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Several key international policy frameworks involve forests, including the Paris

Agreement on Climate Change and the Convention on Biological Diversity

(CBD). However, rules and guidelines that treat forest types equally regardless

of their ecosystem integrity and risk profiles in terms of forest and carbon

loss limit policy effectiveness and can facilitate forest degradation. Here we

assess the potential for using a framework of ecosystem integrity to guide

policy goals. We review the theory and present a conceptual framework,

compare elements of integrity between primary and human-modified forests,

and discuss the policy and management implications. We find that primary

forests consistently have higher levels of ecosystem integrity and lower risk

profiles than human-modified forests. This underscores the need to protect

primary forests, develop consistent large-scale data products to identify

high-integrity forests, and operationalize a framework of ecosystem integrity.

Doing so will optimize long-term carbon storage and the provision of other

ecosystem services, and can help guide evolving forest policy at the nexus of

the biodiversity and climate crises.
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Introduction

Forest ecosystems are central to international agreements
and frameworks that support and set policy agendas, including
the United Nations (UN) Framework Convention on Climate
Change (UNFCCC), Convention on Biological Diversity (CBD),
Sustainable Development Goals (SDGs), and Convention to
Combat Desertification (UNCCD). Forests and their ecosystem
services provide critical data to inform global environmental
assessments such as the Global Forest Resource Assessments
(FRAs) of the UN Food and Agriculture Organization (FAO),
the Intergovernmental Science-Policy Platform on Biodiversity
and Ecosystem Services (IPBES), the System of Environmental
Economic Accounting–Ecosystem Accounting (SEEA-EA), and
the World Bank’s reports on the Changing Wealth of Nations
(Lange et al., 2018). The mitigation significance of forests is
recognized in Article 5 of the Paris Agreement. Given their
mitigation value, updating forest management practices to
reduce emissions and increase withdrawals from the atmosphere
should be included in many countries’ Nationally Determined
Contributions (NDCs; Forsell et al., 2016; Grassi et al., 2017;
Roe et al., 2019). Forestry practices have the potential to provide
a majority fraction of the Agriculture, Forestry, and Other
Land Use (AFOLU) sector’s contributions to climate mitigation,
which may represent up to one-third of net emission reductions
needed to limit warming below 1.5–2◦C above pre-industrial
levels (Federici et al., 2017; Grassi et al., 2017; Griscom et al.,
2017; Roe et al., 2019). The current emissions gap between
NDCs and what is required to limit warming to 1.5 or 2◦C
(UNEP, 2019) means that the role of forests may be even
greater; for example, forests are referenced heavily in the
Intergovernmental Panel on Climate Change (IPCC) special
report on 1.5◦C in the context of negative emissions (Dooley
et al., 2018; IPCC, 2018).

However, given the finite area of available land and the many
ecosystem services they provide, there are often conflicting goals
for the management of forests in national and international
policy contexts, resulting in incoherent policies and policy
objectives (Kalaba et al., 2014; Koff et al., 2016; Tegegne et al.,
2018; Timko et al., 2018). For example, many of the UN
SDGs focused on promoting economic development are at
odds with conserving forests and biodiversity (Ibisch et al.,
2016). Unclear and inconsistent definitions and accounting
rules mean that forest mitigation measures can have a range of
results from large-scale protection that preserves carbon storage,
sequestration, and ecosystem services, to perverse outcomes
with net carbon loss, degraded ecosystems, and negative impacts
on other policy goals (Mackey et al., 2013). For example,
bioenergy with carbon capture and storage (BECCS) is used in
the majority of current global socioeconomic model scenarios
to stay below 1.5–2◦C of warming (Roe et al., 2019). At these
scales, BECCS will require the conversion of vast quantities
of native forests into tree plantations or short-rotation forests

(Fuss et al., 2014; Creutzig et al., 2015; Smith et al., 2016;
IPCC, 2018). Increased bioenergy use is currently resulting
in forest degradation and deforestation that will generate net
carbon emissions for decades or longer (Birdsey et al., 2018;
Booth, 2018; Sterman et al., 2022). Part of the problem is that
forest cover and types are largely seen as fungible within the
UNFCCC guidelines (UNFCCC, 2002), with no criteria for
forest condition or carbon longevity (Ajani et al., 2013; Hansen
A. J. et al., 2020; Keith et al., 2021).

From a carbon perspective, “risk of loss” of the stock is of
central importance. The risk of loss from disturbances means
that some land-based carbon activities will not provide long-
term protection of carbon from release into the atmosphere (e.g.,
Anderegg et al., 2020). This risk is a primary reason that forest-
based solutions are often not considered as reliable ways to
reduce net emissions and hence are not prioritized as mitigation
activities (Grassi et al., 2017). Yet little consideration has been
given to differentiating forest types and management schemes
based on their “risk of loss” profiles. The Paris Agreement
mentions criteria for mitigation that speak to risk, such as
equity, sustainability, and integrity, but as of yet there is little
guidance on implementation.

The concept of “ecosystem integrity,” or related “ecological
integrity,” has a long history in theoretical and applied ecology
(e.g., Kay, 1991; Tierney et al., 2009; Wurtzebach and Schultz,
2016) and is explicitly referenced [e.g., Paris Agreement,
CBD post-2020 Global Biodiversity Framework (Convention
on Biological Diversity [CBD], 2021), IPCC Working Group
II (IPCC, 2022)] or implied in international agreements and
national-level legislation and agency directives (e.g., Australian
Government, 1999). By providing a holistic view of ecosystem
structure, function, composition, and adaptive capacity, the
objective of maximizing ecosystem integrity may have the
potential to minimize risk of carbon loss and maximize the
ecosystem services provided by forests, thereby facilitating
greater policy coherence across sectors (Koff et al., 2016; Dooley
et al., 2018; Barber et al., 2020). However, the concept is not
prioritized in international policy nor operationalized in most
national forest policies, thus falling well short of its potential.
There are no specific actions or supporting mechanisms for
ecosystem integrity in the Paris Agreement, and parties have
not articulated how they will identify and protect high-integrity
ecosystems. Instead of representing a guiding framework,
ecosystem integrity is largely viewed as a potential co-benefit
(Bryan et al., 2016; Funk et al., 2019). Particularly important
is providing a definition and framework for ecosystem integrity
that the CBD (though the Global Biodiversity Framework) and
the UNFCCC (through the Global Stocktake) can utilize to
achieve their biodiversity and climate mitigation objectives.

Here we review the potential for a framework of ecosystem
integrity to minimize risk in forest-based mitigation policies and
maximize ecosystem service co-benefits. We first discuss the
theory of ecosystem integrity and provide a working conceptual
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framework. We then compare important elements of ecosystem
integrity between primary and human-modified forests, with a
focus on elements most relevant for carbon mitigation including
risk profiles. Finally, we discuss the policy and management
implications of this comparative analysis. By drawing on
ecological theory and several sub-disciplines within ecology, we
integrate knowledge into a coherent framework of ecosystem
integrity (Figure 1) that can be used to guide both forest policy
at the international level as well as implementation in the form
of land use decisions, metrics, and priorities at the national
and jurisdictional levels. Our review draws upon decades of
evolving forest policy and published literature, including but
not limited to peer-reviewed articles, as well as engagement with
stakeholders, practitioners, policy makers, and forest ecologists.

Framework for forest ecosystem
integrity

Definition

Many definitions of ecosystem integrity exist because
ecosystem integrity is not a simple absolute physical property
but rather a multidimensional and scale-dependent emergent
phenomenon that encompasses important system components
and their interactions. The concept has received considerable
attention over the past several decades because of the human
benefits derived from natural processes and ecosystem states. As
noted by Muller et al. (2000), “ecosystem integrity turns out to
be the ecological branch of sustainability.”

Here we adopt and build upon the general framework
originally provided by Kay (1991), whereby ecosystem integrity
integrates different characteristics of an ecosystem that collectively
describe its ability to achieve and maintain its optimum
operating state, given the prevailing environmental drivers and
perturbations, and continue its processes of self-organization
and regeneration (i.e., autopoiesis). One of the main theoretical
divides about ecosystem integrity relates to differentiating
compositional (e.g., species richness, genetic diversity, or
presence of threatened species), structural (e.g., vegetation
density, biomass, food chains, and trophic levels) or functional
(e.g., productivity, energy flows, and nutrient cycling) aspects
of integrity (De Leo and Levin, 1997; Pimentel et al., 2013;
Roche and Campagne, 2017). We suggest these are largely
inseparable given the fundamental importance of structural
and compositional elements in supporting functional forest
ecosystem integrity and the many interdependencies among
composition, structure, and function. In practice, available
data and resources will determine what can be measured at
a particular spatial and temporal scale. Because ecosystem
integrity includes the provision of ecosystem services for human
benefit, its evaluation typically includes a human dimension

(Kay, 1991; De Leo and Levin, 1997; Kay and Regier, 2000;
Dorren et al., 2004; Roche and Campagne, 2017).

Components of ecosystem integrity

Based on decades of theoretical and applied studies, we
provide a framework for understanding the components of
forest ecosystem integrity, their drivers, and their inter-linkages
(Figure 1). It is important to note that all elements of ecosystem
integrity are affected by the prevailing environmental and
site characteristics of a given forested location, which must
be accounted for when comparing specific locations in space
and/or time.

