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Climate change is one of the significant factors influencing global species

redistribution. As a result, a better understanding of the species’ possible range

change in future climate conditions is needed. Therefore, this study compiles

global geographic occurrence data of a wild olive sub-species,Olea europaea

subsp. cuspidate, and projected potential distribution models in current and

future climate scenarios. This study using ensemble modeling predicted that

the species will undergo a significant decrease in habitat suitability under future

climatic conditions with a contraction ranging from ca. 41 and 42% under

RCP4.5 2050 and to about 56 and 61% under RCP8.5 2070 for committee

averaging and weighted mean, respectively. More specifically, there will be

a decrease in habitat suitability in regions of the southeastern part of the

United States in North America; coastal regions in South America; coastal

regions in themajority of eastern Africa; coastal parts of Spain, France, Italy, and

Greece in Europe; coastal parts of Yemen and Saudi Arabia; the southeastern

parts of Pakistan and the southern part of China in Asia; and southwestern and

eastern parts of Australia when compared to current habitat suitability. The

results of this ensemble modeling could be extremely valuable in identifying

cultivation hotspots for the e�ective restoration and protection of this olive

lineage under future climatic conditions.

KEYWORDS

Olea europaea subsp. cuspidata, species distributionmodeling, climate change, global
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Introduction

Climate change is one of the key components determining the species’ range

redistribution (Parmesan et al., 2011; Pacifici et al., 2015). As such, changing climatic

conditions will likely expand or shrink the species’ geographic ranges (Chen et al.,

2011; Palmer et al., 2015). Adding to the worries are the consequences of global

warming, which are expected to exacerbate in the next 50 years (Ahmad et al., 2019a).
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The Intergovernmental Panel on Climate Change Sixth

Assessment Report (IPCC, 2021) states that the ongoing

climate warming has caused the pole-ward shift of numerous

plant and animal species in both the southern and the

northern hemisphere and the growing season, especially in

the northern hemisphere extratropics, has expanded by 2 days

each decade since the 1950s. A plethora of research studies

have reported that recent anthropogenic-induced ecological

changes are responsible for species range shifts (Malhi et al.,

2020), changes in phenology (Negi et al., 2021), and species

extinctions (Román-Palacios and Wiens, 2020). However, there

is still a dearth of information about the biological dynamics of

these shifting climatic impacts and documentation of climate

change hotspots of vulnerability and resilience (Bellard et al.,

2012). Furthermore, rising global temperatures have resulted in

significant climatic zone shifts in several areas around the globe,

including the substantial expansion of arid climatic zones and

the shrinkage of polar climatic zones (IPCC, 2019). As a result,

many native species have experienced a substantial shift in their

geographical ranges, abundances, and seasonality of activities

(Weiskopf et al., 2020). All these negative consequences act as

barriers to the management and conservation of biodiversity

(Thomas et al., 2004; Butchart et al., 2010; Cook et al., 2012;

IPCC, 2012; Pacifici et al., 2017; Pecl et al., 2017; Convention

on Biological Diversity, 2020).

As ecology and conservation disciplines require a robust

understanding of species distribution and habitat requirements,

species distribution models (SDM) are, therefore, one of

the essential techniques for spatio-temporal predictions of

biodiversity at the biogeographic scale (Alvarado-Serrano and

Knowles, 2014; Naimi, 2015; Srivastava et al., 2019). SDM

projections can be used to develop sustainable management

plans to help minimize the effects of climate change (Pyke

and Fischer, 2005; Schorr et al., 2012; Porfirio et al., 2014).

However, one major disadvantage of these distribution models

is that there are already a large number of modeling algorithms

available, and this number is expanding all the time, making

it difficult to choose the optimal methodology (Elith et al.,

2010; Ahmad et al., 2019b). To overcome this problem, the

ensemble modeling technique implemented in the biomod2

package provides a valuable platform for determining the

species’ current distribution and predicting their future potential

Spatio-temporal distributions under changing climatic scenarios

(Gillard et al., 2017; Thuiller et al., 2019).

