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Habitat loss is a significant threat to biodiversity in tropical forests, leading to

changes in composition, structure, and function. In this study, we aimed to

evaluate the influence of the forest amount at the landscape scale on the

structure and the stored carbon of tree communities. Eleven landscape samples

of 36 km2 (6 × 6 km), with different amounts of forest cover at the landscape

scale (between 5 and 60%), were randomly selected within a wide latitudinal

range of Atlantic Forests in Brazil. We also used a sample design to control and

avoid some biases in landscape-scale studies during the landscape selection,

such as the rescue effect from the surrounding landscapes, differences in matrix

permeability in each landscape, and the control for the same vegetation type or

successional stage. In each selected landscape, we surveyed all woody individuals

with a diameter at breast height (DBH) ≥ 2.5 cm in eight plots of 250 m2, randomly

placed in the landscape’s forested areas. The structural variables evaluated were:

total abundance, the abundance of prominent families, the abundance of large

trees (DBH ≥ 30 cm), mean DBH, and average height, besides carbon storage.

From the set of 8,179 individuals, we observed a positive correlation between

forest amount and the total abundance, the abundance of large trees, and carbon

stock. The abundance of the prominent hardwood tree families were positively

correlated with forest amount. When comparing the two landscapes with the

lowest proportion of habitats (5–15%) and the highest proportion (55−60%),

almost one thousand trees and more than 150 T of carbon per hectare are lost.

This reduction in the overall abundance and carbon indicates no compensatory

effects on the tree community due to a turnover in composition or substitution

of large trees for smaller ones. The Atlantic Forest is undergoing a process

of homogenization and functional collapse, derived directly or indirectly from

habitat loss, leading to a possible regime shift.

KEYWORDS

homogenization, habitat amount, regime shift, tree community, payment for
environmental services, ecological process

1. Introduction

One of the notorious characteristics of a forest is its structure, evidenced mainly by
the size of its individuals and the density of trees in woody plant communities (Pütz and
Redford, 2010). In general, the structural characteristics of a forest emerge from metabolic
and demographic aspects (Muller-Landau et al., 2006; Enquist et al., 2009; West et al., 2009).
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Demographic aspects are associated with birth dynamics and
tree mortality (Coomes et al., 2003) and may reflect environmental
conditions at different spatial levels over reproduction, dispersion,
establishment, and survival processes. However, the metabolic
aspects tend to explain the individuals’ variations in size and
shape in response to the physical-chemical constraints of the
environment (Brown et al., 2004; Muller-Landau et al., 2006). The
environment could affect individual growth rates, and variations
in growth rates tend to change the proportion between size classes
within a population (Condit et al., 1998; Wright et al., 2003).

Changes in tree communities may reflect natural and human-
made disturbances (Sposito and Santos, 2001; Nagendra, 2012).
Disorders caused by humans, such as the loss and fragmentation
of natural habitats, have had profound impacts on the structure
and functioning of forest tree communities (Millennium Ecosystem
Assessment [MEA]., 2005; Magnago L. et al., 2015; Rocha-Santos
et al., 2016).

With forest suppression, the reproductive success of different
tree populations is also reduced, either by the loss of pollinators
and dispersers, in the latter case mainly of medium and large size
animals (Silva and Tabarelli, 2000; Jorge et al., 2013), or by Allee
effect under critical densities (Stephens and Sutherland, 1999). Such
changes directly impact the demographic rates of tree species and,
consequently, the forest structure.

Forests reduction at the landscape scale increases mean
distances between patches, the mean size of forest remnant
patches, and the proportion of border areas (Fahrig, 2003) and,
consequently, greater exposure to the edge effect (Murcia, 1995;
Tabarelli et al., 2004; Rigueira et al., 2012). Many edge effects are
associated with microclimatic changes in the forest fragments, such
as humidity, luminosity, wind incidence, and other effects (Matlack,
1993; Murcia, 1995; Laurance and Curran, 2008; Magnago L. F. S.
et al., 2015). Those can shape metabolic and demographic aspects,
leading to structural changes in tree communities. Deforestation at
the landscape scale reduces the overall abundance of all tree species
in the landscape. It also influences a series of tree community and
population aspects in the remaining tropical forest: increasing the
mortality of large trees, reducing of mean size of its individuals
and overall abundance of trees, and loss of important tree families
species, for example (Laurance et al., 2000, 2006; Rocha-Santos
et al., 2016).

