameter
(D): height (H) ratio, ρ is the wood density (g/cm3), compiled
from the DRYAD global database (Chave et al., 2009; Zanne
et al., 2009), D is the individual diameter of each tree (cm)
at breast height or above deformities or buttresses and H (m)
is the total tree height. We estimated the height for each tree
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FIGURE 1

The location of the permanent forest plots along the Amazon-Cerrado transition. The blue line represents the limit of the Legal Amazon, the
black line country boundaries, and the pink line the limit of the Cerrado biome.

from a pantropical allometric equation H = a(1−exp(−bDc))
(Feldpausch et al., 2012), where the coefficients a, b, and c
were determined for each region. Together, these equations
minimize the error in biomass estimation, as they consider
geographic location, forest environment, and structure (see
Feldpausch et al., 2011, 2012).

Climate variables
Data for temperature (maximum and minimum), average

annual precipitation, coefficient of precipitation variation
(seasonality), and soil water deficit in the dry season were
compiled from meteorological stations between 1950 and 2000,
with a spatial resolution of approximately 1 km (30 s) using
WorldClim (Hijmans et al., 2005). We extracted climate data
using the raster (Hijmans, 2016) and rgdal (Bivand et al., 2016)
packages in R (R Core Team, 2020). We calculated potential
evapotranspiration for all plots from the Tropical Rainfall
Monitoring Mission (TRMM) data, version 3B42, V7, mainly
derived from satellite data (NASA, 2011) with a range of 50◦

North to 50◦ South, using the same packages mentioned above
and also vegan (Oksanen et al., 2016).

The Maximum Climatological Water Deficit (MCWD)
(Aragão et al., 2007) was estimated for each plot as the value
of the cumulative water deficit in all months of the year,

starting in the rainy season and ending in the dry season,
using monthly data from TRMM (NASA, 2011). This index
is based on the approximate monthly transpiration of tropical
forests (100 mm/month). When this value is less than 100 mm,
the forest is assumed to be in water deficit, which is then
accumulated monthly. We generated these data using the raster
and rgdal packages (Bivand et al., 2016; Hijmans, 2016).

We measured the shortest distance from each forest plot to
the Cerrado biome (savanna environment) using Google Earth
Pro. To reduce uncertainties associated with anthropogenically
altered areas between the biomes, we used the transition
band delimited by Marques (2016) as a kmz extension
and superimposed this layer on the Google Earth image as
boundaries for the two biomes. We used this distance in the
present study as a predictor of fires, as the closer to the Cerrado
biome, which has characteristics that favor the entry of fire
(Balch et al., 2008; Ribeiro and Walter, 2008), the greater the
chances of exposure to fire in prehistory and in modern times,
mainly due to land-use change.

Data analysis
To test which predictor variables best explain soil PyC

variation, we applied Multiple Linear Regression (OLS) models
for (1) the distance from the forests (plots) to the Cerrado
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Biome; (2) the climate (MCWD, evapotranspiration of the
warmest months, TA, PA, coefficient of variation of precipitation
and average temperature of the warmest months); (3) soil
texture (silt, sand, and clay) and (4) current AGB of each plot.

To identify collinearity and remove predictor variables
with low correlations to the response variable (r < 0.1), we
applied Pearson’s correlation (Supplementary Table 3). We
removed the collinearity by removing from our models the
variables with r > 0.8 (Supplementary Tables 1, 2). With
the remaining variables, we applied planned models (ICtab
function) of corrected Akaike and corrected Akaike Information
Criterion corrected (AICc) (Anderson and Burnham, 2002).
This argument creates a table by fitting the models in
ascending order, with the best model (most parsimonious),
with the smallest delta (1AICc = 0), and the greatest weight
(WEIGHT, measures the weight in favor of each model)
at the top.

We also tested the multi-collinearity of the complete models
selected by AICc from the Variance Inflation Factor (VIF),
where the variables should present values less than 10 (Quinn
and Keough, 2002). As we did not observe VIF greater than
10, we continued with the remaining variables in the models.
We also evaluated the impact of the possible presence of very
discrepant data in the model by the diagnosis of Bonferroni
outliers. As outliers were detected, we applied the tsclean
function and replaced the outliers with linear interpolated values
(Box–Cox) (Hyndman, 2016).

