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Forest fires are emitting substantial amounts of greenhouse gases and

particulate matter into the atmosphere than assumed in state climate

targets. It can play an important role in combustible environments, such

as shrublands, grasslands, and forests, and contribute to climate change.

Thus, forest fire, and climate change is intertwined concepts. As vegetation

burns, release the carbon stored within them. This is the main reason why

large-scale forest fires release atmospheric carbon dioxide (CO2) and hence,

are responsible for increasing the rate of climate change to a great extent.

It is extremely significant to measure the contribution of global forest fire

and emissions trends of greenhouse gases. In this context, continental-scale

carbon emissions assessments were primarily attempted using ground-based

datasets for forest ecosystem fires. Considerable research has been published

employing remote sensing data from coast to coast. While ground-based

data are valuable, they have some restrictions that can be overcome by

remote sensing. Ground-based fire data are primarily limited to the total

burned area, with their completeness changing yearly with the location.

Remote sensing can provide additional spatio-temporal fire information to

improve fire emission estimates. In this paper, the factors driving forest

fire, with a brief discussion on the triangular relationship between fire, land

degradation, and climate change, the role of Remote Sensing and Geographic

Information Systems (GIS), machine learning (ML), and a critical overview of

state-of-the-art global climate change are presented.

KEYWORDS

forest fire, emissions, greenhouse gases, climate change, remote sensing, GIS,
machine learning

Introduction

Forests are predominantly significant because they stabilize the environment,
regulate the carbon cycle, and make available habitation to thousands of existing
living forms (Aju et al., 2015; Balla et al., 2021). Forest ecosystems are a grouping
of topography, geology, species, and climate that are bound together by physical and
biological processes specific to a single site, and are most essentially occupied by
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trees as the dominant undergrowth (Van Dijk, 2019; Zhumadina
et al., 2021). A forest ecosystem can be as small as a
tree branch microsite where various microbes, insects, and
mosses interact or as large as a boreal forest that surrounds
the Earth at northern latitudes (Ménard et al., 2019). The
more this area is extended, the more complex the potential
interactions. Forestry is one of the oldest customs of agricultural
practice, resulting from the need for human inhabitants
to capture and cultivate tree species to supply their basic
requirements such as shelter, food, clothing, and heat (Butler
and Schultz, 2019; Jhariya et al., 2019). Furthermore, “The
Rio Convention,” “United Nations Framework Convention on
Climate Change (UNFCCC),” “United Nations Convention on
Biological Diversity (CBD),” and “United Nations Convention
to Combat Desertification (UNCCD),” all eminent organizations
acknowledge the important contribution of the forests. And all
of them together are making constant efforts to increase the
synergy of the purpose related to its conservation.

Forest fire is one of the unpredictable natural calamities
and has caused tremendous damage to humans, animals and
nature, as well as extinction and economic loss to the inhabitants
(Mateus and Gaspar, 2018; Kizer, 2020; Singh and Suresh Babu,
2021). A tiny spark in the forest or the sun’s heat can also cause
a devastating fire. A forest fire can spread rapidly throughout
a forest in a second, once a fire has started it can spread at
a speed of 23 km per hour, catching everything in its path
(Kahanji et al., 2019; Mangiameli et al., 2021). The shifting
climate could affect some areas more vulnerable to fire and
increase the fire occurrence in existing hot spots. It coupled
with hot, dry conditions are likely to increase the threat, timing
and rigorousness of forest fires. Fire is almost certain to become
a growing factor influencing the condition and durability in
sensitive areas. Forest fires are an almost constant threat to life,
an impact that cannot be reduced but they are also a threat to
the environment and can be seen in the form of climate change
(Burke et al., 2021; Ertugrul et al., 2021). Thus, forest fire and
climate change is intertwined concepts.

Figure 1 shows a relational diagram created with VOS
Viewer

R©

software, using a network mechanism (based on
the frequency of occurrence) on the primary issues related
to climate change. Major associations with “forest fires,”
“greenhouse gases,” “carbon dioxide,” and “carbon emissions.”
The factors responsible for climate change are depicted in this
review paper.