Reducing the forest amount at the landscape scale can lead to
abrupt changes in plant communities, i.e., threshold responses, as
observed in the diversity loss in different plants groups (Rigueira
et al., 2013; Lima and Mariano-Neto, 2014; Rocha-Santos et al.,
2016; Benchimol et al., 2017b). These patterns were observed both
for the entire community of woody plants (Rigueira and Mariano-
Neto in prep.) and for specific families, usually composed of
shade-tolerant species and denser wood (Rigueira et al., 2013; Lima
and Mariano-Neto, 2014, Rocha-Santos et al., 2016, Benchimol
et al., 2017b). Hunting or logging also tends to be accentuated in
more fragmented landscapes, aggravating the synergistic effects of
habitat loss in forested tropical landscapes (Echeverría et al., 2007;
Laurance et al., 2011; Galetti and Dirzo, 2013; Liu and Slik, 2014).

As species diversity is a crucial attribute for ecological process
maintenance in different ecosystems (Norberg et al., 2008), it is
expected that these processes, such as the carbon stock in tropical
forests, may be compromised by habitat loss. It is known that
the fragmentation of tropical forests (Pütz et al., 2014; Magnago

L. et al., 2015) and their defaunation (Bello et al., 2015) lead
to the loss of large amounts of stored carbon, but not if the
quantity of habitat amount at landscape scale influences such
stocks. In addition, the differentiated loss of trees families capable of
storing more carbon, such as Sapotaceae and Myrtaceae (Rigueira
et al., 2013, Lima and Mariano-Neto, 2014), may have a more
significant impact on ecological structure and processes, such as
carbon sequestration and storage. Tropical forests stores about
40% of the carbon from terrestrial environments (Dixon et al.,
1994), and deforestation contributes 7−14% of the global carbon
emission (Harris et al., 2012). Therefore, it is crucial to understand
carbon stock responses to habitat amount, given the vital role of
carbon in climate regulation, both locally, regionally, and globally
(Millennium Ecosystem Assessment [MEA]., 2005).

From the perspective of landscape management, information
on changes in forest structure has been used to indicate the
occurrence of local disturbances (Karna et al., 2010; Nagendra
et al., 2010; Banks-Leite et al., 2011). Once the relationship between
forest structuring and habitat loss at the landscape scale has
been unrevealed, we need to investigate the mechanisms that
affect or maintain essential ecological processes in human-altered
landscapes (Melo et al., 2013; Banks-Leite et al., 2014).

This study of Tropical Forest fragmented landscapes (Atlantic
Forest) aims to evaluate the influence of the forest habitat amount
on the structuring of tree communities (size and abundance of
trees) and, consequently, on the carbon stocking process. We also
consider the possible variation in the abundance of particular plant
families with the expected forest structure change, considering
factors acting at different hierarchical levels. We will evaluate
the following hypotheses: (i) the structure of tree communities,
in their totality and prominent families, is determined by the
habitat amount at the landscape; (ii) the habitat amount positively
influences the carbon stock at the landscape.

2. Materials and methods

This study is part of a multi-taxa project developed by
a researchers group from Institute of Biology of the Federal
University of Bahia (UFBA) to evaluate the influence of habitat loss
at the landscape scale on different taxonomic groups and ecological
processes in the Atlantic Forest (CNPq/FAPESB research founding
PNX0016_2009).

2.1. Study area and sample landscapes

The present study was developed in eleven landscapes,
randomly selected from a large extent in the central and coastal
portion of the Bahia Atlantic Forest in the northeast of Brazil
(between latitudes 11◦ 80’ and 18◦ 49’ S and between the
longitudes 49◦ 08’ and 21◦ 24’ W) (Figure 1). The Atlantic
Forest harbors an unequaled amount of world biodiversity and
represents one of the most threatened natural biomes of the
planet (Myers et al., 2000; Laurance, 2009), remaining only
11.4−16% of its original 150 million hectares (Ribeiro et al.,
2009).

This region is characterized by a relatively old use and
occupation process dating from the early 16th century
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FIGURE 1

Study area in the state of Bahia, Brazil, Atlantic Forest remnants are in gray, approx. 93.500 km2, from lat 8◦ 32’ 00” S and long 39◦ 22’ 49” W to lat
18◦ 20’ 07” S and long 39◦ 39’ 48” W. The black squares represent the eleven sampled landscapes. On the side, each sampled landscape with its
forest cover percentage at the landscape scale. Above right, the Brazilian map, with the state of Bahia limits.