RCPs (representative concentration pathways) represent

greenhouse gas emissions, atmospheric concentrations, air

pollutant emissions, and land use in the twenty-first century

(Vuuren et al., 2011). Based on the mitigation scenarios’

trajectory, four (RCPs) have been described (IPCC, 2014). In

order to identify suitable habitats for species in the 2050s and

2070s, the model was thus trained using current climate data

and projected onto future climate change bioclimatic datasets

for all RCPs scenarios. Therefore, to estimate the impact of

climate change on species distribution, multiple scenarios based

on various RCPs must be examined (Araujo and Rahbek, 2006;

Parmesan, 2006; Beaumont et al., 2007; Bellard et al., 2012).

This paper is based on the global distribution modeling of

Olea europaea subsp. cuspidata (synonyms—Olea ferruginea,

Olea africana, Olea chrysophylla) using an ensemble modeling

approach. It is a wild species of olive lineage (Green, 2002)

and is believed to be of Mediterranean origin (De Candolle,

1882) and a prominent part of Mediterranean vegetation (De

Ollas et al., 2019). However, the species is introduced into

Australia, New Zealand, and the Pacific islands as a rootstock for

cultivated olive (Besnard et al., 2014). Due to over-exploitation,

Ethiopia’s species is extremely threatened (Negash, 2010). It

is used for various purposes, including quality fuel wood and

furniture (Negash, 2010), and is also a valuable source of natural

antioxidants and bioactive materials (Long et al., 2010). It

has numerous medicinal and anti-bacterial properties (Masoko

and Makgapeetja, 2015). Therefore, climate change affects

livelihoods and economic security, particularly in communities,

along with its distribution range. More specifically, we aim to

address the following key questions: (1) What is the current

distribution of Olea europaea subsp. cuspidata? (2) What will be

the future potential distribution of this species under different

climate change scenarios? and (3) what are the key bioclimatic

variables affecting the distribution of this species?

Materials and methods

Species distribution data

Occurrence data for Olea europaea subsp. cuspidata was

downloaded primarily from the Global Biodiversity Information

Facility (GBIF, 2021) using the gbif function from the dismo

package (Hijmans et al., 2020), Botanical Information and

Ecology Network Database (BIEN; accessed on 01 August

2021) using the BIEN_occurrence_species function from BIEN

package (Maitner et al., 2018) and was further supplemented

with intensive field surveys carried by the authors from North

Western India and Herbarium records from Forest Research

Institute (FRI) Dehradun and various centers of Botanical

Survey of India (BSI Dehradun, BSI Kolkatta, and HAWHRC

Solan). A total of 4,599 georeferenced occurrence points

were obtained from the above-mentioned sources for Olea

europaea subsp. cuspidata. The obtained occurrence dataset was

subsequently processed to exclude any locations that fell into the

oceans. As a result, 4,461 points were retained. Furthermore, it

is a well-known fact that distribution data is frequently skewed

toward locations that are geographically user-friendly and easily

accessible (Hijmans et al., 2005). This can manifest itself in the

form of geographical sample bias (Ahmad et al., 2019a). We

employed spatial thinning to minimize spatial autocorrelation

and sample bias by dividing the entire region into 10 × 10 km
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grid cells and selecting a single occurrence point from each

cell with one or more occurrence points. After geographic

thinning, the final dataset for modeling the distribution of

Olea europaea subsp. cuspidata in this study consisted of 776

georeferenced points.

Environmental data

We used the current climatic factors from the WorldClim

database, version 1.4 (Hijmans et al., 2005) (http://www.

worldclim.org) to estimate the global current potential

distribution of Olea europaea subsp. cuspidata. Between 1950

and 2000, these climatic variables indicated the minimum,

maximum, and average values of monthly, quarterly, and

annual ambient temperatures and precipitation data. These

environmental variables had a spatial resolution of 2.5 arc

seconds (∼4.5 km resolution at the equator). These bioclimatic

variables often show a higher degree of collinearity, resulting in

poor misleading model performance (Ahmad et al., 2019a). As a

result, we used Pearson’s correlation analysis to choose only one

variable from each pair of strongly associated variables with a

correlation coefficient (i.e., r > 0.75 or −0.75) before modeling.