This paper is focused solely on forest fire, climate change,
and carbon dioxide emissions to study its effects. Closely
related research works embraced by several researchers. Seidl
et al. (2014) studied increasing forest disturbances in Europe
and their impact on carbon storage. Study show that this
intensification can offset the effect of management strategies
aiming to increase the forest carbon sink, and calculate the
disturbance-related reduction of the carbon storage potential in
Europe’s forests to be 503.4 Tg C in 2021–2030. Boer et al. (2020)

assessed the burn area of Australian mega forest (temperate
broadleaf) fires between September 2019 and early January 2020.
Schneising et al. (2020), studied carbon dioxide emissions from
forest fires into the atmosphere in Russia. They also explained
the potential role of the model in providing possible scenarios
for future forest fire events and the likelihood of its distribution
in the context of climate change. Masyagina (2021), studied
carbon dioxide emitted by fire-affected forest ecosystems in
Siberia and local estimates of vegetation recovery. Isaev et al.
(2002) used remote sensing techniques to assess Russian forest
fire carbon emissions. In this paper, they discuss a remote
sensing-based approach to assessing forest fire damage. Which is
based on vegetation indices obtained from multi-spectral high-
resolution satellite imagery. A normalized difference vegetation
index (NDVI) difference image was generated from the
SPOT/HRVIR and RESURS-O/MSU-E images from pre- and
post-fire satellite images. The study found a close relationship
between temporal NDVI values and the level of forest damage.
They estimated carbon emissions from burned forest areas using
forest fire extent and damage mapping. From a global scientific
perspective, there is a serious requirement to focus on forest fire
emissions for a sustainable environment. The great harbinger
of technological development that has led to innovations in the
field of forest fire and climate change studies is undoubtedly
the development of remote sensing and Geographic Information
Systems (GIS) (Chuvieco et al., 2010; Ahmad and Goparaju,
2018; Ahmad et al., 2019). Due to the emerging importance of
the topic, this article provides a detailed review of forest fire
emissions and their contribution to global climate change.

In this review, a brief overview of remote sensing, GIS
applications for global forest fire monitoring is presented.
Initially, a comprehensive analysis of the factors driving forest
fires is presented, with a brief discussion on its relationship
with biodiversity, land degradation, and climate change, and
state-of-the-art monitoring based on remote sensing and GIS.

Forest fire factors

Concerning environmental aspects, those associated with
fuel, weather, and topography are the most substantial drivers
of forest fire ignition. In recent years, forest fire regimes have
been shifting in several parts of the world with substantial
variations between climatic regions (Pausas and Fernández-
Muñoz, 2012; Stephens et al., 2013; Reid et al., 2016). Thus,
appreciative of the connection between fires and driving factors
in diverse climatic zones is essential. Fire incidence outcomes
from a combination of propagation and ignition. Lightning
from Cloud-to-ground and, to a minor extent, human activity is
the principal ignition source in forest ecosystems (Menezes et al.,
2022). There are three types of forces that typically regulate the
fire spread: fuel, weather, and topography, as abbreviated by the
“Fire Environment Triangle” (Krawchuk et al., 2016; Figure 2).
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FIGURE 1

Keywords correlation map using VOS viewer software (Database: scopus and number of articles: 250 documents).

The fuel type itself reflects the characteristics of the fuel
properties and has analytically significant implications for
regulating fire-environment interactions by shifting the fuel
moisture content, the flammable potential of the fuel, and fire
characteristics related to the moisture present in the vegetation

FIGURE 2

Fire environment triangle.

ecosystem. Topography also affects fires spreading in a straight
line by changing wind patterns, and by controlling fuel moisture
conditions through sunlight exposure and humidity pooling
(Rogers, 2017). Finally, fire climate is often the major supplier
for forest fire events on a disproportionate temporal scale
through effects on fuel moisture content and fire explosion
source. Fire hazard ranking systems, which indirectly or directly
bundle climate impacts on fuel moisture, have been established
to capture the broader effect of weather on potential fire
escalation and to measure the likelihood of fire risk (Pook and
Gill, 1993; Liu et al., 2014; He et al., 2022).