(Cavalcanti, 2006), and the most intense suppression of its
native vegetation occurred only in the mid-twentieth century
(Mendonça et al., 1994).

We select the landscapes from 1,500 squares of 6 × 6 km
(36 km2) along the Atlantic Forest in Bahia, Brazil, using the forest
cover map of the Atlas of the Atlantic Forest Remnants (SOS Mata
Atlântica and Instituto Nacional de Pesquisas Espaciais, 2008).1

Through this map, we calculated the proportion of forest habitat in
landscapes. Then, we classify, according to the proportion of forest
habitat, into the classes 5, 15, 20, 25, 30, 35, 40, 45, 50, 55, and
60%. To be included in a class, the landscape should have forest
cover between (X + 2)% and (X−2)%, where “X” represents the
class value. The landscape choice represents a size that can include
relevant ecological processes for tropical forest trees, such as the
dispersion of their propagules and pollen, at the landscape scale
(Condit et al., 1992). Only one landscape was chosen in each class
of habitat amount.

1 www.sosma.org.br and www.inpe.br

A sampling of 11 landscapes with specific percentages of
habitat coverage requires that the spatial scope of the design
has regional proportions (hundreds of kilometers). The immense
extension increases the variability of the response variables
as an action of confounding factors associated with each
locality’s specific conditions. We established selection criteria to
minimize the effect of four relevant and controllable variables
through design: two related to forest quality (successional stage)
and matrix (permeability to typical forest species) and two
related to quantitative indicators of the forested habitat in
the landscape surroundings (habitat quantity and presence of
potential source areas).

2.1.1. Successional stage
There are significant differences in richness and composition

between forests with different successional stages (Liebsch et al.,
2008; Santos et al., 2008). Thus, we chose to exclude from the
sample universe landscapes with forests in the initial stage of
succession, including only medium and advanced stages, based on
the proposal of CONAMA Resolution 05/1994, corresponding to
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FIGURE 2

The landscape with 55% of forest cover at the landscape scale,
centered on a large landscape of 18 × 18 km. The large landscape
was used to control for habitat quality and the presence of source
areas surrounding the target 6 × 6 km landscape. Each 6 × 6 km
landscape was subdivided into 100 squares, from which eight,
containing forests, were randomly chosen for the samplings. Dark
areas represent forest cover.

structural mature and rich forests (Conselho Nacional de Meio
Ambiente [CONAMA], 1994).

2.1.2. Matrix permeability
It is also known that non-habitat matrices structurally similar

to forests (e.g., silviculture) are more permeable to forest specialist
organisms and can minimize the effects of habitat loss and
fragmentation at the landscape scale (Ewers and Didham, 2006;
Franklin and Lindenmayer, 2009). Therefore, we established in
this study that the landscape matrix should comprise at least
80% of open physiognomies (e.g., pasture, grassland, or shrub),
non-forested and non-urban.

2.1.3. Habitat amount and presence of source
area in the surroundings

To avoid a possible source effect of the surrounding area on
the sample landscape, derived from a larger quantity of forests or
larger fragments, we established, for each landscape of 36 square
kilometers, a larger square of 324 km2 (18 × 18 km) centered on
the landscape to control these two variables (Figure 2). We used
the larger square to compute the percentage of vegetation cover and
the area occupied by the largest fragment (Largest Patch Index -
LPI - Fragstats 3.3). We exclude landscapes where the percentage
of habitat and LPI coverage in the larger square was greater than in
the sample landscape.

In this study, we tested the strength of the habitat amount at
the landscape scale, in a control design, as a predicted variable of
forest structure features and carbon stocks. We did not consider
fragment size in our analysis. Although fragment size and edge
effects could influence our dependent variables locally, we cannot

control them in our sampling design; otherwise, there will be no
sufficient landscapes for this study.

Our premise that habitat amount at the landscape scale is
a good predictor of changes in tree communities is based on
simulated landscape studies (Andren, 1994; Fahrig, 2003) and
predicts that populations will decrease and eventually become
extinct due to reduced habitat amount at the landscape scale. In
simulations and real data, several landscapes and patch features
are dependent and correlated (linearly or non-linearly) to habitat
amount at the landscape scale (Gustafson and Parker, 1992).
Including the mean distance between patches, edge density metrics,
and mean patch size. Pardini et al. (2010) also pointed out that
the correlation between biodiversity metrics and fragment size
depends on the habitat amount at the landscape scale. Size and
distance are related to the persistence and immigration rates of
a metapopulation. In landscapes with a larger amount of habitat,
rescue effects could maintain species in small fragments, and in
landscapes with lesser amounts of habitat, lack of immigration
impedes restoring richness after local extinctions.