Foundational elements
Forest ecosystem integrity is based on physiological

structures that efficiently use and dissipate energy (Figure 1).
These dissipative structures, or “ecological orientors” (Muller
et al., 2000), generate a gradient of energy degradation
via metabolic reactions that create and maintain themselves
(i.e., self-organization). Progressively accumulated exergy (i.e.,
available energy) becomes stored emergy (i.e., all the energy
used to generate a product or service) (Campbell, 2000;
Kay and Regier, 2000; Muller et al., 2000). Over the course
of evolution, community assembly, and forest succession,
this process generates optimized (generally high but not too
high; Hengeveld, 1989; May, 2001) ecosystem complexity and
distance from thermodynamic equilibrium (Odum, 1969; Kay,
1991; Holling, 1992; Campbell, 2000; Muller et al., 2000), with
associated levels of structural complexity, functional diversity,
and niche complementarity (Tilman, 1996; Tilman and Lehman,
2001; Thompson et al., 2009). Ecosystem processes that sustain
and regulate this self-organizing system, such as productivity,
evapotranspiration, reproduction cycles, and nutrient cycling
and retention, are optimized in the process (Muller et al., 2000;
Dorren et al., 2004; Migliavacca et al., 2021). The resulting forest
is a non-linear, self-organizing, holarchic and open system, with
reciprocal power relationships between levels (Kay and Regier,
2000).

A critical property of ecosystem integrity that is difficult
to assess from structural or compositional elements alone
is stability. Following Grimm and Wissel (1997), stability
is comprised of resistance (or constancy), resilience, and
persistence, which collectively represent an ecosystem’s ability to
resist or be resilient to change at both short and long time scales
(Kay, 1991, 1993; Regier, 1993; Muller, 1998; Kay and Regier,
2000; Andreasen et al., 2001; Parrish et al., 2003). In the case of
forest ecosystem integrity, primary drivers of change (exposure)
include human land use and other human pressures, and
climate change including extreme weather events and increasing
disturbances. Resistance indicates a forest’s ability to maintain
stability via dynamic equilibrium within defined ecosystem
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FIGURE 1

Conceptual framework of ecosystem integrity. Integrity is based on foundational elements including dissipative structures, ecosystem
processes, and ecosystem stability. These are underpinned by biodiversity, natural selection, and adaptive capacity, and in turn generate a given
ecosystem condition and benefits to people. Ecosystem integrity is impacted by environmental drivers and human impacts, including land use
and climate change.

bounds (Hughes et al., 2002; Loreau et al., 2002) in response
to these drivers. Forest resistance is conferred by negative
feedbacks and buffers, for example stable microhabitats in forest
interiors and functional redundancy across species. Resilience
indicates the ability to return to optimal operating conditions
after a state-altering perturbation (Holling, 1973; Kay, 1991; Kay
and Regier, 2000; Muller et al., 2000; Thompson et al., 2009).
The resulting ecosystem state can be somewhat altered (i.e.,
“ecological resilience” as opposed to “engineering resilience”),
but when viewed over an appropriate time span, a resilient
forest is able to maintain its “identity” in terms of taxonomic
composition, structure, ecological functions, and process rates–
and hence exhibit persistence (Thompson et al., 2009). Forest
resilience is generally conferred by regenerative capacity via
biological legacies (Franklin et al., 2000; Lindenmayer et al.,
2019). These components of stability are supported by an
ecosystem’s adaptive capacity, or the capacity for adaptive
change in response to new conditions (Angeler et al., 2019).
For example, genetic diversity, species diversity, and phenotypic
plasticity allow for varied and time-evolving expression of

adaptive traits and species within an ecosystem in response
to changing environmental conditions, disturbances, or other
pressures (Savolainen et al., 2007; Reed et al., 2011; Rogers et al.,
2017). Hence, adaptive capacity is supported by biodiversity
(Figure 1).

Biodiversity
These foundational elements of integrity are derivatives of

the underlying biodiversity of a forest ecosystem, including
diversity at the genetic, species, and community levels
(Figure 1). A wealth of literature provides evidence that
biodiversity supports net primary productivity (Chapin et al.,
1997; Diaz and Cabido, 2001; Hooper et al., 2005; Thompson
et al., 2009; Tilman et al., 2014; Liang et al., 2016; Duffy et al.,
2017; de Souza et al., 2019; Matos et al., 2020), adaptation
(Steffen et al., 2015; King et al., 2019), resistance (Pimm,
1984; Walker, 1995; Ives et al., 1999; Lehman and Tilman,
2000; McCann, 2000; Loreau et al., 2002; Dorren et al., 2004;
Hooper et al., 2005; Thompson et al., 2009; Hautier et al.,
2015), resilience (Peterson et al., 1998; Loreau et al., 2001;
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Hooper et al., 2005; Drever et al., 2006; Thompson et al.,
2009; Ajani et al., 2013; Oliver et al., 2015; King et al.,
2019), functional diversity (Cadotte et al., 2011; Levin, 2013;
Karadimou et al., 2016), and overall ecosystem functioning
(e.g., Lawton, 1997; Tilman, 1997; Hooper et al., 2005;
Cardinale et al., 2012; Watson et al., 2018; King et al., 2019).
These relationships exist because natural selection yields the
characteristic biodiversity and phenotypic plasticity best suited
to prevailing environmental conditions, including fluctuating
resource inputs, extreme events, periods of stress, and natural
disturbances. Specific mechanisms include biotic control of
grazing, population density, and nutrient cycling; niche
selection and complementarity; biotic and abiotic facilitation;
and functional redundancy (i.e., the “insurance hypothesis”)
(e.g., Naeem et al., 1995; Tilman, 1996; Tilman et al., 1997; Yachi
and Loreau, 1999; Loreau, 2000; Tilman and Lehman, 2001;
Pretzsch, 2005; Scherer-Lorenzen and Schulze, 2005; Jactel and
Brockerhoff, 2007; Thompson et al., 2009; Hantsch et al., 2014;
Wright et al., 2017; Liu et al., 2018).

Ecosystem condition
The foundational elements of ecosystem integrity

form the basis for assessing ecosystem condition (Keith
et al., 2020), specifically in the context of the System of
Environmental-Economic Accounting (Committee of Experts
on Environmental-Economic Accounting, 2021). Ecosystem
condition is defined as “the quality of an ecosystem that may
reflect multiple values, measured in terms of its abiotic and
biotic characteristics across a range of temporal and spatial
scales” (Keith et al., 2020). Ecosystem condition is measured in
terms of variables that reflect the state, processes, and changes
in the ecosystem, including (i) carbon and nutrient stocks,
(ii) abiotic physical and chemical states such as water quantity
and quality; (iii) biotic composition, structure, and function;
and (iv) landscape diversity and connectivity. Indicators of
condition are derived when variables are transformed by
assessment against a reference condition. For a given biome and
prevailing environmental conditions, these state variables are
optimized by the foundational elements of ecosystem integrity
and biodiversity (Phillips et al., 1994; Thompson et al., 2009;
Roche and Campagne, 2017; Di Marco et al., 2018; Liu et al.,
2018).

Ecosystem services
Characteristics of ecosystem condition that relate to

the supply of ecosystem services represent an instrumental
anthropocentric dimension. Specific ecosystem services can be
linked to characteristics of ecosystem condition, and condition
indicators can be associated with multiple services (Keith
et al., 2020). Ecosystem services can be broadly categorized
as regulating, provisioning, and cultural services (Millennium
Ecosystem Assessment, 2005; Kandziora et al., 2013; IPBES,
2019; Committee of Experts on Environmental-Economic

Accounting, 2021). Regulating services include clean
and regulated water flow, air quality, pest and pathogen
containment, erosion control, nutrient regulation, resistance
and resilience to natural hazards, waste regulation, carbon
sequestration and storage, and climate regulation from local
to global scales. Provisioning services include the animals,
plants, and minerals used for food, medicine, energy, and
infrastructure. Cultural services include customary values,
ecotourism and nature-based recreation, scientific research, and
education.

The concept of ecosystem integrity is useful because it
integrates across many properties of forest ecosystems, and
thereby optimizes values useful to humans and other organisms.
In the words of Koff et al. (2016), “ecosystem integrity
is a scientific paradigm that fits the political needs of the
present global development agenda focused on complex human-
environmental interactions.” The concept is holistic and can
be adapted to local, national, or international contexts. At
jurisdictional levels, the related concepts of “ecological integrity”
and “biological integrity” have been used operationally to
provide benchmarks for natural resource management (Karr,
1996; Harwell et al., 1999; Campbell, 2000; Muller et al., 2000;
Parrish et al., 2003; Tierney et al., 2009; Wurtzebach and
Schultz, 2016; Roche and Campagne, 2017). However, as noted
above, the international policy community has yet to implement
these terms. This is important because ecosystem integrity may
be directly linked to forest and carbon risk profiles that, if
understood and prioritized, could greatly aid our ability to
utilize forests for mitigation and adaptation.

Comparison of ecosystem
integrity between forest types

Here, we compare components of ecosystem integrity most
relevant for international policy across commonly recognized
broad categories of forest types, focusing on primary forests
and forests with significant levels of human modification and
pressure. We focus on components of ecosystem integrity
most pertinent to forest-based climate mitigation, including
forest risk profiles as governed by exposure and stability
as well as carbon stocks and fluxes. As noted previously,
direct comparisons between forest types must account for
environmental and site drivers, including the prevailing biome
(e.g., tropical, temperate, or boreal) and heterogeneity within
as determined by climate, soils, hydrology, and natural
disturbance regimes.

Following Kormos et al. (2018), Food and Agriculture
Organization of the United Nations [FAO] (2020), and IUCN
(2020), primary forests are defined as: (i) largely undisturbed by
industrial-scale land uses such as logging, mining, hydroelectric
development, and road construction; (ii) established and
regenerated by natural biological, ecological, and evolutionary
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processes; (iii) including the full range of successional stages
at a landscape level from pioneer, secondary growth, and old-
growth forest stands; and (iv) with the vegetation structure,
community networks, and taxonomic composition principally
reflecting natural processes including natural disturbance
regimes. Primary forests can therefore be distinguished from
naturally regenerating forests that are subject to conventional
forestry management for commodity production (Puettmann
et al., 2015), as well as planted forests, including plantations. For
our purposes, primary forest therefore encompasses a range of
commonly recognized forest descriptors including intact, virgin,
ecologically mature, and old growth forests (Buchwald, 2005;
Mackey et al., 2013; DellaSala et al., 2022b).