Relationship between forest fire,
land degradation, and climate
change

Forests cover about 30% of the world’s terrestrial surface
and provide water, food, shelter, feed, nutrient cycling, and
important ecosystem goods and features with cultural and
divergent values (Zhou et al., 2021). Forests store carbon on
their own, providing inhabitance for a wide-ranging flora-
fauna species and helping to reduce land degradation (Gupta,
2019). These ecosystems help in maintaining healthy, stable
soils, provide protection and habitat for the forest’s natural
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biodiversity, and deliver more stable carbon reserves. However,
forests are increasingly vulnerable as a result of deforestation
(Mahmoud et al., 2020), climate change (Tabor et al., 2018),
forest fire (Schoennagel et al., 2017) and other stressors that
can be associated to human actions. Climate change is highly
expected to cause major forest life alterations in the near future
(Zamora-Gutierrez et al., 2021). The dynamics of uncertainty,
which happens when forest ecology is out of equilibrium with
environment, is potentially a major characteristic of these.
Forest fire, in particular, is anticipated to effect on forest
biodiversity and the ability of land degradation, habitat loss
and other distortion of other ecosystem services (Scholes et al.,
2018). It is not wrong to say that forest fires have negative effects
on forest biodiversity, land degradation and climate change
(Figure 3). Forest fires show an association between weather,
climate conditions and ecosystem progressions, they are closely
intertwined and ultimately affecting ecosystem services.

Impact of fire emission on climate
change

Every year, forest fires destroy acres of land around the
world, biodiversity of flora and fauna, and acting as a major
source of aerosol and greenhouse gas emissions (Koristekova
et al., 2020; Wokekoro, 2020; Shah, 2022). This is a very hot
topic for scientists to observe the implications of forest fire
emission, as its effects are increasing from time to time in
the developing world due to different substantial expansions.
Over the years, there has been cumulative evidence about
the impact of CO2 emissions from industrialized systems on
global warming (McGlade and Ekins, 2015; Allen et al., 2019).
This misery has extended to other so-called greenhouse gases,
particularly the chlorofluorocarbons (CFCs), methane, and
nitrogen oxides (NOx) (Boettcher, 2021). Few efforts have been

made to measure the emissions of these gases. Due to the
burning of large forest areas globally every year, the amount
of greenhouse gases emitted into the atmosphere by forest fires
increases significantly. The contribution of these emissions to
global warming has been found to be a significant factor (Grace,
2004; Van der Werf et al., 2010; Dong et al., 2022). Conversely,
climate change due to global warming are largely responsible for
the increased incidence of forest fires.

There is a need for a new indebtedness for what we are
calling “pyrodiversity,” or the wide dissimilarity in the effects
and fire responses (Roberts et al., 2021). Measuring spatio-
temporal fire systems has many inaccuracies, a huge range
of variation, and very little accuracy (Reinhardt et al., 2008;
DellaSala et al., 2022), more studies are required for the full
gradient of fire’s effects. Previous estimates of fire severity and
amount of carbon release have often been high and perhaps in
many cases underestimated (Van Der Werf et al., 2017). French
et al. (2011) investigates the carbon release have been based on
studies of forests in Canada and America. Most of the carbon
emissions do not come directly from trees, but from other pieces
of them such as brush, forest floors, leaf litter and even from
under the ground. In the past few years, only a few sustained
efforts have been made to very accurately assess the effects of fire
on trees or on carbon dynamics (McCarthy et al., 2010). Even
when a very severe fire event covers almost all trees, the trees
stand still and only fall to the floor, rot, and lose their carbon
very slowly over many years (Campbell et al., 2016). Grass
and shrubs quickly grow back some time after a high-intensity
fire, releasing some of the carbon from dead and decomposing
trees. And in several scrupulous burned areas, the researchers
normally observed generous tree revival, which would result
in comparatively rapid retrieval of carbon uptake and storage
(Smith, 1974).