Although predictions of the effects of habitat amount at the
landscape scale were built for processes at the metapopulation
level, the effects have been tested in several community-level
studies (Rigueira et al., 2013; Lima and Mariano-Neto, 2014;
Morante-Filho et al., 2015; Benchimol et al., 2017a). In this
study, we expected some ecological processes to be disrupted
inside a landscape as the habitat amount decreases, influencing
the community structure and the carbon stocks. We also expect
to detect the effects with random samples chosen inside those
landscapes, regardless of patch size.

2.2. Sample plots and biological data

To sort the sample plots, we superimposed a grid with 100 cells
of 600 × 600 m on the landscape and considered cells that were
totally or mostly occupied by forest remnants.

We randomly selected eight cells, and a sample plot was
established consisting of a rectangle of 10 × 25 m (250 m2) located
at a minimum distance of 50 m from the forest boundary. That
avoids the more intense edge effects (Murcia, 1995; Rigueira et al.,
2012). In each plot, the circumference at breast height (CBH) and
height of all the trees with CBH ≥ 8 cm (diameter of 2.5 cm)
were measured. The most abundant families were also evaluated
separately, based on the classification proposed by APG III (2009).

The botanical material was collected following
IBAMA/ICMBio collection authorization 12023-1 and
subsequent authorizations.

2.3. Stored carbon quantification

Initially, we estimated the above-ground biomass (AGB) in
trees and palms from allometric equations based on diameter at
breast height (DBH). An equation was used for the set of trees,
one specific for embaúbas (Cecropia spp.), plus a third equation for
the palm trees. Thus, three (03) different allometric equations were
used to evaluate the above-ground biomass (AGB), namely:

Atlantic Forest trees (Arevalo et al., 2002):
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FIGURE 3

Scatter plots and the best-fitted models with confidence intervals of the observed relationship between forest cover and total tree abundance, large
tree abundance, and total carbon stored in tropical rainforest landscapes in Northeast Brazil.

TABLE 1 Model selection between forest cover at the landscape scale and structural variables of a woody community in Atlantic Forest – Bahia Brazil.

Variables 1 Model dAICc df Weight

Total abundance Linear 0.0 2 1

Null 30.0 1 <0.001

Logistic 42.3 4 <0.001

Large trees abundance Linear 0.0 2 0.596

Logistic 0.8 4 0.402

Null 11.5 1 0.002

Mean DBG Null 0.0 2 0.828

Linear 3.3 3 0.155

Logistic 7.7 4 0.017

Mean height Null 0.0 2 0.500

Linear 0.0 3 0.500

Logistic 45.3 4 <0.001

Mean DBH (≥ 5 cm) Null 0.0 2 0.671

Linear 1.5 3 0.310

Logistic 7.1 4 0.019

The best models are in bold.

AGB = 0,1184∗(DBH)2,53
Cecropia species of Tropical forests in Bolívia (Pearson et al.,

2005):
AGB = 2,764 + 0,2588∗(DBH)2.0515
Palm species of Tropical forests (Pearson et al., 2005):
AGB = 6,6666 + (12,826∗((DBH)0,5)∗ln(DBH))
At where:
AGB, Above-ground biomass.
DBH, Diameter at breast height.
Numeric values = Constants.
We quantified the above-ground stored carbon by

multiplication the AGB by 0.5.

2.4. Statistical analyzes

We used a multimodel selection based on the Akaike
Information Criterion (1AIC) to evaluate the relationship between

the forest structure and the habitat amount at the landscape
scale (Akaike, 1978). Three models commonly used in studies
in fragmented tropical forest landscapes were tested: (1) - null
(constant), (2)- linear, and (3)- logistic of four parameters.
Parsimony and residual analysis were used as tie-breaking criteria
in cases where concurrent models have similar AIC values.
The selected models had their residuals analyzed to validate
the model.