A total of 10 variables were retained after correlation analysis

for modeling the distribution of target species under present

climate conditions (Table 1). The Intergovernmental Panel on

Climate Change (IPCC) fifth assessment report (AR5) (Moss,

2010) provided Hadley Global Environment Model 2-Earth

System (HADGEM2-ES) simulations for two representative

concentration pathways (RCP4.5 and RCP8.5) for the two time

periods (i.e., 2050 and 2070) for predicting the future potential

distribution of theOlea europaea subsp. cuspidata. RCPs provide

climate change trajectories by describing scenarios based on

assumptions about socio-economic conditions, greenhouse gas

emissions, and the concentration of air pollutants (Albuquerque

et al., 2019). The same set of environmental variables used to

estimate the current distribution of the examined species was

also used to predict their future distributions.

Modeling technique

We performed the ensemble distribution modeling using

the nine algorithms implemented in the biomod2 package

(Thuiller et al., 2009, 2020). We performed the ensemble

distributionmodeling using the nine algorithms as implemented

in the biomod2 package (Thuiller et al., 2009, 2020), which

include: the Generalized Linear Model (GLM) (McCullagh

and Nelder, 1989), the Generalized Additive Models (GAM)

(Hastie and Tibshirani, 1990), Generalized Boosted Models

(GBM) (Ridgeway, 1999), Classification Tree Analysis (CTA)

(Breiman et al., 1984), Flexible Discriminant Analysis (FDA)

(Hastie et al., 1994), Artificial Neural Networks (ANN) (Ripley,

TABLE 1 Bioclimatic variables selected for modeling the distribution

ofOlea europaea subsp. cuspidata in the present study.

Description of

bioclimatic variables

Units Temporal scale

Annual mean temperature

(BIO-1)

Degree Celsius Annual

Mean diurnal range (BIO-2) Degree Celsius Variation

Isothermality (BIO-3) Dimensionless Variation

Max temperature of warmest

month (BIO-5)

Degree Celsius Month

Min temperature of coldest

month (BIO-6)

Degree Celsius Month

Mean temperature of wettest

quarter (BIO-8)

Degree Celsius Quarter

Mean temperature of driest

quarter (BIO-9)

Degree Celsius Quarter

Annual mean precipitation

(BIO-12)

Millimeter Annual

Precipitation of driest month

(BIO-14)

Millimeter Month

Precipitation of coldest

quarter (BIO-19)

Millimeter Quarter

1996), Maximum Entropy (MAXENT) (Phillips et al., 2006),

Random Forest (RF) (Breiman, 2001), and Surface Response

Envelope (SRE) (Busby, 1991). As the different algorithms used

for distribution modeling require both presence and absence

data types, it is impossible to obtain the actual absence data

throughout the study region. Therefore, in this study, we

randomly generated an equal number of pseudo-absences to

that of presence points within the study area, as recommended

by Barbet-Massin et al. (2012) and Guisan et al. (2017). We

built the models using 80% of the data (training set) and

evaluated the model performance with the rest of the 20% of

the data (evaluation set). We generated each of the models

three times. We preferred two evaluation metrics to evaluate

the accuracy of the models: the area under the curve (AUC) of

receiver operating characteristics (ROC) and true skills statistics

(TSS) (Allouche et al., 2006; Rather et al., 2022; Wani et al.,

2022a). We built the final ensemble models for each climate

scenario and time period based on both the committee averaging

and weighted mean separately; finally, for creating the final

ensemble models, only those models with a TSS score of ≥0.8

were used.

Variable importance

To assess the relative impact of each climate condition

in determining the distribution of selected plant species,

we employed the permutation approach (Elith et al., 2005).
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Predictions are made from a particular algorithm after changing

only one target variable, while the rest of the variables are

maintained statically in this method. The variable relevance

estimations are obtained as the difference between the original

forecast and the permuted variable prediction divided by

one minus the correlation score (1-correlation score) (Ahmad

et al., 2019a). As a result, high values indicate that the

predictor variable is more important in the model, while a

value of 0 indicates that the variable is not important in

the model.