It is predicted that a major fire in the near future could
turn the forest from a carbon sink to a source of atmospheric

FIGURE 3

Negative impact of forest fire.
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carbon (Churkina et al., 2020). Since fire activities are rapid,
while greenhouse gas emissions continue to rise, climate
change mitigation approaches focus primarily on human-
caused emissions, which will have a greater impact than those
that underlie forest fires. For a more accurate memorandum,
estimates of carbon impacts are in dire need to better understand
the severity, the impact of non-tree responses, and the essence
of below-ground processes (Hartter et al., 2020). Even though
it appears that the whole thing is burning in a forest fire,
it is not so. Trees do not disappear completely even during
high-intensity fires, but their resilience capacity is significantly
affected (Stephens et al., 2012). The destruction of fires has
resulted in a short-term decline in greenhouse gases, but fire will
still be an integral and essential part of the forest ecosystem on a
long-term basis. The researchers supposed that global warming
could lead to complex levels of forest fires and associated global
carbon emissions in the future, even though there are several
doubts present about how climate change will affect forest
ecosystems, and there is no such warning that the incidence of
forest fires will increase.

The need to study the relationship between environmental
factors and forest fires is important to reduce risk (Cascio,
2018; Kim et al., 2019; Abram et al., 2021). Forest fires can be
accomplished by reducing the resilience of existing ecosystems,
clearing forests, and protecting the diverse flora and fauna,
human life, and property that constitute the biodiversity.

Role of remote sensing and
geographic information systems

Forest researchers are working with other forest fire
experts to assess the representation of forest fire risk, forest
vegetation, and fuels, investigating how a changing climate is
shifting risk as part of comprehensive adaptation measures
(Roy, 2003; Williamson et al., 2019; Cheng and Dale, 2020).
Forest burning is a major cause of carbon in the atmosphere
(Lasslop et al., 2019); Therefore, it is an important aspect to
consider while assessing climate change at the global level.
Additionally, familiarity with spatio-temporal emission patterns
is essential for assessing their impact on atmospheric dynamics
to advance global atmospheric models as well as to encounter
the international Kyoto Protocol agreement.

Precise accounting of carbon cycling is of paramount
importance for understanding and modeling global climate
change. Until now, continental-scale estimates of carbon
emissions were mainly made for forest ecosystem fires using
ground-based fire datasets (Chuvieco et al., 2018; Desservettaz
et al., 2022). There have been some attempts to employ remote
sensing data from coast to coast. While ground-based data are
valuable, they have some restrictions that can be overcome by
remote sensing (Li et al., 2000; Wu et al., 2018; Barmpoutis
et al., 2020). Ground-based fire data are primarily limited to

the total burned area, their quality and completeness varying
from year to year and region to region. Remote sensing can
provide additional spatial and temporal fire information to
improve fire emission estimates (Krylov et al., 2014; Oliveras
et al., 2014; Chuvieco et al., 2020). Even though the changing
aspects of global fires are driven by climatic factors (Turco et al.,
2018; Teckentrup et al., 2019), several authors have ascribed
the inter-annual variability of forest burning (Kelley et al.,
2019). For example, in tropical regions, temperatures, and the
length of the dry season can vary greatly, greatly affecting the
characteristics of fires. Thus, when monitoring emissions on a
continuous temporal scale, changing parameters according to
seasonal anomalies would be an important step (Ware et al.,
2019). Different spatio-temporal scales have also been allied in
the last few years, in the direction of a more inclusive valuation
of fire assessment. In addition, increasing the use of remote
sensing (RS) products by atmospheric modelers involves a
clear concern about adding models and observations (Chuvieco
et al., 2020). Emissions estimation consists of various optimized
models at several spatio-temporal scales (Biggart et al., 2020).
While local assessments and dimensions are important for
identifying emission mechanisms (Bhattacharjee and Chen,
2020), local and global assessments are important for measuring
emission’s effects on the atmosphere and global climate patterns.
Models with a high spatial resolution (Andrée et al., 2019)
provide a global assessment of spatial variability that models
often miss but include more comprehensive information and are
problematic for specifying global scales.