We assumed Poisson error distribution for counting data
of individuals (woody plant abundance: all individuals with
DBH ≥ 2.5 cm, and abundance of large trees: only individuals
with DBH ≥ 30 cm). For height and DBH data, we used
the Gaussian error distribution. Finally, given the residuals
heteroscedasticity of the carbon data, a single linearized model
(GLM) was made, assuming a negative binomial error distribution.
This model was evaluated through its significance and analysis of
parameters and residues.
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FIGURE 4

Scatter plots and the best-fitted models with confidence intervals of
the observed relationship between forest cover and abundance of
four different families of trees in tropical rainforest landscapes in
Northeast Brazil.

All the analyzes were performed in the R 3.3.2 environment
(R Development Core Team., 2017) using the packages “bbmle”
(Bolker, 2016), “nlme” (Pinheiro et al., 2016), and “vegan”
(Oksanen, 2013).

3. Results

3.1. Community structure of woody
plants

We sampled 8,179 woody plants (DAP ≥ 2.5 cm) in the
11 landscapes. The landscape with 55% of habitat presented
the highest abundance, with a total of 931 individuals
(4,655 indiv./ha), followed by 40% forest cover with 932
individuals (4,615 indiv./ha). The 5% forest landscape had
the lowest number of individuals per forest area, totaling 581
individuals sampled (2,905 indiv./ha), followed by the 15%
landscape with 594 individuals (2,970 indiv./ha). A positive
relationship was observed between habitat loss and the number
of individuals of woody plants (Figure 3) through linear
adjustment (Table 1).

Large tree abundance varied from seven (07), in landscapes
of 5 and 15%, to 37 in the landscape of 30% of forest cover.
A positive relationship between habitat loss and the number of
large trees (DBH ≥ 30 cm) was also observed (Figure 4) with linear
adjustment (Table 1).

The mean DBH ranged from 6.9 to 9.49 cm in the 20 and 60%
forest landscapes. The average height varied from 7.33 m, in the
landscape of 20%, to 10.97 m, in the landscape of 30%. In the case
of height, both the linear and the null models were similar (Table 1).
Mean DBH was best adjusted to the null model (Table 1), and the
linear and null models were equivalent in plants with DBH ≥ 5 cm
(Table 1).

3.2. Structural aspects in different woody
plants families

Abundant woody families were strongly influenced by forest
amount at the landscape scale. The six (06) most abundant families
presented a negative or positive response, representing 39.5% of the
total abundance sampled. Four responded negatively and linearly to
habitat loss: Myrtaceae, Euphorbiaceae, Rubiaceae, and Arecaceae
(Figure 5 and Table 2). However, Fabaceae and Melastomataceae
presented a positive and linear response, with increased abundance
in response to habitat loss.

Other important families, with significant saplings abundance,
such as Sapotaceae, Peraceae, Lauraceae, and Salicaceae, with 309,
257, 232, and 225 individuals, were also influenced by the habitat
amount at the landscape scale (Figure 5). Peraceae and Salicaceae
showed a positive and linear response to habitat loss (Figure 5)
section “3.3 Carbon stock assessment.”

3.3. Carbon stock assessment

A positive effect on the relationship between habitat loss
and stored carbon (Figure 3) was observed with a generalized
linear model (p = 0.009). The carbon stored per hectare
varied from 18,327 kg (91.63 T/ha), in the landscape of
15%, to 70,466 kg (352.33 T/ha), in the 60% landscape.
Considering all the landscapes, the average value of stored carbon
was 184.84 T/ha.

4. Discussion

4.1. Habitat loss and changes in the
woody plant community

The habitat amount at the landscape scale influences essential
aspects of the physical structure of the tropical forest. Several
studies have shown the negative influence of fragmentation on
some structural elements of tropical forests patches (Laurance et al.,
2000, 2002; Santos et al., 2008; Lopes et al., 2009; Magnago L. F. S.
et al., 2015; Rocha-Santos et al., 2016). The results of the current
study corroborate findings in another similar study on forested
landscapes in Atlantic Forest, which indicates a structural alteration
associated with habitat loss at the landscape scale (Rocha-Santos
et al., 2016); But, in the present study, with linear response to
habitat loss.