To confirm the independence of the data (p > 0.05), we
tested the Spatial Autocorrelation (SAC) of the residuals of
the models, complete, selected (obtained by selecting the
AICc models), the response variable, and the Geographically
Weighted Regression-GWR by the Moran index (Legendre and
Legendre, 1998; Diniz-Filho et al., 2003). We also tested the
assumptions of multiple linear regression by evaluating the
normality of the residuals (Shapiro–Wilk) and by graphically
displaying the values predicted by the model vs. residues for
homoscedasticity and linearity (Legendre and Legendre, 1998;
Supplementary Figures 1, 2). As we did not observe significant
SAC and the assumptions of the analysis were not violated, we
continued using the OLS multiple linear regression model.

We previously tested for possible local effects on the
response variable by comparing the OLS and GWR models
(Fotheringham et al., 2002), with the Gaussian spatial function.
As there was no increase in the GWR regression model on
the OLS (F1.4, 6.4−effective parameter number = 0.54, R2

= 0.19,
AICc= –42.6, p= 0.63 and F1.5, 5−effective parameter number = 0.43,
R2
= 0.11, AICc = –52.5, p = 0.78), we chose to continue

the analyses using only the OLS and assumed an absence
of local effects.

To assess which sets of variables best explain the variation
in the soil PyC response, we divided the variables into pure
climatic, edaphic, and environmental fractions (biomass and
distance), fractions shared between them, and the residue.

Since the response variable is a single vector, we applied
a partial regression model based on linear regression. This
analysis divides the variation in the response variable into
components explained in two or more data sets and the fractions
combined between them (Legendre and Legendre, 1998). The
significance of pure fractions A, B, and C were tested by
Redundancy analysis – RDA, using 999 permutations with a
significance level of 0.05.

All analyses were done using the R program (R Core
Team, 2020). We performed all the procedures for the GWR
analysis with the spgwr package (Bivand and Yu, 2017), OLS
and partial linear regression with the vegan package (Oksanen
et al., 2016), Spatial Autocorrelation-ACE (Moran Index) with
the spacemakeR package (Dray, 2013), AICc model selection
with the bbmle package (Bolker and Team, 2016), VIF and data
discrepancy test (Bonferroni test) with the car package (Fox
and Weisberg, 2011), and the correction of outliers with the
forecast package (Hyndman, 2016). All of the above packages
were used together with the vegan package (Oksanen et al.,
2016). We standardized all data using the normalized argument
(make margin sum of squares equal to one) of the decostand
function (Oksanen et al., 2016) and used a significance level
of 5% for all analyses. Maps and figures were produced with
the packages RdoBy, lattice, plyr, reshape, boot, zoo, ggplot2,
maps, GISTools, mapdata, shape, and maptools (Davison and
Hinkley, 1997; Zeileis and Grothendieck, 2005; Wickham,
2007, 2009, 2011; Sarkar, 2008; Brunsdon and Chen, 2014;
Soetaert, 2014; Becker et al., 2016; Bivand and Lewin-Koh, 2016;
Canty and Ripley, 2016; Richard et al., 2016).

Results

The PyC stocks in the soils of the forests spanning the ZOT
ranged between 0.9 and 6.8 Mg ha−1 to 0–30 cm depth (with an
average of 2.3 ± 1.5) (Figure 2), with PyC representing 4.3%

FIGURE 2

Spatial variation of pyrogenic carbon (PyC) to 0–30 cm depth
along the Amazon-Cerrado transition. Circle colors represent
the amount of PyC per hectare; the blue line represents the limit
of the Legal Amazon. The plot locations on the map were
shifted slightly to avoid overlap with nearby plots.
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TABLE 2 Models with and without ADE plots to estimate soil PyC.