Foundational elements of ecosystem
integrity

Comparison of dissipative structures
In this section we focus on structural complexity because

of its importance for carbon stocks. Other components of
dissipative structures (Figure 1) will be highlighted for their
role in supporting ecosystem integrity in following sections
(including functional diversity as it relates to biodiversity in
the section “Biodiversity,” and stored emergy as manifested in
biomass and carbon stocks in section “Ecosystem condition”).
High-integrity forests that have been allowed time to respond
to their emergy signature develop a set of relatively complex
ecosystem structures (Campbell, 2000). Canopy structure is
particularly influential for other elements of ecosystem integrity
such as microclimate, runoff, nutrient cycling, and biodiversity
(Hobbie, 1992; Parker, 1995; Didham and Lawton, 1999;
Siitonen, 2001; Asner et al., 2010; Goetz et al., 2010; Hansen
et al., 2014). Primary tropical forests in particular develop tall,
multi-story dense canopies with large variations in plant size and
emergent canopy dominants (Kricher, 2011; Hansen A. J. et al.,
2020). Temperate forests also develop complex forest canopies
as they age, which is associated with high levels of biodiversity
and carbon storage (DellaSala et al., 2022b).

Canopy height, in turn, is positively related to aboveground
biomass and carbon storage. For example, in Brazil, Democratic
Republic of the Congo, and Indonesia, primary forests were 38–
59% taller and contained 70–148% more aboveground biomass
than other dense tree cover types, including degraded forests,
secondary regrowth, and tree plantations (Turubanova et al.,
2018). When felling the largest trees or clear-cutting entire
stands, logging decreases canopy height, homogenizes forest
canopies, and reduces structural complexity (Pfeifer et al.,
2016; Rappaport et al., 2018; Bourgoin et al., 2020), which can
take centuries to recover. Structural complexity also relates to
non-living forest structures, such as dead wood, that provide
supporting functions including nutrient cycling, soil formation,
and habitat for myriad species (Janisch and Harmon, 2002;

Millennium Ecosystem Assessment, 2005; Gamfeldt et al., 2013).
When directly compared, primary forests consistently contain a
greater volume and diversity of dead wood than forests managed
for commodity production (e.g., Guby and Dobbertin, 1996;
Siitonen et al., 2000; Siitonen, 2001; Debeljak, 2006).

Comparison of ecosystem processes
Here we focus on ecosystem productivity given its

importance for climate mitigation, but note that other
ecosystem processes will be highlighted in following sections
(evapotranspiration as it relates to drought risk in section
“Comparison of risks from drought,” reproduction cycles
as they relate to regeneration in section “Comparison of
regenerative capacity,” and nutrient cycling and retention as it
relates to nutrient stocks in section “Comparison of ecosystem
condition”). Differences in ecosystem productivity and carbon
fluxes among forest seral stages have been the subject of
much debate. One viewpoint is that forests containing younger
trees are more productive, with both higher net primary
productivity (NPP, including photosynthesis and autotrophic
respiration) and net ecosystem productivity (NEP, also including
heterotrophic respiration) than ecologically mature forests (e.g.,
Ryan et al., 1997; Simard et al., 2007; Goulden et al., 2010). This
view has often justified the conversion of primary forests into
regrowth forests. While it is true that secondary forests often
have higher rates of photosynthesis, this is not always the case,
particularly when accounting for the impacts of higher species
richness in older primary forests (Liu et al., 2018) and the entire
age profile of timber rotations, including times with bare soil and
young trees. A wealth of evidence clearly shows that old-growth
forests continue to sequester carbon in significant quantities in
aboveground biomass, dead wood, litter, and soil organic matter
(Phillips et al., 1998; Zhao and Zhou, 2006; Luyssaert et al., 2008;
Lewis et al., 2009; Thompson et al., 2013; Gatti et al., 2014; Grace
et al., 2014; McGarvey et al., 2015; Schimel et al., 2015; Lacroix
et al., 2016; Baccini et al., 2017; Phillips and Brienen, 2017; Qie
et al., 2017; Lafleur et al., 2018; Mitchard, 2018). This is why
Pugh et al. (2019) found that old-growth forests (defined in that
study as >140 years) cover roughly 39% of global forest area and
contribute 40% of the current global forest carbon sink, which in
turn represents roughly two-thirds of the terrestrial carbon sink
(Friedlingstein et al., 2019).

More importantly, when comparing these CO2 fluxes in the
context of mitigation actions, the entire life cycle of management
and disturbance must be taken into account. From a carbon
balance perspective, converting primary forests into young
forests logged for biomass energy, wood supply, or other uses
does not offset the original conversion emissions for many
decades to centuries (Cherubini et al., 2011; Holtsmark, 2012;
Mitchell et al., 2012; Keith et al., 2015; Birdsey et al., 2018;
Hudiburg et al., 2019; Malcolm et al., 2020), creating a large
carbon debt on policy-relevant timescales (generally years to 1–3
decades). Hence the size, longevity, and stability of accumulated
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forest carbon stocks, including in the soils, are important
mitigation metrics in addition to the rate of annual sequestration
(Mackey et al., 2013; Keith et al., 2021).

Stability and risk profiles
Ecosystem stability is comprised of resistance, resilience,

and longer-term persistence (Figure 1). Combined with
exposure to external perturbations, properties of ecosystem
stability provide critical information for risk assessments. Risk
assessments are undertaken and utilized in a wide variety of
scientific and operational contexts (Fussel and Klein, 2006; Glick
et al., 2011; Oppenheimer et al., 2014; Rogers et al., 2017),
and are critically important to ensure mitigation actions result
in long-term carbon storage. Nevertheless, risk assessments
are currently either not undertaken or done so in mostly
rudimentary and incomplete ways for forest-based carbon
mitigation (Mignone et al., 2009; Ajani et al., 2013; Anderegg
et al., 2020). Here we focus on the risk of a forest ecosystem
experiencing a state-altering disturbance that results in carbon
loss to the atmosphere.

Comparison of risks from wildfire

Wildfires are major natural disturbances in temperate and
boreal forest ecosystems, although historically rare in tropical
wet forests unless caused by humans (Randerson et al., 2012;
Archibald et al., 2013; Giglio et al., 2013; Andela et al., 2017).
The area burned by wildfire has been increasing in high-canopy
cover forests globally over the past 20 years (Andela et al., 2017),
and human-caused fires are a major driver of the loss of intact
forest landscapes (Potapov et al., 2017). Extreme fire weather
conditions have increased in most forests globally over the last
half-century (Jolly et al., 2015; Jain et al., 2017; Dowdy, 2018),
and wildfires are projected to become more widespread and
intense due to climate change (Ward et al., 2012; Flannigan et al.,
2013; Abatzoglou et al., 2019; Dowdy et al., 2019; Rogers et al.,
2020). Humans have increased forest fire risk by augmenting
forest fuels through active management (DellaSala et al., 2022a)
and by increasing the number and sources of ignition (Balch
et al., 2017). The majority of documented megafires globally
have been started by humans under extreme fire weather
conditions (Ferreira-Leite et al., 2015; Bowman et al., 2017).

A large body of literature shows that forests managed
for commodity production, degraded, or disturbed forests
are generally more susceptible to fires because of drier
microclimates and fuels, higher land surface temperatures that
promote air movement between forests and neighboring open
areas, and human ignitions due to access and proximity,
particularly in the tropics (e.g., Uhl and Kauffman, 1990;
Holdsworth and Uhl, 1997; Cochrane et al., 1999; Laurance
and Williamson, 2001; Siegert et al., 2001; Donato et al., 2006;
Lindenmayer et al., 2009, 2011; Brando et al., 2014; DellaSala
et al., 2022a). Although fires are a natural disturbance agent
throughout most boreal forests (Viereck, 1973; Payette, 1992;

Gromtsev, 2002; Soja et al., 2007; Rogers et al., 2015), fire
frequency in boreal forests increases in proximity to human land
use due to fuel drying, human access, and forestry practices such
as leaving slash on site, particularly in Siberia (Kovacs et al.,
2004; Achard et al., 2008; Ponomarev, 2008; Laflamme, 2020;
Terrail et al., 2020; Shvetsov et al., 2021).

In many forest systems, fires in previously logged or
managed landscapes can be more intense/severe, emit more
carbon to the atmosphere, and take longer to recover than fires
in ecologically mature or primary forests due to increased fuel
availability, lower fuel moisture, and dense secondary forests
that carry crown fires and are susceptible to extensive tree
mortality (Odion et al., 2004; Stone et al., 2004; Thompson
et al., 2007; Lindenmayer et al., 2009, 2011; Price and Bradstock,
2012; Kukavskaya et al., 2013; Taylor et al., 2014; Bradley
et al., 2016; Dieleman et al., 2020; De Faria et al., 2021; Landi
et al., 2021). In general, larger and older trees have a greater
chance of surviving fires due to thicker bark and lower relative
scorch height (Laurance and Williamson, 2001; Lindenmayer
et al., 2019). Increased fuel availability in secondary forests can
also facilitate fire spread (Lindenmayer et al., 2011). Positive
feedbacks between fires and secondary vegetation can lead to
permanent forest loss, i.e. “landscape traps,” at the warm / dry
edge of forest ranges (Payette and Delwaide, 2003; Hirota et al.,
2011; Lindenmayer et al., 2011; Staver et al., 2011; Brando et al.,
2014; Kukavskaya et al., 2016; Lindenmayer and Sato, 2018).
Primary forests are generally more resistant to fire because of
higher humidity and fuel moisture, the presence of understory
species such as ferns and mosses that limit light penetration
to the forest floor and increase water retention, and much less
human access (Ough, 2001; Lindenmayer et al., 2009; Taylor
et al., 2014; Zylstra, 2018; Funk et al., 2019).