Regarding the abundance, the results observed in this study
do not corroborate the compensatory effect in forest fragments
exposed to the strong edge effect (Harper et al., 2005; Gonzalez
and Loreau, 2009), which tends to favor pioneer species, leading
to the substitution of species and a larger number of trees in
small fragments. In the present study, despite the scattering of
the data and large confidence intervals, there was an average
decline of about 25% in the number of woody individuals per unit
area in low forest cover landscapes (5−15%) compared to forest-
predominant landscapes (45−60%), representing almost an average
of thousand trees per hectare. Although landscapes with less habitat
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FIGURE 5

Scatter plots and the best-fitted models with confidence intervals of the observed relationship between forest cover and abundance of six different
families of trees in tropical rainforest landscapes in Northeast Brazil.

are generally subject to a more substantial edge effect (Fahrig,
2003), the abundance of woody plants in the Atlantic Forest often
tends to decline with the habitat fragmentation at the landscape
scale, as shown in similar studies (Santos et al., 2008; Rocha-Santos
et al., 2016).

One possible explanation for abundance reduction would be
the low recruitment of trees in landscapes with reduced amounts
of forest. Organisms responsible for pollination and dispersal of
different groups of plants also suffer a reduction with habitat
loss (Silva and Tabarelli, 2000; Jorge et al., 2013; Poulsen et al.,
2013), and the reproductive success and the establishment can
get depressed. In addition, reducing the abundance of woody
plants also compromises reproductive success as it exposes small
populations to the Allee effect (Stephens and Sutherland, 1999).

Total abundance and large trees’ abundance (DBH ≥ 30 cm)
reduced linearly with habitat loss. Besides, the large tree abundance
of the two landscapes with the lowest proportions of forest (5 and
15%) was notably lower than those with the highest (55 and 60%)
forest cover. Based on the data from eight points in each landscape,
we estimate an average density of 35 indiv/ha in landscapes of 5 and
15% of forest cover compared to an average of 117 indiv/ha trees in
the landscapes with 55 and 60%.

Probably, landscapes with low forest cover experience a
reduction of large trees because of several factors, such as the
edge effect (Laurance et al., 2000; Oliveira et al., 2008) and the
loss of mediating fauna involved in the reproductive processes
of large trees (Bello et al., 2015). Furthermore, that is more
common and prominent in landscapes with lower proportions of
natural habitat (Laurance et al., 2002; Fahrig, 2003). There is a
remarkable reduction in the carbon stock retained by these less
forested landscapes due to the reduction of the big trees; also, these
landscapes presented smaller variances compared to landscapes
with higher amounts of forests. Large trees store disproportional

amounts of this element and are essential links in carbon cycling
(Bello et al., 2015). In addition, the disappearance of large trees
leads to microclimatic changes, such as increased light penetration,
influencing vegetation regeneration dynamics, and favoring groups
of pioneer plants (Laurance et al., 2000).

The forest cover reduction did not influence the average height
and DBH of the individuals, probably due to the low recruitment of
trees in these conditions. We analyzed mean values of height and
thickness. Recruitment drops and small specimens can influence
the overall height and DBH trend. However, we did not detect
a significant change in these two metrics, even considering only
individuals with DBH ≥ 15 cm. This lack of response to habitat loss
can be explained by the action of other factors not controlled, such
as the different types of soils, with potential influence on the sizes of
the trees (Clark and Clark, 2000, Baldeck et al., 2012; Peña-Claros
et al., 2012).

There could be a sum or synergy of different factors, such as
low recruitment and mortality, especially of large trees, associated
with microclimatic changes due to the edge effect in landscapes
with low amounts of natural habitat. All those factors possibly cause
the structural changes observed, mainly involving the abundance of
woody plants and large trees. The process of habitat loss probably
has a preponderant influence on the structure of tropical forests.

4.2. Habitat loss and changes in
abundance of woody plant families

Different families responded differently to habitat loss. For
important Atlantic Forest families, there is a linear reduction
of abundance with habitat loss. Such as Myrtaceae, Sapotaceae,
Arecaceae, Lauraceae, Rubiaceae, and Euphorbiaceae.
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TABLE 2 Model selection between forest cover at the landscape scale and the abundance of the most important families of a woody community in
Atlantic Forest – Bahia, Brazil.