Models with ADE Variables 1AICc df Weight

Model 1 biomass+ clay 0 4 0.93

Model 2 biomass+ sand 5.8 4 0.05

Model 3 biomass+ distance+ sand 8.6 5 0.01

Model 4 distance+ sand+mcwd+ biomass 11.4 6 0.003

Model 5 distance+mcwd+ clay 14.3 5 < 0.001

Model 6 biomass+ distance 18.5 4 < 0.001

Model 7 mcwd+ distance 23.6 4 < 0.001

Summary model 1 with ADE Estimates/intercept t/F-statistic P df R2

Biomass 0.01 −2.84 = 0.01 1

Clay 0.007 3.91 < 0.001 1

Result model −2.01 20.00 < 0.001 2/16 0.71

Models without ADE Variables 1AICc df Weight

Model 1 biomass+ sand 0 4 0.64

Model 2 distance+ sand+ biomass 3.1 5 0.14

Model 3 distance+mcwd+ clay 3.7 5 0.10

Model 4 biomass+ clay 3.8 4 0.02

Model 5 biomass+mcwd+ sand+ distance 6.5 6 0.02

Model 6 biomass+ distance 18.2 4 0.00

Model 7 mcwd+ distance 18.3 4 0.00

Summary model 1 without ADE Estimates/intercept t/F-statistic P df R2

Biomass 0.26 1.76 0.10 1

Sand –0.81 –5.51 < 0.001 1

Result model > −0.001 16.56 < 0.001 2/13 0.72

Significat value (≤ 0.05) in bold.
Selection of models was determined by the corrected Akaike Information Criterion (AICc) for different models designed using environmental variables from the Amazon-Cerrado
transition.
1AICc, indicates the best model in ascending order; df, degree of freedom of the model; Weight, measures the force in favor of each model; Clay, clay content; Biomass, aboveground
biomass.
Collinearity values can be found in the Supplementary Table 2.

of the total soil organic carbon (SOC) to 30 cm depth. The
most parsimonious model, based on AICc, included soil clay and
above-ground biomass as the main predictors of PyC, and these
together explained 71% of the variation [F(2,16) = 20; r2

= 0.71;
p < 0.001, intercept= −2.01] (Table 2). When evaluating these
variables in isolation, only clay explained a significant part of the
model variance, however, with a loss in the explanatory power
[F(1,17) = 13.46; r2

= 0.44; p = 0.001, intercept = 0.30] and in
the estimative value, of 0.07 to 0.06 Mg of PyC for each unit of
clay in the model.

Next, we evaluated the effect of removing the ADE plots
from the models. As these sites are known to have been altered
by pre-Columbian peoples, the ADE plots represent outliers
compared to the PyC stocks found in non-ADE soils, and non-
ADE plots represent the vast majority of soils across the ZOT.
After the removal of the ADE plots, soil PyC stocks ranged
between 0.9 and 3.8 (mean 1.9 ± 0.8 Mg/ha PyC) to 0–30 cm

depth. The PyC, on average, continued to represent ∼ 4% of
the total soil carbon inventory to 30 cm depth (Supplementary
material 1). The most parsimonious model included soil sand
content and biomass as the main predictors of PyC and these
explained 72% (r2) of the variation. When evaluating these
variables in isolation, only sand explained a significant part of
the model variance (Table 2), with a slight loss in the explanatory
power and estimation (−0.81 to −0.004) of the model [F(1,14)

= 26.14; r2
= 0.65; p < 0.001, intercept = 4.42, Table 2 and

Figure 3]. That is, there is a gain in the predictive power of
PyC when evaluating the sand in the presence of the variable
biomass; however, the variable sand has a predictive capacity
three times that of biomass to explain the amount of PyC.

None of the components (climatic, environmental, or
edaphic), pure or shared, was important in explaining soil
PyC variation with or without ADE plots based on the partial
regression models (Figures 4A,B and Table 3). However, when
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FIGURE 3

Linear regression indicates the variation in soil pyrogenic carbon explained by the variation in soil sand content of 16 forest sites (excluding
Amazonian Dark Earth) along the Amazon-Cerrado transition.

we removed the ADE plots, there was a small increase in
explanatory power of the pure edaphic component (Figure 4B).
The fractions not explained by the models (residuals) were
relatively high (Figures 4A,B).