The direct measurements of trace gas released during a fire
have been implemented through field measurements (Andreae,
2019), as well as through remote sensing analysis of smoke
components (Ichoku, 2020). Both field and remote sensing
gas emissions measurements require simultaneity with active
fires, either experimental or actual ones. Direct measurement
of trace gas released during a fire has been instigated through
field measurements (Kawa et al., 2018), as well as remote
sensing analysis of smoke constituents (Ansmann et al., 2018).
Active fire, as well as actual fire, are both required for
emissions measurement via remote sensing. It is difficult
due to operational complications to coordinate measurement
operations with fire activity. The secondary approach to
estimating emissions is based on a model that assimilates the
input variables involved in the procedure in different ways
(Talerko et al., 2021). This method makes it possible to integrate
burned area maps with independent estimates of the input
variable values. On the downside, these studies present more
factors of uncertainty due to error propagation effects when
different input variables are considered. Most of these emissions
models take into account biomass weight, burning efficiency,
burned areas, and combustion parameters. Remote sensing is
an exceptional source of information to obtain some of the
input parameters required for those models (Jaffe et al., 2020).
Since remote sensors measure the same physical variables at
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different resolutions, the use of remotely sensed data in emission
models can deliver important sustenance for spatial scaling,
while considering spatial variations, mainly expanding when
working with input variables at different levels (Wei and Barros,
2021). Advancement in data fusion techniques may afford a
solid framework for this integration in the near future (Kalantar
et al., 2020). Moreover, the temporal frequency of remote
sensing interpretations can significantly improve time-domain
estimates of gas emissions (Table 1).

a. Quantification of greenhouse gas emission
Spatial-sequential greenhouse gas emissions, i.e., carbon,

carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O),
NOx, and particulate matter are the major components that are
estimated through the NPP. The NPP measures the ecological
impact of forest fires and the associated damage in highly
intensive ecosystems.

b. Release of carbon into the atmosphere
The inventory emissions of greenhouse gas emitted under

forest fires are calculated using guidelines provided by the
Heath et al. (2011), Baglivo et al. (2020). Seiler and Crutzen
(1980), proposed a simple mathematical formula to calculate the
emission of any chemical gas or particle species.

E = BA ∗ FL ∗ FE

E = emission of a gas (x) or particulate matter from fire (g);
BA = burned area (ha); FL = fuel density or loading (kg/ha);
FF = fraction of fuel consumed (%); EF = emission factor
for gas (x) or particulate matter (g/kg). In contrast, it has
been an intimidating mission to acquire any of these variables
from the aerial, ground, or space-borne observations. Almost
none of them are insignificant to obtain from the observation
platform or modeling. To effectively use different types of spatial
data in raster or vector formats, GIS-based emission modeling

systems have been potentially developed. For forest fire emission
estimation, key fire emission characteristics can be obtained
from satellites and other sources as model inputs. These include
burned region, degree of burn, fuel loading, above-ground
biomass, burning environments, emission factors, etc. Before
the system can run, the input data desires to be attained, revised
and converted as separate attribute data stratums. The system
involves numerous integrated subsystems that pretend burning
processes. The method needs to be able to use RS data in
conjunction with conventional data to increase the assessment
of carbon emissions and cycling.

c. Remote sesning monitoring and post-fire recovery
Forest fire is one of the most disturbing types around

the globe. For this reason, characterizing fire disruption and
monitoring post-fire restoration are appropriate topics both
for ecological and management resolutions. Krawchuk et al.
(2020) presented an article on models, methods, and sensors
associated with this topic. Post-fire recovery analysis should be
associated with an alive conception of environmental drivers
that affect the retrieval processes. In this sense, the post-fire
renaissance depends on biotic and abiotic influences, but slight
is still recognized about how these factors are interrelated in
natural retrieval procedures after fire disruption. Numerous
studies have used topographical variables as drivers of post-
fire undergrowth retrieval (Roula et al., 2020; Han et al.,
2021; Chen et al., 2022), while some other researchers have
highlighted the importance of burn rigorousness to describe
renewal forms (Trumper et al., 2020). The heritage effects have
also been assessed, as well as forest configuration before the
fire incident. Spatial properties, such as adjacent remoteness
to an unburned zone, a substitution of edge effect, or tree
species features have also been recognized as important drivers
of retrieval (Singh, 2015). The comparative prominence of these

TABLE 1 Application of remote sensing (RS) and geographic information system (GIS) in fire emission monitoring.