Abundance families Model dAICc df Weight

Myrtaceae Linear 0.0 2 1

Logistic 55.1 4 <0.001

Null 59.7 1 <0.001

Euphorbiaceae Linear 0.0 2 1

Null 51.2 1 <0.001

Logistic 62.9 4 <0.001

Rubiaceae Linear 0.0 2 1

Null 18.5 1 <0.001

Logistic 19.6 4 <0.001

Arecaceae Linear 0.0 2 1

Logistic 53.0 4 <0.001

Null 82.5 1 <0.001

Fabaceae Linear 0.0 2 0.890

Null 4.3 1 0.110

Logistic 16.4 4 <0.001

Melastomataceae Linear 0.0 2 1

Logistic 67.8 4 <0.001

Null 98.1 1 <0.001

Sapotaceae Linear 0.0 2 1

Logistic 39.9 4 <0.001

Null 83.9 1 <0.001

Peraceae Linear 0.0 2 1

Logistic 52.5 4 <0.001

Null 89.0 1 <0.001

Lauraceae Linear 0.0 2 1

Null 28.6 1 <0.001

Logistic 39.5 4 <0.001

Salicaceae Linear 0.0 2 1

Logistic 21.1 4 <0.001

Null 66.3 1 <0.001

The best models are in bold. dAICc - is the value of delta AIC, corrected to small samples of each model. df - degrees of freedom. Weights - AICc weights of each model.

These six families are very expressive in terms of diversity
throughout the biome (Giulietti et al., 2005; Souza and Lorenzi,
2005) and form a critical functional group, important as a fruit,
pollen, and nectar source for several animals of this ecosystem
(Poulin et al., 1999; Tabarelli et al., 1999; Castro and Oliveira, 2002;
Tabarelli and Peres, 2002; Castro et al., 2004; Lopes and Buzato,
2005; Bello et al., 2017). For example, palm trees (Arecaceae)
are essential for tropical frugivores, producing large quantities of
fruits and seeds (Galetti et al., 2013). Some species of Sapotaceae
can produce fruits during prolonged periods and represent an
important fruit and nectar source throughout the year for a
wide range of animals (Oliveira et al., 2010; Pessoa et al., 2011).
Rubiaceae and Myrtaceae are among the main sources of fleshy
fruits for animals in the Atlantic Forest (Tabarelli et al., 1999;
Tabarelli and Peres, 2002; Bello et al., 2017). Thus, reducing

the abundance of these families may influence the functioning
of different mutualistic processes and may lead to cascading
extinctions of various animal groups (Bennett et al., 2009; Kurten,
2013). In fact, Pinto et al. (2021) found a reduction in interactions
between frugivorous birds and fleshy fruit plants and simplified
bird-plant interaction networks in landscapes with small forest
amounts in the same biome. Moreover, they assume that the
impoverishment of birds and plant communities was responsible
for that pattern.

On the other hand, other families composed mainly of
fast-growing early secondary species that are mostly shade-
intolerant, such as Melastomataceae, Peraceae, and Salicaceae, had
a considerable increase in abundance. Frequently, these families
have reproductive processes mediated by physical mechanisms or
small animals (Souza and Lorenzi, 2005). Similar response patterns
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of these families were observed in other studies in the hyper-
fragmented tropical forests of northeastern Brazil (Tabarelli and
Peres, 2002; Tabarelli et al., 2004; Santos et al., 2008; Lopes et al.,
2009).

According to the effect of compensation, this pattern of loss
in the abundance of one set of families and the gain of others
was expected (Harper et al., 2005; Gonzalez and Loreau, 2009).
On the other hand, the overall community pattern was the linear
abundance reduction (up to about 25%). Based on our data,
we cannot say that the space left by the individuals of families
more sensitive to the changes triggered by the habitat loss (e.g.,
more dependent on mutualistic animals) was occupied by the
individuals favored by the edge effects (less tolerant to shade and
less dependent on mutualistic animals). Our results indicate that
these forests in low-habitat landscapes can become emptier, with
less structural complexity, dominated by the secondary process
and homogenization of the woody community (Santos et al., 2008;
Lopes et al., 2009).

4.3. Habitat loss and carbon stock
reduction

A relation between different landscape metrics and carbon
stock was observed in some tropical forests (Groeneveld et al., 2009;
Pütz et al., 2011, 2014; Magnago L. et al., 2015). However, our study
reveals the influence of the habitat amount at the landscape scale
on carbon stocks in one of the world’s most endangered rainforests.
Also, we find that, compared to the landscapes with the highest
forest cover (55−60%), there was an average decrease of 2.6 times
in carbon stocks in less forested landscapes (5−15%), equivalent to
a loss of 150 T/ha on average.