Species range change

In order to visualize and measure the range change of the

target plant species under future climatic conditions, we used

the same biomod range size function as that implemented in the

biomod2 package (Guisan et al., 2017). This function provides

a summary statistic on species range change, and the prediction

map shows the gain or loss of suitable conditions for the studied

plant species, according to Guisan et al. (2017). Interestingly,

detailed information on four absolute metrics related to “species

loss” (i.e., loss of suitable habitat by the studied species under

future climate change), “species absence” (i.e., amount of area

not occupied by the studied species under current and future

climatic scenarios), “stable” (i.e., the amount of area occupied

by the studied species both under current and future climatic

scenarios) and “gain” (i.e., a gain of suitable habitat by the

studied species under future climate change) can be obtained

(Guisan et al., 2017). Lastly, from the above four absolute

metrics, three additional relative metrics can be calculated,

including “percentage loss” (i.e., percentage of currently suitable

areas predicted to be lost and is calculated as [loss/(loss +

stable)]; “percentage gain” (i.e., percentage of new habitats

predicted to be suitable when compared with the species’ current

distribution size and is calculated as [gain/(loss + stable)]; and

“range change,” i.e., the overall output of predictions and is

calculated as (percentage gain-percentage loss) (Kumari et al.,

2022; Wani et al., 2022b).

Results

Model evaluation

The final ensemble models developed had an AUC of 0.991

and a TSS of 0.913 in terms of committee averaging. Similarly,

the ensemble models developed had an AUC of 0.992 and a

TSS of 0.908 in terms of weighted mean. Both of these scores

indicate that our final model had predicted the distribution

of the Olea europaea subsp. cuspidata with higher accuracy.

When evaluated against the individual algorithms, the predictive

accuracy was again excellent but varied, with RF, GBM, GLM,

and GLM performing fairly well, followed by FDA, CTA, and

Maxent. Phillips, when compared to the rest of the algorithms,

the SRE and ANN had the lowest accuracy (Figure 1).

Variable importance

The performance of the selected bioclimatic variables

varied significantly among the different algorithms (Table 2).

In particular, the most significant variables governing the

distribution of Olea europaea subsp. cuspidata were BIO-01

(annual mean temperature) with importance scores ranging

from 0.13 (in the case of RF) to 0.86 (in the case of GLM)

(mean score = 0.46), followed by BIO-05 (max temperature

of warmest month) with importance scores ranging from 0.02

(for GBM) to 0.43 (for GLM) (mean score = 0.20) and BIO-

03 (Isothermality) with importance scores ranging from 0.08

(for GAM) to 0.31 (for MAXENT.Phillips) (mean score =

0.17). The rest of the variables had diverse responses over

different algorithms, therefore their influence on governingOlea

europaea subsp. cuspidata potential distribution was extremely

variable (Table 2).

Current distribution

The final ensemble model reveals that under current climatic

conditions, the areas having highly suitable and optimal climatic

conditions for the growth of Olea europaea subsp. cuspidata

are majority parts of Mexico, the southeastern part of the

United States in North America; coastal parts of Columbia,

Ecuador, and Peru, major parts of Chile, central, eastern

and southern parts of Argentina, majority of Uruguay, and

southern and eastern parts of Brazil in South America; coastal

parts of western Sahara, Morocco, Libya and Egypt, majority

of Ethiopia, Kenya, almost entire of Zimbabwe, Namibia,

Botswana, Madagascar, and South Africa in Africa; western

coastal parts of Portugal, Spain, France, United Kingdom, Italy,

and Turkey in Europe; coastal parts of Yemen and Saudi Arabia,

the southeastern part of Pakistan, North Western Himalayan

states of Jammu and Kashmir, Himachal Pradesh, Uttarakhand,

and Arunachal Pradesh, Bhutan and Nepal, Northwestern part

of Myanmar, the northern part of Thailand, the southern part of

China in Asia; Central, southern, eastern, western and southern

western parts of Australia and major parts of New Zealand in

Australasia (Figure 2).

Future potential distribution

The predictions of the future ensemble models showed

that there will be a decrease in the habitat suitability for

Olea europaea Subsp. cuspidata under all the future climatic
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FIGURE 1

For Olea europaea subsp. cuspidata, mean model evaluation scores by algorithms according to two separate evaluation metrics, ROC (AUC) and

TSS.