Comparison of risks from drought

Severe droughts represent 60–90% of climate extremes
impacting gross primary productivity in the past 30 years
(Zscheischler et al., 2014), are a major driver of tree mortality
and forest die-off (Allen et al., 2010, 2015; Anderegg et al., 2013;
McDowell and Allen, 2015; McDowell et al., 2016; Rogers et al.,
2018), and are expected to increase with future climate change
(Cook et al., 2014; Trenberth et al., 2014; Yi et al., 2014; Xu et al.,
2019; Zhou et al., 2019; De Faria et al., 2021). A large body of
literature indicates closed canopy forests are more resistant to
drought, particularly in the tropics, due to shading, biophysical
microclimate buffering, thicker litter layers, deeper roots, and
increased water use efficiency as trees develop (e.g., Briant et al.,
2010; von Arx et al., 2013; Frey et al., 2016; Brienen et al., 2017;
Qie et al., 2017; Giardina et al., 2018; Caioni et al., 2020; Elias
et al., 2020). For a given level of realized drought, some evidence
points to larger older trees being more susceptible to drought
impacts (Phillips et al., 2010; Girardin et al., 2012; Bennett et al.,
2015; McDowell and Allen, 2015; McIntyre et al., 2015; Chen
et al., 2016; Clark et al., 2016). Yet there is also contrasting
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evidence. For example, younger boreal forests can be more
susceptible to drought compared to mature forests (Luo and
Chen, 2013; Hember et al., 2017) due to competition for space
and nutrients and less extensive and shallower root systems.
Tree diversity, which is generally higher in primary compared
to human-modified forests (see section “Biodiversity”), may
increase resistance and resilience to drought via adaptive
responses and functional redundancy (Jump et al., 2009; Sthultz
et al., 2009; Dale et al., 2010; Harter et al., 2015), and intact forest
canopies can be relatively resistant and resilient to short-term
climate anomalies including drought (Williamson et al., 2000;
Saleska et al., 2007). Evidence also suggests that mechanical
“thinning,” which is frequently proposed and implemented to
combat drought, decreases stand-level water use in the short-
term but actually increases individual tree water demand via
higher leaf-to-sapwood ratios and hence drought vulnerability
in the long-term (McDowell et al., 2006; Kolb et al., 2007;
D’Amato et al., 2013; Clark et al., 2016).

Mature forests transpire large quantities of water from
relatively deep in the soil profile, increasing regional cloud
cover and precipitation. This acts to increase the proportion of
“recycled” water within a given region and thereby decreases the
prevalence of regional droughts (Foley et al., 2007; Spracklen
et al., 2012; Ellison et al., 2017). For example, air passing over
intact tropical forest landscapes can contain twice the moisture
content as air over degraded forests or non-forest landscapes
(Sheil and Murdiyarso, 2009). Degradation and the loss of intact
forest landscapes increases dry and hot days, decreases daily
rainfall intensity and levels, and exacerbates regional droughts
(Deo et al., 2009; Alkama and Cescatti, 2016).

Comparison of risks from pests and pathogens

Pests and pathogens are an increasing threat to many forests
globally, particularly as climate change alters life cycles, potential
ranges, and host-pest interactions (Carnicer et al., 2011; Kautz
et al., 2017; Seidl et al., 2017; Simler-Williamson et al., 2019).
Mature boreal and temperate forests can be more susceptible
to pests and pathogens compared to younger forests, in part
due to decreases in the resin flow of defense compounds
(Christiansen and Horntvedt, 1983; Hansen and Goheen, 2000;
Baier et al., 2002; Dymond et al., 2010). Prominent examples
include bark beetle and defoliator susceptibility (Kurz et al.,
2008; Raffa et al., 2008; Taylor and MacLean, 2009; Krivets
et al., 2015; Kautz et al., 2017). Nevertheless, ecologically mature
forests tend to be resilient to biotic infestations, as these cyclical
events initiate succession and lead to stand- and landscape-
level heterogeneity (Holsten et al., 2008; Thompson et al., 2009).
Moreover, tree diversity (measured in terms of genetic, species,
and age) tends to limit pest and pathogen spread and damage
because of resource dilution, host concealment, phenological
mismatches, increased predators and parasitoids, alternative
hosts, and metapopulation dynamics (Root, 1973; Karieva, 1983;
Pimm, 1991; Watt, 1992; Zhang et al., 2001; Jactel et al., 2005;

Pautasso et al., 2005; Scherer-Lorenzen and Schulze, 2005;
Thompson et al., 2009; Guyot et al., 2016).

In terms of human influence, anthropogenic disturbances
such as selective logging can introduce forest pests and diseases
(Gilbert and Hubbell, 1996), including non-native, and evidence
suggests forest edges and logged forests are more susceptible
to beetle attacks due to increases in available host niches and
altered moisture conditions (Sakai et al., 2001). Many pests,
particularly in temperate and boreal forests, take advantage
of weakened tree defenses during drought (Raffa et al., 2008;
McDowell et al., 2011; Anderegg and Callaway, 2012; Hicke
et al., 2012; Keith et al., 2012; Poyatos et al., 2013; Anderegg et al.,
2015). Monocultures, or tree plantations, have been shown to be
particularly vulnerable due to a lack of tree diversity, high tree
density, and the associated host-pest interactions (Jactel et al.,
2005; Macpherson et al., 2017; Lee, 2018).

Comparison of risks from windthrow

Windthrow events can lead to forest mortality and are
expected to increase in some regions with climate change
(Klaus et al., 2011; Saad et al., 2017). Although these events
are somewhat stochastic, they are also influenced by soils,
orography, regional climate regimes, and forest composition
and structure. Similar to the risks of pests and pathogens,
within a given stand there is evidence that older and taller
trees are more susceptible to windthrow due to the physics of
taller trees and root rot (Lohmander and Helles, 1987; Ruel,
1995). Nevertheless, fragmented or thinned forests experience
elevated mortality and collapse of trees from windthrow because
of increased exposure (Laurance and Curran, 2008; Reinhardt
et al., 2008; Schwartz et al., 2017).

Comparison of risks from species range shifts

Climate regimes have strong influences on the potential
and realized ranges of forest tree species, evidenced by the
paleoecological record (Overpeck et al., 1991; DeHayes et al.,
2000; Davis and Shaw, 2001) and current assemblages (e.g.,
Neilson, 1995; Foley et al., 2000), and considerable scientific
effort is focused on projecting future responses to climate
change (e.g., Sitch et al., 2003; Elith and Leathwick, 2009; Rogers
et al., 2011, 2017; Ehrlen and Morris, 2015; Prasad et al., 2020).
How trees and forest ecosystems will respond is uncertain
due to complex interactions between the pace of climate
change, physiological tolerances, dispersal and migration rates,
phenotypic plasticity and adaptation, the presence of climate
refugia, migration of associated species / symbionts, and forest
fragmentation, among others (Davis and Shaw, 2001; Iverson
et al., 2004; Jump and Penuelas, 2005; Mackey et al., 2008;
Nicotra et al., 2010; Prasad, 2015; Rogers et al., 2017). In general,
current and projected climate change is expected to degrade
biodiversity due to species extinctions and the contraction of
realized ranges (Miles et al., 2004; Campbell et al., 2009). Forest
and landscape fragmentation in particular is known to hinder
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resilience and species migration because of the loss of suitable
areas for dispersal and limitations on gene flow (Collingham
and Huntley, 2000; Loreau et al., 2002; Scheller and Mladenoff,
2008; Thompson et al., 2009). Large areas of primary forests
are expected to have higher adaptive capacity and stability
compared to forests under human pressure because of their
connectivity, biodiversity, and microclimate buffering (Mackey
et al., 2015; Watson et al., 2018; Thom et al., 2019; see section
“Biodiversity”).

Comparison of risks from land use degradation

Human land use pressures on forests generally result in
both direct environmental impacts as well as further, often
unplanned, degradation or deforestation that accumulates
spatially and temporally. This is exemplified by the fact that
smaller fragments of primary forest have an elevated likelihood
of loss (Hansen M. C. et al., 2020). New roads are the primary
driver of further degradation as a result of their construction,
use, and continued access (e.g., Trombulak and Frissell, 2000;
Wilkie et al., 2000; Laurance et al., 2009; Laurance and Balmford,
2013; Ibisch et al., 2016; Alamgir et al., 2017; Venier et al.,
2018; Maxwell et al., 2019). Roads render the surrounding
forests much more susceptible to agricultural conversion (Asner
et al., 2006; Boakes et al., 2010; Gibbs et al., 2010; Laurance
et al., 2014; Kormos et al., 2018), logging (Laurance et al., 2009;
Barber et al., 2014), and expanded networks of secondary and
tertiary roads (Arima et al., 2008, 2016; Ahmed et al., 2014).
Logging and transportation can also lead to severe erosion
and nutrient runoff, impacting downstream water quality and
quantity (Carignan et al., 2000; Hartanto et al., 2003; Foley
et al., 2007), and damage the surrounding forest. For example,
in the Amazon, it has been estimated that for every commercial
tree removed via selective logging, roughly 40 m of roads are
created, nearly 30 other trees greater than 10 cm in diameter
are damaged, and between 600 and 8,000 m2 of canopy is
opened (Holloway, 1993; Asner et al., 2004). Furthermore, roads
reduce animal habitat, are barriers to animal movement and
lead to increased animal mortality, including from unregulated
hunting, all of which decrease connectivity and genetic exchange
(Dyer et al., 2002; Frair et al., 2008; Laurance et al., 2009; Taylor
and Goldingay, 2010; Clements et al., 2014). One consequence
is a decline in carbon-dense tree species due to overhunting of
seed-dispersing animals (Osuri et al., 2016; Maxwell et al., 2019).
It is important to note that roughly 95% of deforestation in the
Amazon occurs within 5.5 km of a road (Barber et al., 2014),
and that illegal logging represents 85–90% of all logging in the
tropics (Lawson and MacFaul, 2010; Lawson, 2014; Hoare, 2015)
and still roughly one-quarter of logging in Russia (Food and
Agriculture Organization of the United Nations [FAO], 2012;
Kabanets et al., 2013), which contains the largest areal forest
coverage of any country (Food and Agriculture Organization
of the United Nations [FAO], 2020). Overall, road building

and industrial logging are the largest drivers of initial forest
degradation and fragmentation (Hosonuma et al., 2012).