S. No. Platform Datasets Application Study area References

1 Satellite SPOT/HRVIR and RESURS-O/MSU-E Fire carbon emissions assessment Russia Isaev et al., 2002

2 Satellite (Terra) Moderate resolution imaging
spectroradiometer (MODIS)

Greenhouse gas emission India Sannigrahi et al., 2020

3 Satellite Landsat ETM Carbon emissions China Lü et al., 2006

4 Satellite (Terra
and Aqua)

MODIS Estimation of forest fire PM10 emission Thailand Junpen et al., 2011

5 Satellite Indian remote sensing (IRS), wide field
sensor (WiFS) for the 2000–2003 period
and MODIS (Terra/Aqua)

Estimates of atmospheric emissions of
carbon dioxide

European countries
(23)

Barbosa et al., 2008

6 Satellite SPOT VGT Forest fire carbon emission Russia Zhang et al., 2003

7 Satellite (Terra
and Aqua)

MODIS Forest fire emissions gases (CO2 , CO,
CH4 , NOx , NH3) and fine particulates
(PM2.5)

Three ecoregions in
southwestern and
southeastern Mexico

Cruz-López et al., 2019

8 Satellite AVHRR Carbon cycling and emissions Siberia Conard et al., 2002

9 Satellite AVHRR, and MODIS (Terra/Aqua) Measurement of energy and carbon flux Brazil Riggan et al., 2004

10 Satellite Landsat Estimation of burn severity and carbon
emissions

China Xu et al., 2020

Frontiers in Forests and Global Change 06 frontiersin.org

https://doi.org/10.3389/ffgc.2022.925480
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-05-925480 November 23, 2022 Time: 16:44 # 7

Singh 10.3389/ffgc.2022.925480

variables and their interface in the fire renaissance procedure
remnants are still mainly unknown. Recent development in fire
recovery monitoring is based on using temporal RS datasets,
especially since 2008 when the US Geological Survey (USGS)
released accessibility to the Landsat datasets. This fact has
enhanced the examination of past trends, and it has incremented
the number of approaches and submissions to illustrate the
ecosystem retort to forest fires. Vegetation indexes such as
NDVI (normalized ratio of red and near-infrared reflectance),
and its derivatives such as dNBR, and RdNBR are widely used
in forest fire monitoring. Baglivo et al. (2020) suggested using
NDVI, which generally captures chlorophyll concentration and
green covering, for tracing initial periods of the ancillary
succession in Italy.

Machine learning in forest fire
monitoring

Understanding the consequences of forest fires is a hot
topic for scientists, as its effects accumulate over time in
different ways in developing countries. It is highly likely to
cause major climate change shortly (Littell et al., 2016). The
dynamics of imbalance, which occurs when forest ecology is
out of balance with climate, is potentially a major feature
of these. A large part of fire modeling work relies on
deterministic, biophysical models to conclude its impact
assessments (Briassoulis, 2020). Accurate fire mapping is
critical for projecting climate change impacts associated with
major control and eco-environmental impacts and in turn
mitigation policy. The use of technological innovations such as
various tools and software can support forest managers with
systematic analysis desirable for sustainable management and
conservation strategies. Over the past decade, machine learning
(ML) approaches have revolutionized scientific discovery across
disciplines, including Earth informatics, image processing-
based applications (Sarker, 2021), satellite imagery (Abburu
and Golla, 2015), sensor signal processing (Hong et al., 2015),
big data processing (Zheng et al., 2018), etc. ML is defined as
a technique that perceives patterns in datasets, and uses the
exposed arrays to forecast future statistics or other consequences
of interest. It is a division of AI statistics, that majorly focuses
on constructing descriptive and predictive models for a given
problem using specific collected datasets. ML modeling is
widely used in forest fire monitoring, including all relevant
physical properties, i.e., its composition, weather condition,
and topography. Numerous algorithms have been developed to
characterize and evaluate the responses to fire disturbances in
the forest ecosystem (Šerić et al., 2018; Kalantar et al., 2020).
Various empirical models have been also used to simulate post-
fire foliage retrieval. Wildfire modeling forecasting techniques
include physics-based simulators that rely on planners to