TABLE 2 The relevance scores of the selected bioclimatic variables, both overall and by the algorithm.

GLM GBM GAM CTA ANN SRE FDA RF MAXENT. Phillips Mean

bio_01 0.86 0.21 0.68 0.69 0.41 0.35 0.59 0.13 0.19 0.46

bio_02 0.13 0.00 0.08 0.02 0.23 0.13 0.00 0.00 0.02 0.07

bio_03 0.13 0.15 0.08 0.28 0.14 0.25 0.11 0.13 0.31 0.17

bio_05 0.43 0.02 0.40 0.10 0.25 0.23 0.08 0.05 0.22 0.20

bio_06 0.14 0.00 0.10 0.00 0.65 0.30 0.02 0.04 0.06 0.15

bio_08 0.03 0.00 0.05 0.01 0.11 0.20 0.00 0.02 0.11 0.06

bio_09 0.12 0.01 0.09 0.12 0.34 0.33 0.04 0.04 0.05 0.13

bio_12 0.10 0.02 0.08 0.08 0.26 0.18 0.06 0.03 0.16 0.11

bio_14 0.02 0.00 0.02 0.02 0.08 0.12 0.01 0.01 0.14 0.05

bio_19 0.16 0.01 0.08 0.01 0.25 0.14 0.02 0.01 0.06 0.08

scenarios. However, some of the currently suitable areas will

consistently remain suitable in future climates also, such

as the central part of Mexico, southern and central parts

of the United States in North America; coastal parts of

Columbia, Ecuador, and Peru, and major parts of Chile,

central, eastern and southern parts of Argentina, southern

and eastern parts of Brazil in South America; certain parts

of Ethiopia, Kenya and Tanzania, eastern Madagascar and

Southern parts of Namibia and South Africa in Africa; major

parts of Spain, France, United Kingdom, Italy Germany,
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FIGURE 2

Plot showing the geographic projections using the committee average (above) and weighted mean (below) ensemble models for Olea europaea

subsp. cuspidata under current climatic conditions.

and Turkey in Europe; North Eastern Himalayan states of

Jammu and Kashmir, Himachal Pradesh, Uttarakhand, and

Arunachal Pradesh, Bhutan and Nepal, Northwestern part of

Myanmar, the northern part of Thailand in Asia; southern

parts of Australia and entire of New Zealand in Australasia

(Figure 3).

Species range change

The results of the range change analysis once again

indicated that Olea europaea subsp. cuspidata will undergo

significant range changes under future climatic conditions

and ranges from −40.52 and −42.11% under RCP4.5 2050

for committee averaging and weighted mean, respectively,

to −56.16 and −60.80% under RCP8.5 2070 for committee

averaging and weighted mean, respectively (Table 3). This

range change will be governed mostly by habitat loss in

future climatic scenarios. More specifically, there will be a

reduction in suitable areas for Olea europaea Subsp. cuspidata

by about 50.05 and 49.99% (under RCP4.5 2050), 54.20 and

55.04% (RCP4.5 2070), 55.90 and 56.52% (RCP8.5 2050),

and 69.17 and 71.11% (under RCP8.5 for the year 2070)

for committee averaging and weighted mean, respectively,

when compared to current habitat suitability (Table 3). The

areas that are likely to become unsuitable in the future

include the majority parts of Mexico and the southeastern

part of the United States in North America; Northern
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FIGURE 3

Plots of the predicted habitat suitability for Olea europaea subsp. cuspidata under future climate change scenarios.