In addition to their direct impacts, roads and land use
further degrade forests due to edge effects. Forests at or near
an edge can have substantially drier microclimates, increased
windshear and movement of dry air into forests, invasive
species (dispersed via roads and more favorable microclimate
conditions for competition), weeds and vines, sun exposure,
soil erosion, and fuel loads due to drying and previous
logging and fire (Laurance and Williamson, 2001; Mortensen
et al., 2009; Brando et al., 2014). This leads to a variety of
unfavorable impacts and further risks. Carbon densities tend to
be significantly lower near forest edges. For example, biomass
is reduced by roughly 50% within 100 m, 25% within 500 m,
and 10% within 1.5 km of a forest edge (Laurance et al., 1997;
Chaplin-Kramer et al., 2015; Maxwell et al., 2019). Aggregated
across the tropics, edge effects are estimated to account for up to
one quarter of all carbon loss from tropical deforestation (Putz
et al., 2014). Primary productivity is also generally lower near
forest edges, and fire susceptibility is higher due to elevated
and drier fuel loads and increased human access (Laurance
et al., 1998; Cochrane et al., 1999; Nepstad et al., 1999; Laurance
and Williamson, 2001; Foley et al., 2007; Adeney et al., 2009;
Brando et al., 2014). For example, roads are strong predictors of
ignition and wildfire frequency in temperate forests (Hawbaker
et al., 2013; Faivre et al., 2016; Parisien et al., 2016; Balch
et al., 2017; Ricotta et al., 2018), and road expansion in Siberia
has been shown to promote logging and human-caused forest
fires (Kovacs et al., 2004). A variety of ecosystem services are
degraded due to edge effects, including hydrologic regulation,
water quality, modulation of regional climate, and amelioration
of infectious diseases (Laurance and Williamson, 2001; Foley
et al., 2007). Although the impacts are strongest at a forest edge,
the effects can generally be detected up to 2 km from the edge,
with higher tree mortality up to 1 km and wind disturbance
up to 500 m (Broadbent et al., 2008). Globally, fragmentation
is thought to be at a critical threshold, with roughly 70% of
the world’s forest within 1 km of a human-created forest edge
(Haddad et al., 2015; Taubert et al., 2018).

Comparison of regenerative capacity

Ecosystem resilience is underpinned by the natural
regenerative capacity of a forest ecosystem, and hence
represents a major component of ecosystem stability and
integrity (Figure 1). Regeneration from major disturbance
events requires biological legacies, which are broadly defined as
the remaining living and dead structures and organisms that
can influence recovery (Franklin et al., 2000; Jogiste et al., 2017).
These include living and dead trees, shrubs and other plants,
seeds, spores, fungi, eggs, soil communities, and living animals
(Franklin et al., 2000; Stahlheber et al., 2015; Lindenmayer et al.,
2019). Compared to secondary or human-modified forests,
primary forests tend to have the biological legacies (Catterall,
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2016; Chazdon and Uriarte, 2016; Lu et al., 2016; Poorter et al.,
2016; Lindenmayer et al., 2019) and favorable microclimates
(von Arx et al., 2013) required for optimal regeneration. This
is evidenced by the fact that secondary forest regeneration is
aided by proximity to primary forests (Schwartz et al., 2015;
Kukavskaya et al., 2016). Clearcut logging also generates low
levels of biological legacies and higher regeneration failures
after subsequent fires compared to forests not previously
logged (Perrault-Hebert et al., 2017), which is exacerbated by
post-fire "salvage" logging (Donato et al., 2006; Lindenmayer
et al., 2019). Successive disturbances continue to decrease
regenerative capacity, and can lead to permanent forest loss and
emergence of non-forest ecosystems (Payette and Delwaide,
2003; Johnstone et al., 2016; Kukavskaya et al., 2016). Compared
to degraded or human-modified forests, primary forests with
large extents also host a much larger array of seed dispersers
and pollinators (Muller-Landau, 2007; Wright et al., 2007;
Abernethy et al., 2013; Harrison et al., 2013; Peres et al., 2016).

Comparison of biodiversity

Biodiversity underpins and is affected by the foundational
elements of ecosystem integrity (Figure 1), but is also a metric
of ecosystem condition and can be considered an ecosystem
service in its own right. Globally, trees are among the most
genetically diverse of all organisms, and forests collectively
support the majority (roughly 80%) of terrestrial biodiversity
(Hamrick and Godt, 1990; Barlow et al., 2007; Pimm et al., 2014;
Federici et al., 2017). There is a substantial body of literature
on the effects of disturbance and stand age on biodiversity,
with some disagreement among studies depending on context
(e.g., Paillet et al., 2010; Edwards et al., 2011; Moreno-Mateos
et al., 2017; Kuuluvainen and Gauthier, 2018; Matos et al., 2020).
Nevertheless, there are clear and definitive negative impacts of
human disturbance and land use on biodiversity (Cairns and
Meganck, 1994; Ellison et al., 2005; Barlow et al., 2007, 2016;
Gibson et al., 2011; Alroy, 2017; Giam, 2017). Primary and
ecologically mature forests typically harbor higher biodiversity
than human-modified forests (Lesica et al., 1991; Herbeck and
Larsen, 1999; Rey Benayas et al., 2009; Zlonis and Niemi, 2014;
Miller et al., 2018; Watson et al., 2018; Lindenmayer et al.,
2019; Thom et al., 2019), especially in the understory (e.g.,
Lafleur et al., 2018). Disturbance generally results in a change
in species composition toward early pioneer species (e.g., Bawa
and Seidler, 1998; Liebsch et al., 2008; Venier et al., 2014). The
effect of human activities on the provision of ecosystem services
is evident even if there is little change in the overall forest cover.
Degradation in logged forests can be in the form of structural
changes such as reduction in old age classes of trees that can
cause loss in breeding habitat, particularly for birds (Rosenberg
et al., 2019; Betts et al., 2022), and compositional changes such
as shifts in tree species abundance that differ in foliar nutrient

concentrations that support arboreal folivores (Au et al., 2019).
Under less intensive agriculture management, agroforestry can
maintain a significant fraction of biodiversity, but it is still
considerably lower than in native forests (De Beenhouwer et al.,
2013; Vallejo-Ramos et al., 2016).

Biodiversity analyses are also strongly dependent on spatial
scale, whereby higher levels of management and disturbance
homogenize forest composition and age structure across the
landscape, and consequently the biota it supports (e.g., Devictor
et al., 2008; de Castro Solar et al., 2015; Tomas Ibarra and
Martin, 2015). What can be concluded is that (i) degraded
and intensively managed forests tend to harbor lower biological
and functional diversity compared to primary forests, which
support many as yet unidentified species and act as repositories
for species that cannot survive in secondary or degraded
forests (Barlow et al., 2007; Gibson et al., 2011), and (ii)
natural disturbances are effective at maintaining landscape
heterogeneity and the species that depend on disturbed and
young forests (Lindenmayer et al., 2019). Global biodiversity
loss is currently orders of magnitude higher than background
rates and is driven primarily by deforestation and forest
degradation (Newbold et al., 2016; Giam, 2017). It is worth
noting that although natural tree diversity in boreal forests
is typically much lower than in temperate or tropical forests
(Thompson et al., 2009; Hill et al., 2019), the biodiversity of
other species groups such as bryophytes and lichens can be
very high (DellaSala, 2011; Kuuluvainen and Gauthier, 2018),
functional diversity in boreal forests is generally high (Esseen
et al., 1997; Wirth, 2005), and the broad genetic variability and
phenotypic plasticity of boreal trees allows them to tolerate a
wide range of environmental conditions (Gordon, 1996; Howe
et al., 2003).

Comparison of ecosystem condition

Given our focus on climate mitigation, the primary metric of
concern for ecosystem condition is carbon stocks. Primary and
ecologically older forests have been consistently found to have
the highest carbon stocks compared to secondary, degraded,
intensively managed, or plantation forests (e.g., Harmon et al.,
1990; Cairns and Meganck, 1994; Nunery and Keeton, 2010;
Burrascano et al., 2013; Mackey et al., 2013; Keith et al.,
2015, 2017; Federici et al., 2017; Lafleur et al., 2018; Watson
et al., 2018). For example, a recent meta-analysis shows that
primary tropical forests store on average 35% more carbon than
forests affected by conventional management for commodity
production (Mackey et al., 2020). Across the tropics, intact forest
landscapes cover approximately 20% of total area but store 40%
of total aboveground biomass (Potapov et al., 2017; Maxwell
et al., 2019). This is fundamentally a function of where carbon
is stored in these forests. In wet tropical and some temperate
primary forests, roughly half the biomass carbon is stored in
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the largest 1–3% diameter trees (Stephenson et al., 2014; Lutz
et al., 2018; Mildrexler et al., 2020), which have long residence
times (Koerner, 2017; van der Sande et al., 2017), and are
typically the first to be felled (Cannon et al., 1998; Sist et al.,
2014; Gatti et al., 2015; Rutishauser et al., 2016). Agricultural
landscapes store comparatively less carbon, but the addition
of trees via agroforestry has the potential to add up to 9 Pg
C globally (Chapman et al., 2020). In boreal forests, especially
those that are poorly drained, the majority of forest ecosystem
carbon is stored in dead biomass, peat, and soil organic
layers that accumulate over the course of forest succession,
often protected by permafrost (Deluca and Boisvenue, 2012;
Bradshaw and Warkentin, 2015; Lafleur et al., 2018; Walker
X J et al., 2020). Boreal forests managed for timber are kept at
younger ages, with soils that store significantly less carbon due to
mechanical disturbance, tree species conversion, and impacts on
litter composition, nutrient cycling, and bryophyte communities
(Liski et al., 1998; Jiang et al., 2002; Seedre et al., 2014; Lafleur
et al., 2018). Even outside the boreal zone, soil carbon can be a
significant fraction of total ecosystem carbon (e.g., Keith et al.,
2009), and logging activities generally deplete forest soil carbon
due to soil compaction and disturbance, erosion, changes in
microclimate that increase respiration rates, reduced leaf litter
and root exudates, loss of micorrhizal network carbon, and
post-logging “slash” burning (Rab, 2004; Zummo and Friedland,
2011; Buchholz et al., 2014; James and Harrison, 2016; Hume
et al., 2018; Mayer et al., 2020). Globally, forests are thought
to store only half of their potential carbon stock, with 42–47%
of the reduction due to forest management and modification
(the remainder being deforestation and land cover changes; Erb
et al., 2018). Natural regeneration of forests could in turn restore
123 Pg C, or 27% of the total biomass carbon that has been lost
(Erb et al., 2018).