Discussion

Studies over the past decade have begun to reveal the
effects of historical fire on structurally intact forests with no
history of recent fire throughout the Amazon Basin (Feldpausch
et al., 2022), including higher than predicted PyC stocks (Bird
et al., 2015; Koele et al., 2017). However, there remains large
uncertainty about how soil PyC varies spatially (Carvalho
et al., 2018), and the drivers of spatial variability, especially
throughout the ZOT where fire risk is greater and fire has
potentially affected vegetation and soils for millennia. Here,
we show that soil PyC storage in the southern Amazon ZOT
varies approximately eight fold (Figure 2), at local and regional
scales of 1540 km, and these stocks are, on average, similar
to humid regions of Amazonia where historical fire may have
been less prevalent (Koele et al., 2017). Edaphic factors were
one of the strongest predictors of soil PyC stocks, which follows
expectations based on studies of biochar application and the
capacity of clay to protect PyC through the formation of organo-
mineral complexes (Czimczik and Masiello, 2007). Although
there was substantial variation in TA (4◦C) and PA (900 mm/yr)
across the geographical focus on the ZOT, which are known
to affect soil respiration rates (Davidson and Janssens, 2006;

Lehmann et al., 2008), these variables were unimportant in
predicting soil PyC. The inferred main drivers of soil PyC stocks
differed when including the ADE plots rich in PyC, with biomass
and soil clay (−88 correlation with sand, Supplementary
material 3) content then being important drivers. This was
due to biomass stocks on average being higher in ADE than
the surrounding non-ADE forests in southern, but not eastern,
Amazonia (Oliveira et al., 2020).

Preservation of pyrogenic carbon, fire
regime, and regional and global
estimates

We hypothesized that soil PyC stocks would be higher
in drier forests. On average, soil PyC content across
the seasonally dry and fire-prone ZOT was similar to
that found in more humid regions of Amazonia (Koele
et al., 2017). This suggests that historical fire regimes
may have not differed substantially from other regions of
Amazonia. Alternatively, historical fire may have differed
but the mechanisms that produced and preserved PyC
may have differed, e.g., there could have been differences
in the degree of recalcitrance of PyC formed during
burning, which may have affected preservation potential,
or differences in past climate may have affected either the
incidence of fire or the preservation of PyC in the soil.
For example, in biochar (purposefully carbonized biomass
for agricultural use), the recalcitrance or resistance to
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FIGURE 4

Variance partitioning between the different components to explain the variation in soil PyC in forests in the Amazon-Cerrado transition. (A) With
Amazon Dark Earth forests and (B) without these forests. Pure fractions: A = Climate (precipitation + MCWD + evapotranspiration in the driest
month), B = Environment. (biomass + distance) and C = Edaphic (clay + silt); Shared fractions = D, E, F, and G; Values = 0 were not shown.
Pearson’s correlation table (collinearity) can be found in the Supplementary Table 3.

decomposition is related to the production temperature
(Zhao et al., 2013).

The fraction of PyC in soils varies globally and with
vegetation type and historic land-use. A study evaluating PyC
in ADE and non-ADE forests in central and eastern Amazonia
found that PyC represented 35% of the SOC in ADE soils
and 14% in adjacent Oxisol (Glaser et al., 2001). A literature-
based inventory and on a wider scale indicates that PyC may

represent up to 50% of total SOC (Reisser et al., 2016). High
amounts of PyC (20%) as a fraction of total SOC were observed
in Australian soils (Lehmann et al., 2008). As expected, we
observed the highest values of soil PyC in ADE plots in
our study, representing 5.07% (see Supplementary Table 1)
of the total SOC. However, since ADE likely only covers a
small fraction of the total area of Amazonia (∼3%, McMichael
et al., 2014), the higher PyC content of ADE soils would not
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TABLE 3 Models with and without ADE to estimate soil PyC.

Models with ADE Statistic (F) P df R2 of the model

Pure climate 1.50 0.27 3 0.23

Pure environmental 0.16 0.85 2 0.05

Pure edaphic 1.22 0.32 2 0.14

Models without ADE
Pure climate 0.99 0.46 3 0.17

Pure environmental 0.88 0.45 2 0.15

Pure edaphic 2.07 0.20 2 0.17

Partial regression models for different groups of explanatory variables
sampled along with the Amazon-Cerrado transition. Pure climatic fraction
(precipitation + MCWD + ATWQ = Average temperature of the warmest quarter);
pure environmental fraction (AGBs + distance); pure edaphic fraction (sand + silt).
Collinearity values can be found in the Supplementary Table 3.

substantially increase SOC stocks across Amazonian soils, which
are dominated by lower PyC soil contents. That soil PyC stocks
were not substantially higher in the ZOT will be important
to consider when modeling PyC and estimating the effects of
climate change on SOC.