Chile, east and central parts of Argentina, certain parts

of southern and eastern Brazil in South America; coastal

parts of Ecuador and Columbia, central parts of Ethiopia,

Kenya and Tanzania, parts of Madagascar and central parts

of Namibia and South Africa in Africa; coastal parts of

Spain, France, Italy and Greece in Europe; coastal parts of

Yemen and Saudi Arabia, the southeastern part of Pakistan

and southern part of China in Asia; southwestern and

eastern parts of Australia (Figure 4). In contrast, some of

the currently unsuitable areas become increasingly suitable

for future climate with a range expansion of 9.53 and 7.88%

(under RCP4.5 2050), 10.61 and 8.58% (RCP4.5 2070),

11.65 and 9.63% (RCP8.5 2050), and 13.01 and 10.31%

(under RCP8.5 2070) for committee averaging and weighted

mean, respectively, when compared to current habitat

suitability for (Table 3). These expanding suitability areas

include a certain portion of the southern United States,

most of the parts of Chile, some parts of Indian Himalayan

states, North Eastern Himalayan states of Jammu and

Kashmir, Uttarakhand, Sikkim, and Arunachal Pradesh, as

well as certain parts of Bhutan and Nepal and southern

China (Figure 4).

Discussion

This study employed two evaluation metrics to

assess the predictive performance of our model run:

threshold-independent Area under the Curve (AUC) and

threshold-dependent True Skill Statistics (TSS). These criteria

are frequently used in ecology to evaluate habitat modeling

performance (Allouche et al., 2006). The AUC is extensively
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TABLE 3 Summary of the range change statistics in terms of pixels for theOlea europaea subsp. cuspidata under climate change scenarios

compared to current climatic conditions.

Scenario Ensemble type Loss Absent Stable Gain Loss (%) Gain (%) Range change (%)

RCP4.5 2050 Committee averaging 356,499 8,087,753 355,798 67,883 50.05 9.53 −40.52

RCP4.5 2070 Committee averaging 386,078 8,080,091 326,219 75,545 54.20 10.61 −43.60

RCP8.5 2050 Committee averaging 398,162 8,072,658 314,135 82,978 55.90 11.65 −44.25

RCP8.5 2070 Committee averaging 492,706 8,062,965 219,591 92,671 69.17 13.01 −56.16

RCP4.5 2050 Weighted mean 271,335 8,282,368 271,478 42,752 49.99 7.88 −42.11

RCP4.5 2070 Weighted mean 298,740 8,278,568 244,073 46,552 55.04 8.58 −46.46

RCP8.5 2050 Weighted mean 306,776 8,272,834 236,037 52,286 56.52 9.63 −46.88

RCP8.5 2070 Weighted mean 385,985 8,269,150 156,828 55,970 71.11 10.31 −60.80

FIGURE 4

Plots of the predicted range changes for Olea europaea subsp. cuspidata between current and future climatic conditions.

used to evaluate the accuracy of habitat suitability models,

while TSS normalizes total accuracy (Allouche et al., 2006;

Becerra-López et al., 2017). The threshold-independent

AUC and threshold-dependent TSS performance scores for

Olea europaea subsp. cuspidata were 0.991 and 0.913 for

committee averaging and 0.992 and 0.908 for weighted mean,

respectively. The consistent results obtained prove the model’s

improved performance.
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Environmental conditions influence the distribution of a

plant species. This impact is because climate variables such

as temperature and precipitation impact species’ physiological

and reproductive capabilities (Sharma and Raghubanshi, 2006).

Several critical biological processes of a species are synchronized

by these climate-based characteristics, including dispersion

ability, home range size (Bradley and Mustard, 2006), and

the ability to survive under unfavorable conditions (Morris

et al., 2019). However, this does not hold true for all cases,

as other edaphic and topographic factors and interactions

among the biotic and abiotic environments significantly impact

the species distribution (Norberg et al., 2019). However,

when the modeling is performed over large-scale areas such

as the whole globe or continents, climatic conditions are

reported as the sole determinants for evaluating the degree

of distribution of the organisms (Waltari et al., 2014). Earlier

SDM studies conducted on Olea europaea subsp. cuspidata

in Asia have reported a loss of suitable habitat, particularly

in low elevations, and a shifting distribution toward high

altitudes (Ashraf et al., 2016, 2017). The other two wild olive

subspecies, O. europaea subsp. europaea var. sylvestris, are

predicted to increase habitat suitability, while O. europaea

subsp. maroccana shows substantial contraction in future

climate (Kassout et al., 2022). This suggests that plant species

behave differently in future climate projections, even at the

subspecies level.