Forest management, degradation, and conversion can also
result in the loss of key nutrients such as nitrogen and
phosphorous, among others, which are otherwise retained
efficiently in undisturbed forests (Likens et al., 1970; Markewitz
et al., 2004; Olander et al., 2005; Liu et al., 2019). Nutrients can
be artificially added, but heavily managed systems require large
inputs to maintain their state and productivity capacity (Noss,
1995; Merino et al., 2005; Pandey et al., 2007). Other elements
of ecosystem condition are affected similarly and highlighted
elsewhere (landscape connectivity / fragmentation in section
“Comparison of risks from land use degradation,” biodiversity
in section “Comparison of biodiversity,” and water quality and
quantity in section “Comparison of ecosystem services”).

Comparison of ecosystem services

A large body of literature indicates the higher number,
quality, and value of ecosystem services provided by primary
forests compared to human-modified forests and landscapes.

These include regulating services such as water quality and
quantity (DellaSala, 2011; Brandt et al., 2014; Keith et al.,
2017; Kormos et al., 2018; Taylor et al., 2019; Vardon et al.,
2019); carbon storage and sequestration as an ecosystem service
of global climate regulation (United Nations [UN], 2021)
[discussed above, but see Keith et al. (2019) and Uganda Bureau
of Statistics [UBOS] (2020) for examples using Ecosystem
Accounts]; local to regional biophysical cooling (Spracklen
et al., 2012; Lawrence and Vandecar, 2015); regulation of
runoff, sediment retention, erosion control, and flood mitigation
(Hornbeck and Federer, 1975; Jayasuriya et al., 1993; Dudley
and Stolton, 2003; Furniss et al., 2010; van Haaren et al.,
2021); provisioning services such as abundance of game and
fish (Gamfeldt et al., 2013; Brandt et al., 2014); cultural services
such as landscape aesthetics, recreation, and tourism (Brandt
et al., 2014; Brockerhoff et al., 2017); cultural practices and
knowledge (Normyle et al., 2022); contributions to physical
and psychological health (Stier-Jarmer et al., 2021); and general
assessments across a suite of services (e.g., Myers, 1997; Harrison
et al., 2014; Shimamoto et al., 2018; Maes et al., 2020).

For example, a detailed assessment of the differences
between primary forests and post-logging regrowth forests in
terms of their ecosystem condition, the physical supply of a suite
of ecosystem services, and their monetary valuation showed the
superior aggregated value of the primary forest (Keith et al.,
2017). The impacts of mechanical disturbance due to logging,
roading, and mining on soil properties reduce the ecosystem
services of soil nutrient availability, water holding capacity and
erosion prevention (Hamburg et al., 2019). A general assessment
of the total economic value of ecosystem services provided
by forest ecosystem types showed that primary forests had a
higher median value (USD 139 ha−1 year−1) compared with
secondary forests (USD 128 ha−1 year−1) (Taye et al., 2021).
These aggregated values include only the market values for
services when known and could not account for non-market
values, for example that would be needed to assess biodiversity
habitat or many cultural services. The highest reported values
for specific ecosystem services were for airflow regulation, water
cycle regulation and food for freshwater plants and animals.
These services would all have their highest provision from
natural ecosystems. In contrast, the value of timber and fiber
products is significantly lower.

Lessons from comparative analysis

Taken as a whole and for a given set of environmental
conditions, our comparative analysis shows that primary
forests have the highest levels of ecosystem integrity compared
to human-modified forests, including naturally regenerating
forests managed for commodity production, plantations, and
previously forested landscapes. One primary set of mechanisms
are positive feedbacks whereby forest disturbance tends to beget
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more disturbance (e.g., Seidl et al., 2017), and degradation begets
more degradation (e.g., Venier et al., 2018; Watson et al., 2018).
In terms of variables most relevant for mitigation, adaptation,
and other international forest policy goals, primary forests store
the highest carbon stocks, present the lowest risks of forest
and carbon loss reversal, have the highest biodiversity, and
provide the largest stocks of ecosystem assets and highest quality
flows of ecosystem services, including benefits to the global
community, local communities (Vickerman and Kagan, 2014),
and Indigenous peoples.

Based on our review, and because human-modified forests
can encompass a wide range of management strategies and
intensities, we provide further summaries of ecosystem integrity
for five main categories of forest types: (A) primary forests;
(B) secondary forests; (C) production forests; (D) agro-forests;
and (E) plantations (Figure 2 and Table 1). Primary forests
have the most developed dissipative structures, the highest
levels of ecosystem processes, greater stability and recovery,
and thus greater resilience and the lowest risk of loss and
damage. As defined here, secondary forests are in recovery
from past human impacts especially logging. Although they

can transition to primary forests over time, these forests lack
some old growth characteristics, are more vulnerable to wildfire
and other natural disturbances, and have missing elements of
biodiversity. Production forests are a result of conventional
forest management for commodity production, and tend to
be kept at relatively young ages with associated reductions in
dissipative structures, carbon stocks, and resilience. An example
of commercial agro-forests is shade coffee where retaining some
natural canopy tree cover provides some additional ecosystem
service benefits. Subsistence agro-forests are common in many
tropical development countries such as Vanuatu where these
household and community gardens were, and in many cases still
are, the main source of food. Commercial plantations include
monocultures of trees species that are essentially tree farms
for commodity production (wood, palm oil). Note that there
are gradients of human modification, stand age, and ecosystem
integrity within these broad categories. For example, mature
forests recovering from past human disturbances may not
have the full suite of structural, functional, and compositional
benefits as primary forests, but they can gain these over time,
and generally have higher ecosystem integrity than forests

FIGURE 2

Graphical illustrations of five main forest types considered for ecosystem integrity comparisons, including (A) primary forests, (B) secondary
forests, (C) production forests, (D) agro-forests, and (E) plantations. Note this illustration focuses on tropical forests, but the same general
differences apply across forest biomes.
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TABLE 1 Comparison of ecosystem integrity foundational elements between five main forest types.

Primary forest

• Naturally regenerated forest of native tree species, where there are no clearly visible indications of human activities and the ecological processes are not significantly
disturbed
• Likely to have never been commercially logged or intensely managed
• At a landscape level, can comprise early successional (seral) stage following natural disturbances
• More likely to contain full complement of evolved natural biodiversity
• Often the customary territories of Indigenous Peoples

Dissipative structures • Ecosystem processes • Stability and risk
profiles

• Ecosystem integrity level

• Canopy trees dominated by large, old trees
• In wet tropics, closed canopies
• Dense soil organic stocks
• Typically significant quantities of dead
biomass

• Fully self-generating (autopoiesis)
• In temperate and boreal forests, includes
seral stages following natural disturbances
• Tight nutrient cycling with minimal leakage
and/or erosion
• Clean water supply

• Highly resistant and/or resilient
to extreme weather events
• In boreal and temperate biomes,
fire-adapted plant species
• Rich biodiversity provides
functional and phenotypic
adaptive capacity

• High levels for all three factors

Secondary forest

• Natural forests recovering from prior human land use impacts
• Canopies dominated by pioneer and secondary growth tree species
• If not subsequently disturbed by human land use, can continue to develop additional primary forest
attributes over time

• Dissipative structures • Ecosystem processes • Stability and risk profiles Ecosystem integrity
level

• In wet tropics, canopy closure can occur
within 1–2 decades
• Aboveground living significantly less
than primary forests
• Some dead biomass may remain

• Fully self-regenerating so long as
primary propagules/seed stock are
available
• Soil carbon and nutrients stocks can be
depleted due to past erosion and biomass
removal

• In temperate and boreal forests,
increased exposure to wildfire and
drought impacts due to more open canopy
and drier forest interior
• Reduced biodiversity impairs some key
processes (e.g., pollination, top-down
tropic control)

• Moderate depending on
time since disturbance

Production forest

• The consequence of conventional forest management for commodity production (e.g., timber, pulp)
• Forest predominantly composed of trees established through natural regeneration, but management favors commercially valuable canopy tree species

• Dissipative structures • Ecosystem processes • Stability and risk
profiles

Ecosystem integrity level

• Logging regimes maintain a predominantly
even-aged, younger age structure
(∼20–60 years)
• Simplified vertical vegetation structure

• Canopy tree species natural regenerated
but some level of assisted regeneration
common
• Ongoing soil loss

• More flammable forest
conditions
• Greater exposure to invasive
species

• Low to moderate depending on
intensity of logging regimes and
biodiversity loss

Agro-forestry (commercial, subsistence)

• Some level of natural tree species is maintained with subsistence food or commercial crops grown (e.g., shade coffee).
• Swidden subsistence farming commonly used by traditional communities
• Utilizes a mix of natural and assisted regeneration

Dissipative structures Ecosystem processes Stability and risk profiles Ecosystem integrity level

• A curated canopy of trees, often
remnant from primary forest or
planted from local stock
• Little if any understory
• Ground cover are food crops

• In tradition swidden system, closed nutrient
cycle through use of natural regeneration
• Canopy trees buffer food crops from extreme
weather and help maintain soil moisture

• Intensive small-scale
management and modest level of
biodiversity provides assisted
resilience and adaptive capacity

• Low to moderate given
sufficient management inputs

(Continued)
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TABLE 1 (Continued)

Commercial plantation

• Forest predominantly composed of trees established through planting and/or seeding and intensely managed for commodity production (timber, pulp, plant oil)

Dissipative structures Ecosystem processes Stability and risk profiles Ecosystem integrity level

• Typically mono-cultures that are
harvested at around a young age
(∼10–20 years)

• Soil water and nutrient retention
• Can utilize natural pollinators from
neighboring or remnant natural forests

• Exposed to extreme weather
events, invasives, pests, and
disease
• Intensive large-scale
management needed

• Low

recovering from more recent human disturbance (DellaSala
et al., 2022b).