make many important decisions regarding the allocation of
scarce firefighting resources in the event of a fire. However,
these physics-based simulators have some restrictions: they
generally provide very low accuracy, have a likelihood bias
in the areas where they are intended to be used, and often
due to the large number of It is difficult to design and
implement (Taylor et al., 2013). An early and reliable estimate
of fire severity assessment at the field level is essential for the
formulation of forest ecosystem policies and strategic plans
to protect the environment. The use of ML algorithms for
fire monitoring is extremely helpful in sustainability concerns
(Jain et al., 2020).

Discussion

Forest fire continues to end huge forest areas worldwide,
mortifying ecosystem services, instigating biodiversity loss, and
endangering livelihood sources. It also adds to global warming
generally by freeing greenhouse gases from biomass burning
and allied soil deterioration. These influences are anticipated
to exacerbate by increasing fire occurrences partly intensified
by climate change. Despite these major challenges, forest fire
management in the area is inadequate by a lack of appropriate
policy, capacity building, and mechanical equipment. This is
additionally convoluted by diverse topography and antagonistic
climatic conditions. This situation demands a vigorous method
to fire management comprising a global comprehensive policy
recommendation. A such parameter must be inclusive and
adequate to embrace different fire management interferences
by a dissimilar community. However, such research must be
deeply rooted in empirical knowledge generated from robust
scientific knowledge about forest fire dynamics, causes, and
effects under climate change scenarios. This review highlights
the need to understand forest fire mechanisms, risks under
global environmental changes, and the use of remote sensing
to achieve sustainable outcomes. Based on the verdicts, this
review recommends scientific studies for forest fires: (i) Forest
fire assessment helps to compile the frequency of fires, the area
burned, in general, and to identify the ecological and socio-
economic impacts. (ii) Evaluation of fire effectiveness capability
helps management at scenario levels. (iii) Development of
climate adaptive indicators including other climate disasters.
(iv) Further, the review also points to the need for a more
remote sensing-based approach at the community level to
create awareness about forest fire management. This study is
extremely important, as it can be widely used to address the
increasing frequency and severity of fire disasters, and climate
crises, around the world. Consequently improved satellite-
derived indexes, integrating ground-based inventory into fire
interference investigation and making it more accurate.
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Conclusion and need for future
research

Increasing considerations today focus on climate change as
a major aspect of increasing fire association, but researchers and
policymakers are only looking at the role of fire emissions in
the global carbon cycle as a response to the climate system.
Global fire emissions are key components in appropriated
carbon movement through terrestrial ecosystems into the
atmosphere and other adjacent ecosystems. The increase
in high-energy release fires that accompany climate change
could accelerate carbon cycling from Earth’s surface to the
atmosphere. The traditional monitoring technique is very
laborious and expensive. Various studies have been conducted
for the estimation of carbon emissions and other trace gases
in many countries by combining remote sensing data with
forest fire inventory. It is of utmost importance in future
research to conduct field experiments to test the generality of
forest fire parameters on a global scale. Estimates are slightly
restricted by the spatiotemporal availability of high-resolution
remote sensing data. However, coarse-resolution satellites,
such as SPOT, AVHRR, and moderate resolution imaging
spectroradiometer (MODIS), can provide more fire-relevant
data, including emissions, severity, and combustion efficiency.
Therefore improving fire detection algorithms, reducing data
processing and noise as well as incorporating RS data into fire
disturbance research can enable and make it more accurate. In

contrast, the ML-based method is preferred for conducting fire
assessment and surveillance. This integration provides beneficial
information that may be useful for measuring the implications
of wildfire management.
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