The species’ distribution range reflects its adaptation to

the Mediterranean-type climate of the world. Such a climate

is considered one of the most vulnerable zones to global

warming (Almeida et al., 2022; Kassout et al., 2022). The

current distribution range is stretched across many regions of

all the continents, especially prominent parts of the southern

hemisphere. During the last few decades, 90 percent of the

net global ocean heat gain was concentrated in the southern

hemisphere (Rathore et al., 2018). Several meteorological

alterations have been observed in the southern hemisphere

during the past several decades (Solman and Orlanski, 2016).

Certain precipitation-related variables influencing this plant

species’ distribution have been identified (Deblauwe et al.,

2016; Amiri et al., 2020). The distribution of this plant in

coastal parts of Western Sahara, Morocco, Libya, and Egypt,

the majority of Ethiopia, Kenya, and almost the entire country

of Zimbabwe, Namibia, Botswana, Madagascar, and South

Africa in Africa reflects its adaptability in the relatively low

precipitation-dominated area. These findings are consistent with

model-based predictions made by several other researchers,

who identified temperature and precipitation-derived variables

as the primary determinants of plant distribution (Woodward

et al., 2004; Priyanka and Joshi, 2013; Manzoor et al., 2018;

Panda and Behera, 2018; Thapa et al., 2018; Xu et al.,

2021).

The study is a pioneering but crucial step in looking into

the impact of climate change on the current distribution

and the possible range of suitable habitats of Olea europaea

subsp. cuspidata on a global scale. The study’s findings

show that temperature-related bioclimatic variables play

a vital role in this species’ distribution (Figures 2, 3),

with BIO-1 (Annual Mean Temperature) being the most

important explanatory variable, followed by BIO-5 (Max

Temperature of Warmest Month) and BIO-3 (Annual Mean

Temperature) (Isothermality). These variables are expected

to alter significantly under the RCP8.5 scenario, causing

substantial portions of the current distribution area to

become unsuitable by 2050. This study predicts more range

contraction under RCP8.5 by 2070, a comparatively more

extreme scenario. On the other hand, rainfall patterns in

many regions of the world are expected to result in a more

widespread variable and extended dry spells. According to a

recent climate precipitation trend analysis for the previous

few decades, the total amount of annual precipitation is

escalating along with increasing trends in consecutive dry

days (CDD) (Mudelsee, 2018; Parey, 2019; Dad et al., 2021).

Under the predicted importance of rainfall patterns for Olea

europaea subsp. cuspidata, future extreme climate events

may put additional stress on already established populations

and restrict its spread to places that would be unsuitable

under current climatic conditions (Kelly and Goulden,

2008).

Future climate change is expected to impair total habitat

suitability for this species, with more than a quarter of

suitable habitat predicted to be lost by 2070 under RCP8.5.

In fact, our findings are consistent with other reports that

have found a decline in the worldwide and regional species

distribution as a result of climate change (Rabasa et al.,

2013; Panda and Behera, 2018; Moraira et al., 2020; Zu

et al., 2021). In a recent study investigating the future

predictions for the spread of invasive species under the influence

of climate change in South Africa, Bezeng et al. (2017)

discovered a range reduction for more than 80 species. Our

predicted model for the future distribution of this species

corresponds with the results of Ghafoor et al. (2021), which

experimentally established the reduced seed germination and

vegetative growth in Olea europaea subsp. cuspidate, and

predicted that climate change will significantly influence olive

ecophysiology, leading to species composition changes and

shifting distribution (Brito et al., 2019). In the southeast of

Australia, where the species is predicted to lose its habitat

substantially, vegetation type has been demonstrated to have

a substantial impact on fire response to warmer temperatures,

with wetter, coastal temperate forests being more likely to

experience increased fire frequency (Bradstock et al., 2014).

Similar observations were recorded about the distribution

pattern of 292 naturalized alien species in Australia, which

has been observed to be affected under future climate change

scenarios (Duursma et al., 2013). Several cases of vegetation

and disturbance regimes, local plant extinctions, phenological
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changes in reproduction, and altered biotic interactions have

been observed in Australia, posing a threat to communities

and endangered species (Hoffmann et al., 2018). Another

most affected region in terms of habitat loss is Olea europaea

subsp. cuspidata is predicted to be in sub-Saharan Africa.