Implications for policy,
management, and future research

Evaluating ecosystem integrity

We have shown that the risk of forest carbon loss can be
minimized by prioritizing actions that maintain and enhance
forest ecosystem integrity. Ecosystem integrity therefore has
the potential to be used as an integrating framework for
evaluating forest-based mitigation and adaptation actions.
Because ecosystem integrity is an inherently complex concept,
the scientific, management, and policy communities need
approaches and tools to measure and interpret gradients of
integrity consistently across forest types and jurisdictional
boundaries (Karr, 1996; Grantham et al., 2020). The metrics
and their interpretation should ideally account for the range
of spatial and temporal scales involved: small patches of high-
integrity forests are valuable, but landscape context is required;
snapshots in time are useful, but longer-term dynamics are
needed to fully understand integrity.

A complete and exhaustive global representation of forest
ecosystem integrity may currently be beyond our reach.
Nevertheless, several existing data products represent important
elements of ecosystem integrity, each with their own advantages
and limitations, and can be used to guide decision making.
In the humid tropics, natural and hinterland forests (primary
forests and mature secondary growth) have been mapped using
multispectral satellite imagery (Turubanova et al., 2018) and
spatial statistics (Tyukavina et al., 2016). Canopy structural
integrity has recently been mapped using space-based lidar,
multispectral imagery, and human pressure indices (Hansen
et al., 2019; Hansen A. J. et al., 2020), representing an important
step in delineating gradients of integrity. These mapping
approaches are inherently more challenging outside the humid
tropics where environmental gradients generate a range of
potential forest cover and types. Global products therefore tend
to rely more on metrics based on the relationships between

forest loss/degradation and proximity to human activities,
including roadless areas, forest fragmentation, loss of tree cover,
and measures of the “human ecological footprint” (Hansen et al.,
2013; Haddad et al., 2015; Ibisch et al., 2016; Venter et al.,
2016b,a; Beyer et al., 2020; Grantham et al., 2020; Williams et al.,
2020). Global Intact Forest Landscapes (Potapov et al., 2008,
2017) have been widely used, but these include patches of non-
forest ecosystems and exclude areas of high-integrity forests in
patches <50,000 ha. The Food and Agriculture Organization
of the United Nations (FAO) has reported on primary forests
since 2005 in their global forest assessment reports (Food and
Agriculture Organization of the United Nations [FAO], 2020),
but a lack of consistency in national-level reporting makes
comparisons and trend detection difficult.

Similar to Grantham et al. (2020), we stress the importance
of using local data and field observations to further identify
and refine estimates of forest ecosystem integrity derived from
coarser-scale global mapping products. These may include
landscape-level metrics such as frequency distributions of stand
age, biomass, coarse woody debris, biodiversity, forest patch
sizes and shapes, and forest types and species composition.
Individual countries have data archives, collection programs,
and often agency directives that either include ecosystem
integrity metrics or those with high relevance for integrity
assessments (e.g., Muller et al., 2000; Tierney et al., 2009;
Wurtzebach and Schultz, 2016). Applying the internationally
endorsed SEEA-EA system should also enable a consistent
framework for comparisons across spatial and temporal scales.
The SEEA-EA standard provides guidance for classifications,
definitions, spatially explicit analysis, and temporal consistency.
Technical guidance on ecosystem integrity indicators was
recently provided by Hansen et al. (2021). Although criteria
were provided in the context of CBD’s post-2020 Global
Biodiversity Framework, many would apply outside this context,
including a need for biome to global scale products with spatial
resolution sufficient for management (≤ 1 km), temporal re-
assessment at intervals of 1–5 years, ability for indicators to be
spatially aggregated without bias, credibility through validation
and peer review, and accounting for reference states within a
given climate, geomorphology, and ecology. Finally, we note
the importance of understanding how any given metric of
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ecosystem integrity connects to the conceptual framework of
ecosystem integrity (Figure 1).

Implementing ecosystem integrity

Protecting primary forests
Given the superior benefits of primary forests, follows

that protecting them would significantly contribute to meeting
international climate, biodiversity, and SDGs. Primary forests
are disappearing at a rapid rate (e.g., Potapov et al., 2017;
Food and Agriculture Organization of the United Nations
[FAO], 2020; Hansen M. C. et al., 2020; Silva Junior et al.,
2021) and urgently need higher levels of protection to ensure
their conservation; only roughly one-fifth of remaining primary
forests are found in the International Union for Conservation
of Nature (IUCN) Protected Areas Categories I-VI (Mackey
et al., 2015). Proven effective mechanisms to protect primary
forests include enforcing existing and establishing new reserves
and protected area networks, limiting new road construction,
payments for ecosystem services, effective governance, and
protecting the rights and livelihoods of indigenous peoples
and local communities (Mackey et al., 2015; Kormos et al.,
2018; Walker W. S et al., 2020). Complementary measures
and enabling conditions include supporting legislation and
enforcement of protection status, industry re-adjustment
to source alternative fuel, food and wood products, and
management of weeds, pests, feral animals, and livestock grazing
(Mackey et al., 2020).

Protecting primary forests will also be facilitated by changes
to current international forest and carbon accounting rules.
Existing “net” forest cover accounting rules, such as the IPCC
good practice guidelines for national greenhouse gas inventories
and the land sector, are problematic because they report net
changes and treat all forests equally, regardless of their integrity,
thereby incentivizing the conversion of primary forests into
commodity production (Mackey et al., 2013, 2015; Peterson
and Varela, 2016; Moreno-Mateos et al., 2017; Funk et al.,
2019; Skene, 2020). Such changes in forest management can
have the perverse effect of accelerating emissions and degrading
ecosystems. Similarly, flux-based carbon accounting effectively
hides the emissions or lost sequestration potential from logging
primary forests (e.g., Skene, 2020) and does not account for
the risk profiles of different forest types. Reporting “gross”
forest cover changes as well as adopting stock-based accounting
(Ajani et al., 2013; Keith et al., 2019, 2021) could more fully
leverage an ecosystem integrity framework, and ultimately
ensure the maximum mitigation benefits and ecosystem services
are secured from Earth’s remaining forests.

Management of other forest types
Management of secondary forests for commodity

production, along with tree plantations and agroforestry,

can contribute to climate mitigation and other SDGs and reduce
pressure on primary forests and other natural forests with high
levels of ecosystem integrity (Watson et al., 2018; Roe et al.,
2019; Chapman et al., 2020). However, the key is to direct these
management activities to previously deforested or degraded
lands and accompany them with systematic landscape planning
and effective governance (Dooley et al., 2018; Kormos et al.,
2018; Martin et al., 2020; Morgan et al., 2020). For example,
much of the overall timber demand could be harvested from
secondary forests, but these are often overlooked as resources by
land owners, the timber industry, and governments (Bawa and
Seidler, 1998). Globally, intensively managed tree plantations
or planted forests supply over 50% of global wood supply
(Warman, 2014) yet occupy only 7% of global forest cover
(Food and Agriculture Organization of the United Nations
[FAO], 2020). It is therefore feasible to meet global wood supply
with existing plantations and additional ones established on
previously cleared or degraded land. These land uses, however,
are decidedly not beneficial for carbon budgets or ecosystem
services when undertaken at the cost of clearing or degrading
primary forests.

Governments and forest managers can aim to optimize
the ecosystem integrity of secondary forests (for example in
terms of yield, regenerative capacity, and biodiversity) within
the confines of their intended uses (Thompson et al., 2009;
Grantham et al., 2020). In tandem with alternative fibers,
this will help alleviate pressures on primary forests. A similar
argument exists for agricultural productivity (Laurance et al.,
2001; Hawbaker et al., 2006; Sabatini et al., 2018). All of these
activities can be done with appropriate landscape planning in
ways that collectively increase economic yield and ecosystem
services, and serve local communities (Bawa and Seidler, 1998;
Burton et al., 2006; Mathey et al., 2008; Food and Agriculture
Organization of the United Nations [FAO], 2012; Naumov et al.,
2016).

Afforestation, forest restoration, and proforestation (i.e.,
allowing secondary forests to naturally regrow and restore
their ecosystem carbon stocks) are also important components
of forest-based mitigation and conservation activities (Giam
et al., 2011; Griscom et al., 2017; Verdone and Seidl, 2017;
Moomaw et al., 2019; Roe et al., 2019; Cook-Patton et al.,
2020). Proforestation holds promise for near-term mitigation
because the established trees are already on the steepest part
of their growth curve (Moomaw et al., 2019; Mackey et al.,
2020). However, none of these forest management activities
can replace the carbon stocks and ecosystem services of high-
integrity primary forests on decadal to century timeframes. It
is also generally less expensive to protect primary forests than
to reforest or restore forests (Possingham et al., 2015; Griscom
et al., 2017). Furthermore, potential “overcrediting” for offset
and restoration schemes can result in net harm and carbon
emissions, whereas “overcrediting” for primary forest protection
only reduces the benefits, but does not lead to net societal and
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climate damages (Anderegg et al., 2020). We therefore urge
that forest restoration should be conducted in concert with
protection of primary forests, and not instead.