Increases in global temperature are significantly and
positively correlated with changes in soil respiration (Bond-
Lamberty and Thomson, 2010). There is a forecast for an
increase in global temperature of up to 3◦C (IPCC, 2018)
and therefore also in soil carbon emissions, mainly caused by
increased microbial activity, decomposition of organic matter,
and root respiration (Davidson et al., 2006; Lehmann et al.,
2008). There is evidence PyC is resistant to decomposition
(Maestrini et al., 2015), with turnover times on the order of
1,300–2,600 years (Lehmann et al., 2008; Jones et al., 2019), and
with models showing the presence of PyC in soils buffering
losses of SOC under future climate warming. While PyC
storage has been shown to decrease in warmer climates,
no relationship was found between temperature and PyC
mineralization across a climatic gradient of mean annual
temperatures of 3.9–17.2, suggesting that warmer or cooler
periods may have little impact on the stability of PyC currently
in soils (Cheng et al., 2008). Egli et al. (2004) observed in a
controlled laboratory experiment that increasing temperature
reduces the amount of SOC storage. Despite this, the effects of
increasing global temperature on the PyC stock in tropical forest
soils remains uncertain.

Pyrogenic carbon and ancient fire

In the ever wet forests of the Amazon, PyC in the soil
usually results from ancient fires, both natural and those caused
by people from pre-Columbian civilizations (Masiello, 2004;
Lehmann et al., 2008; Goulart et al., 2017; McMichael and
Bush, 2019; Feldpausch et al., 2022), as inputs from aerosols
are relatively small (Coppola et al., 2019). There is evidence
for ancient and frequent fires in closed canopy forest in

Amazonia (Hammond et al., 2007), especially during the Middle
Holocene (Mayle and Power, 2008), with historical fire return
intervals of ∼450 years (Feldpausch et al., 2022). However,
as there was an advance of the Amazon transitional forests
over savanna formations in more recent times (Mayle et al.,
2000, 2004; Marimon et al., 2006; Mayle and Power, 2008;
Morandi et al., 2015), our plots that are currently forested
could have previously supported savanna vegetation with lower
biomass (Marimon et al., 2006). Therefore the rate of conversion
of biomass to soil PyC may have been lower, resulting in
only a moderate amount of PyC delivered to upper soil as
observed in the present study. Furthermore, fire severity and
fuel conversion efficiency likely varied greatly, as they do today.
During modern fires, the conversion of forest AGB to PyC
during deforestation varies between 3 and 10% (Fearnside et al.,
1993; Preston and Schmidt, 2006).

Predictors of pyrogenic carbon

Sand content (negative effect) was selected as the main
predictors of PyC in non-ADE soils. It is possible that greater
aeration of soils with a more sandy texture may have been
responsible for the loss of PyC (Glaser et al., 2001) and resulting
in lower soil PyC. More PyC may have also been illuviated
downward through coarse-grained soils (Major et al., 2010).
The model including the ADE soils indicated clay as one of
the main predictors, which is inversely related to sand content
(Supplementary material 3). We expect that the higher clay
content explains part of the PyC variation in the soil due to
the greater capacity of clay-rich soils to form organo-mineral
compounds, together with organic matter, capable of protecting
the charcoal from decomposition (Glaser et al., 2003). Another
factor was the tendency of forests with higher AGB values
(selected by the best model when including ADE sites) to
explain part of this variation. It is predicted that increased
aboveground biomass (Preston and Schmidt, 2006) leads to a
larger amount of charcoal that can be formed during burning.
Alternatively, greater biomass may be due to greater soil fertility
in soils with high PyC, e.g., for forests growing on ADE soils
in southern Amazonia, biomass is higher than the surrounding
forests (Oliveira et al., 2020).

The selection of pure edaphic (texture) variables to explain
the amount of soil PyC may have been due to the subtle
edaphic differences along this extensive ecological zone of
tension (Ab’Saber, 2002; Reatto et al., 2008; Silva et al.,
2008; Quesada et al., 2011). However recent studies have
shown that the extent and frequency of drought events in
Amazonia have increased (Marengo et al., 2011), reducing
tree growth and increasing mortality (Feldpausch et al.,
2016), which may affect fire fuel loads. Models suggest
that dry season stress will increase across the ZOT and
that future climate may be more seasonal but still capable
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of supporting forests rather than becoming savanna-like
(Malhi et al., 2009), which may affect biomass storage, fire
regimes, and PyC stocks.