According to projections, countries like South Africa, Namibia,

and Botswana will face temperatures greater than the global

average by 2050 (Davis-Reddy and Vincent, 2017). In addition,

rainfall in Southern Africa is anticipated to drop by nearly 10%

by 2050 (IPCC, 2014). Our results agree with several other

studies which have found that climate change has affected the

habitat suitability of several other plant species (Bradley et al.,

2009; Taylor et al., 2012; Wan et al., 2016; Manzoor et al.,

2018). The availability of moisture and the low temperatures

associated with these regions may promote future distribution

feasible in the context of climate change (Chen et al., 2011;

Fei et al., 2017; Panda and Behera, 2018; Rathore et al.,

2018). While projected climate change may negatively shift

the distribution of Olea europaea subsp. cuspidate, due to

increased precipitation and temperature, moisture availability,

and low temperatures associated with higher latitudes, it may

also facilitate its distribution under future climate conditions.

Since the majority of Olea europaea subsp. cuspidata habitat

loss is predicted in the mid-latitudes of both hemispheres;

the region’s surface temperature changes (Tamarin-Brodsky

et al., 2020) explain the warming patterns and climatic-

dependent factors.

A considerable reduction of the suitable habitats for Olea

europaea subsp. cuspidata will occur under future climatic

conditions. As a global trend, the lower the latitude, the

more areas will be lost (Sheldon, 2019); the majority of the

lost areas are on the American, African, and Australian

subcontinents, indicating that many mainland areas will

be subjected to more severe climatic changes than coastal

areas. The areas predicted for future distribution suitability

currently receive less precipitation than those with current

distribution. Future climatic projections foresee the emergence

of new suitable areas, mostly found at higher latitudes in

both the northern and southern hemispheres (Figure 4).

Under the model output, such projected latitudinal migration,

with Olea europaea subsp. cuspidata shifting poleward,

follows one of the most common and well-documented

consequences of climate change on species distribution

(VanDerWal et al., 2012; Telwala et al., 2013; Rathore et al.,

2018). Considering the species diverse distribution patterns

and relatively wide temperature and precipitation habitat

ranges (Figure 3), future estimates suggest that the plant

will be severely affected by the ongoing global climate

change. Other widespread plant species have exhibited

probable future range contractions (Kelly and Goulden, 2008;

Parmesan and Hanley, 2015; Madani et al., 2018) due to

increased temperatures leading to severe heat stress (Tollefson,

2020).

Conclusion

The present work is the first attempt to assess global

range shifts not only for a wild olive species but also for a

Lamiales species in a climate change scenario. Ecophysiological

features of Olea europaea subsp. cuspidata may be linked to

the shrinkage of potential areas in the year 2070 compared to

the present. The extraction and comparison of climatic values

of gained and lost areas in relation to present and future

distribution ranges revealed that Olea europaea subsp. cuspidata

would tend to be displaced to locations with currently low

precipitation values. As previously stated, the species appears

to be unable to endure significant temperature fluctuations

(Bio-1, Bio-3, and Bio-5). As a result, climatically appropriate

areas for Olea europaea subsp. cuspidata are predicted to be

drastically reduced by 2070, as a portion of the current potential

ranges will become unsuitable due to excessive temperature

changes. This is in line with worldwide trend changes, which

have been anticipated to include a large increase in extreme

periods of lengthy dry cycles (IPCC, 2013; Tollefson, 2020).

Finally, we investigated where most suitable habitats will be

lost or gained in the future due to climate change. With

this ensemble modeling approach, firstly, we can predict the

main current locations of Olea europaea subsp. cuspidata will

still appear as suitable. Secondly, it is estimated that several

diverse geographical locations where the species has not been

documented will be potential colonization sites for the species

in the future. Considering the ecological and economical

importance, the areas predicted to be suitable for the O.

europaea subsp. cuspidata may be used for the plantation of

this species, while the deforested land should be restored for

human welfare.
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