Finally, we note that selective logging, or so called "reduced
impact logging" in tropical forests has been shown many times
to be unsustainable (Zimmerman and Kormos, 2012; Kormos
et al., 2018), as it results in significant damage to the target
forests as well as collateral damages to surrounding forests
due to road building, transportation, and further clearing
for land uses such as agriculture (Kormos and Zimmerman,
2014; Mackey et al., 2020). Generally, as timber extraction
becomes less intensive, the per-tree collateral damages increase
exponentially (Gullison and Hardner, 1993; Boot and Gullison,
1995; Bawa and Seidler, 1998; Umunay et al., 2019; Zalman
et al., 2019). After the first cut, selective logging is much
less economically viable compared to plantations and intensive
forestry (Bawa and Seidler, 1998; Naumov et al., 2016). Even
measures aimed at reducing emissions via collateral damages
from selective logging may not generate benefits and merely
serve to justify and subsidize the degradation of high-integrity
primary forests (Macintosh, 2013; Watkins, 2014; Gatti et al.,
2015). Overall, selective logging and its associated degradation
may be as much or more harmful than outright deforestation
for pan-tropical forests and their carbon stocks (Nepstad et al.,
1999; Foley et al., 2007; Baccini et al., 2017; Erb et al., 2018;
Bullock et al., 2020; Matricardi et al., 2020).

Relevance for international policy

There has been a recent uptick in the recognition of the
importance of ecosystem integrity and primary forests for
multiple climate, biodiversity, and SDGs. For example, the
preamble to the Paris Agreement notes the importance of
ensuring the integrity of all ecosystems, and recent international
policy developments point to the importance of maintaining
and restoring ecosystem integrity for achieving the goals of the
Rio Conventions and all of the SDGs, but in particular SDG 15
(Life on Land). The importance of primary forests for achieving
synergistic climate and biodiversity outcomes was also reflected
in Working Group II (IPCC, 2022) and III (Nabuurs et al., 2022)
of the IPCC’s Sixth Assessment Report, as well as key decisions
from the CBD 14th Conference of the Parties (14/5 and 14/30)
(Convention on Biological Diversity [CBD], 2018).

We strongly recommend an increased focus on integrating
climate and biodiversity action, which provides an opportunity
to deliver multiple societal goals through ensuring the integrity
of ecosystems (Barber et al., 2020). The importance of the nexus
between effective action on climate change and biodiversity
is reflected in the findings of the first ever joint workshop
of the IPCCC and IPBES held in 2021 (Pörtner et al., 2021),
which encouraged synergistic climate and biodiversity action
and identified priorities for action, in particular the protection

and restoration of carbon and species rich natural ecosystems
such as forests.

The integrity of ecosystems is also being promoted by civil
society as an important factor to consider in the UNFCCC
Global Stocktake, a central pillar of the Paris Agreement against
which its success or failure will be judged (Climate Action
Network, 2022). We suggest that utilizing the UN SEEA-EA to
benchmark protection and restoration actions would provide
critical information on ecosystem integrity elements for the
Global Stocktake to inform high-benefit / low-risk nature-based
solutions in evolving NDCs. Successful implementation of the
ecosystem provisions of the UNFCCC and the Paris Agreement,
including decisions made at COP 25 (1.CP 25 para. 15) calling
for integrated action to prevent biodiversity loss and climate
change; and COP 26 (CMA/3 para. 21 and 1.CP/26 para. 38)
emphasizing “. . .the importance of protecting, conserving and
restoring nature and ecosystems, including forests . . .,” depends
upon understanding the significance of ecosystem integrity for
stable long term carbon storage and the overall health of the
biosphere.

Other recent policies and guiding documents include
the Glasgow Leaders’ Declaration on Forests and Land Use
(United Nations Climate Change, 2021), CBD post-2020 Global
Biodiversity Framework (Convention on Biological Diversity
[CBD], 2021), IUCN Policy Statement on Primary Forests
Including Intact Forest Landscapes (IUCN, 2020), IPBES Global
Assessment Report (IPBES, 2019), the New York Declaration on
Forests 5-Year Assessment Report (NYDF Assessment Partners,
2019), the European Parliament resolution to protect and
restore forests (European Parliament, 2020), and Indonesia’s
moratorium on converting primary forests and peatlands
(Austin et al., 2019).

Nevertheless, there is still much work to be done at national
and international levels, with the evolving Paris Rulebook and
country NDC’s arguably representing the largest opportunity.
Translating all these international declarations into coherent
national and jurisdictional policies will require an agreed-upon
framework of ecosystem integrity, such as provided here, and
applicable data products tools for implementation.

Future research directions

Because ecosystem integrity is such an integrative and
multidisciplinary concept, research gaps are relatively extensive.
We therefore do not offer an exhaustive list, but rather
a prioritized assessment of future research directions to
improve the understanding, valuation, and operationalization of
ecosystem integrity. First and foremost, operationalizing forest
ecosystem integrity at scales relevant to policy and planning that
span from landscape planning (Morgan et al., 2022) to national
strategies (Center for Biological Diversity [CBD], 2022) and
international agreements (United Nations [UN], 2021) requires
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accurate and updated maps of ecosystem integrity and
its components. Existing products (described in section
“Evaluating ecosystem integrity”) touch on aspects of canopy
structural integrity, can be used to identify areas of remaining
natural forests, and, using time series data, can locate where
they have been lost (Figure 3). However, their ability to
differentiate levels of integrity between forests is limited, and
they do not account for the longer-term ecosystem dynamics
that comprise functional integrity. It will therefore be helpful
to leverage the time series of now decades-long satellite
records such as Landsat and the Moderate Resolution Imaging
Spectroradiometer (MODIS) to incorporate metrics of stability
/ resistance, and to capture smaller patches of high-integrity
forests, such as in Shestakova et al. (2022). In boreal and
temperate forests with naturally occurring stand-replacing
disturbances, for example wildfire, it will be critical to accurately
separate these from human disturbances, for example by using
spatial pattern recognition techniques (e.g., Curtis et al., 2018).

For the purpose of primary forest protection, accurate maps
of regularly updated primary forests are needed at sufficient
spatial scales and accuracy to support both country-level
assessments as well as local decision making. Spatial assessments
of forest ecosystem integrity and components, as opposed to
categorical maps of forest/no-forest or broad forest types, are
particularly needed. In addition to developing countries, this
information is needed in the United States, Europe, and other
developed countries with little remaining primary forests. In

these cases, the most ecologically mature forests for a given
ecosystem type (e.g., DellaSala et al., 2022b) likely represent
the highest integrity levels rather than primary forests per
se (Table 1 and Figure 2) and similarly require both field
and remote sensing analysis to be defined and identified (e.g.,
Federal Register, 2022). Aside from mapping methodologies
and data products, we stress the need for continued and new
field monitoring programs that evaluate and track ecosystem
integrity components as they are impacted by climate and
human land use at various scales.

More focused scientific studies on the components of
ecosystem integrity as described here (Figure 1) are needed
to better define, quantify, and monitor integrity in different
ecoregions. For example, we know relatively little about how
biodiversity and ecosystem composition in many forested
regions globally is responding to the combined impacts of
climate change, landscape fragmentation, and land use, nor how
these will continue to evolve in the future. Such understanding
would facilitate management decisions to increase ecosystem
integrity or limit its decline, which is particularly important
for managing future risks and vulnerability of carbon stocks
in the context of carbon markets and offsets (Anderegg et al.,
2020). Developing methods for comprehensive yet transferable
ecosystem service valuations are particularly important for both
scientific understanding as well as conservation mechanisms
such as Payments for Ecosystem Services and the UN System
of Environmental Ecosystem Accounting.

FIGURE 3

Global forest condition as indicated by metrics of Intact Forest Landscapes (IFLs), tree canopy cover, and tree canopy cover loss (from 2000 to
2019). IFLs for the year 2016 are taken from Potapov et al. (2017), and tree cover and tree cover loss outside of IFLs are from Hansen et al. (2013).
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Finally, we suggest prioritizing research that optimizes
the distribution of secondary forest management, including
intensive plantations, to alleviate the pressure on primary and
high integrity natural forests worldwide, as well as policy
mechanisms needed for incentivization. Such research needs to
account for regionally varying economic and equity issues in
order to be effective.

Conclusion

In this paper we reviewed the components, importance, and
potential for ecosystem integrity to help guide international
forest policy and foster greater policy coherence across the
climate, biodiversity, and sustainable development sectors.
Our operating framework for forest ecosystem integrity
encompasses biodiversity, dissipative structures, ecosystem
processes, ecosystem stability, and the resulting ecosystem
condition and services. A comparative analysis showed that,
compared to forests with significant human modification,
primary forests generally have higher ecosystem integrity and
thus lower risk profiles for climate mitigation.

The scientific and management communities need better
tools to accurately forecast the risks associated with different
forest ecosystems, particularly those being managed for natural
climate solutions and mitigation (Anderegg et al., 2020). Given
these tools may be years or more away, we suggest focusing
on ecosystem integrity is an optimal solution for categorizing
forest-based risks and protecting ecosystem services. Doing
so would (i) optimize investment in land carbon stocks and
mitigation potential, (ii) identify stocks that provide the best
insurance against risk of loss, and (iii) ensure the highest
levels of benefits from ecosystem services, thereby optimizing
compatibility and synergy between mitigation, adaptation, and
SDGs. A number of large-scale data products exist to guide
this focus. Nevertheless, there are substantial remaining gaps in
terms of understanding, mapping, monitoring, and forecasting
forest ecosystem integrity and its components in the midst
of increasing human pressure and climate changes. Because
primary forests have a higher level of ecosystem integrity than

forests managed for commodity production, plantations, or
degraded forests, we stress the continuing and increased need
for their protection. An effective strategy is to create high
carbon density strategic carbon and biodiversity reserves that
include primary forests and recovering secondary forests that
are quickly accumulating carbon (Law et al., 2022).
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