Pyrogenic carbon and distance to
Cerrado

Contrary to expectations, we did not find higher soil
PyC stocks in areas closer to the Cerrado biome. Evidence
shows that when a fire reaches forests geographically close
to savanna environments, many tree individuals die and
allow light to enter, changing the microclimate (Balch
et al., 2008) and favoring the entry of grasses (Silvério
et al., 2013). Thus, the chance of new fires also increases,
especially in warmer and drier years (Zarin et al., 2005),
reinforcing a positive fire feedback and thereby potentially
increasing the soil PyC stock over time. Whether more
PyC is formed would also depend on fuel loads, fuel
availability (moisture content), and fire behavior. A possible
explanation for the absence of an effect of distance to
savanna may lie in the soil texture, as, in the more sandy
soils characteristic of the region closer to the savanna,
PyC is more readily oxidized (Lima, 2014) or leached
(Abney and Berhe, 2018) with losses from the surface
through deeper translocation (Major et al., 2010). It may
be that the modern transitional forest sites had Cerrado
on them in the past and retain the PyC from those times
(Marimon et al., 2006; Wright et al., 2020). Furthermore,
biochar (PyC type) in the soil can also be transformed
through the action of enzymes of microorganisms and
environmental factors such as temperature (Madari et al.,
2009). As a result, PyC may be chemically altered over time
and thus not detected in the analytical window used by
hydrogen pyrolysis.

Limitations and future research

Geographically, our study sites cover an extensive part
of the Forest-Cerrado ZOT, with a focus on closed-canopy,
but transitional, forests; however, there are other forest
types throughout the region (e.g., cerradão and patches
of cerrado within a forest matrix; Marimon-Junior and
Haridasan, 2005) that may have different PyC stocks
and drivers of soil PyC distribution. Because we made
use of existing plots, we were unable to use predefined
points to systematically assess the effect of distance from
the cerrado on soil PyC. The proportion of variance
(residuals) unexplained by our models was relatively high,
highlighting the importance of including new areas to fully
explain the likely variation that exists across the expansive
ZOT region. The ZOT forests, also known as the ‘Arc of

Deforestation,’ are threatened by the rapidly advancing
agricultural frontier (Nogueira et al., 2007), placing the
SOC stocks in these forests at risk. Continued research is
needed to evaluate how SOC fractions, including PyC, will
respond to climate change and to the landscape-scale changes
in land-use.

Conclusion

This study shows that there is only a moderate amount
of PyC (∼ 4% of total SOC) in the forest soils in the
southern Amazonian ZOT. A much greater fraction of soil
PyC in the ADE plots reinforces the importance of long-
term conservation of ADE areas as a recalcitrant carbon
stock. Soil PyC stocks in non-ADE forest plots are largely
driven by edaphic properties. A sharp reduction in soil PyC
in sandier soils and higher PyC in clayey soils highlights
the physicochemical role of soil in the mineralization or
the protection of soil PyC and its loss from the upper soil
by illuviation to deeper soil levels. Biomass combined with
edaphic variables explained part of the soil PyC variation,
but only when including ADE forests. It will be important
to include new forest types and soil samples at greater
depths to more fully understand the variation observed in
this study. Our surprising findings that soil PyC stocks
are no greater in the ZOT than in the wetter regions of
Amazonia, and that PyC stocks are not greater near the fire-
dependent cerrado, require further investigation to understand
variation in past fire history and factors that affect PyC
formation and loss. This study improves understanding of
the drivers of PyC across the ZOT, providing important
new information to manage and conserve soils and to
improve models to assess the impact of climate change
on SOC.
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Test of the assumptions of the multiple regression model for the
variables with Amazon Dark Earth forests sampled along with the
Amazon-Cerrado transition.

SUPPLEMENTARY FIGURE 2

Test of the assumptions of the multiple regression model for the
variables without Amazon Dark Earth forests sampled along with the
Amazon-Cerrado transition.
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