The average value of carbon stored that we found in the
eleven landscapes was 184 T/ha, within the range observed in
other tropical forests, such as mature Amazon forests, varying
between 170 T/ha (Pan et al., 2011) and 320 T/ha (Houghton
et al., 2000), and in other forest formations of the Atlantic
Forest, between 125 T/ha (Groeneveld et al., 2009) and 360 T/ha
(Magnago L. et al., 2015). However, it differed significantly from
values observed in Atlantic Forest’s initial successional stages,
around 19 T/ha (Ribeiro et al., 2010). Our landscapes with a low
proportion of forest habitat (e.g., 5 and 15%) showed an average
of 94.5 T/ha, and our sampling design aimed to avoid areas in
early successional stages, even in the landscapes with low forest
cover. This pattern indicates that landscapes with lower forest
cover ratios have reduced stock capacity in the late secondary
stages — a loss of a critical ecological process in the ecosystem’s
functioning.

Recognizing such patterns for tropical forests is essential, given
their importance to global carbon sequestration and stocking
(Dixon et al., 1994; Millennium Ecosystem Assessment [MEA].,
2005; Pan et al., 2011). In tropical forests’ carbon cycling process,
the sequestration and stocking by woody plants represent one of
the primary services for climate regulation on a local, regional
and global scale (Millennium Ecosystem Assessment [MEA].,
2005).

Some processes can explain the carbon stock loss in tropical
forests, such as the reduction in the recruitment of trees with denser
woods, mutualistic faunal loss (Bello et al., 2015), fragmentation,
and an increase in the edge proportion (Laurance et al., 2000), in
addition to the differential loss of large trees due to the edge effect
(Groeneveld et al., 2009; Pütz et al., 2011, 2014; Magnago L. F. S.
et al., 2015). However, such processes ultimately derive from habitat
loss.

Our results are probably conservative since the values of stored
carbon were obtained using three sets of plants (Cecropia trees,
palm trees, and other trees). Thus, the category “other trees”
encompasses a large set of trees of different ecological groups and,
consequently, with different values of stored carbon (Groeneveld
et al., 2009). The carbon stored in landscapes with low forest
cover is probably lower than those estimated here since those
communities present an increase in more softwood and fast-
growing plants, such as in the Melastomataceae. By incorporating
the different wood densities associated with functional groups,
more disparate patterns among the landscapes with larger and
smaller proportions could emerge.

4.4. Structural changes, homogenization,
and regime shift

Structural variables of the woody vegetation reflect the biomass
and abundance changes in response to the forest cover reduction
and changes in functional groups. Other studies dealing with
species richness in the Atlantic Forest have revealed non-linear loss
patterns through thresholds. These thresholds, occurring around
30% of habitat on the landscape scale, were observed for the
species richness of some plant families (Rigueira et al., 2013;
Lima and Mariano-Neto, 2014; Andrade et al., 2015; Rueda et al.,
2015; Benchimol et al., 2017b), and also for forest specialists
animals (Pardini et al., 2010; Banks-Leite et al., 2011; Estavillo
et al., 2013). In addition, another study in the Atlantic Forest
reported thresholds associated with altered forest structure have
also been reported (Rocha-Santos et al., 2016), indicating that
abrupt responses could also occur with carbon stocks and other
structural aspects. In the present study, some fast-growing families
had a positive response to habitat loss, which may have masked
a possible threshold, linearizing the pattern of a total loss, if the
analysis were concentrated on shade-tolerant species and more
reliant on mutualistic animals, for example.

Oliver et al. (2015) presented a model to understand
the resilience of a complex system subjected to disturbances
regarding different life strategies. A turnover between fast-growing
and slowly-growing species is expected to occur locally after
disturbances, the first group is responsible for the rapid recovery
(adaptation), and the second is responsible for the long-term
resistance to minor disturbances. The existence of these two groups
is essential to the overall resilience of a system at the community
level because they maintain positive feedbacks that keep the system.
Regarding carbon storage, slow-growing species are responsible for
a significant portion compared to fast-growing species. Both are
important to maintaining the system functioning following Oliver
et al. (2015) resilience model.
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The loss of slow-growing species in landscapes with small
amounts of forested areas means that those forests could lose
their resilience (positive feedback mechanisms) and be subject to
a regime shift, as Scheffer and Carpenter (2003) proposed: Forest
reduction at the landscape scale can be viewed as a chronicle
factor, and there is evidence of several non-linear responses at the
community level (Banks-Leite et al., 2011; Estavillo et al., 2013;
Rigueira et al., 2013; Lima and Mariano-Neto, 2014; Andrade
et al., 2015; Rueda et al., 2015; Benchimol et al., 2017b), even if
an emergent property, such as carbon storage presented a linear
response to forest reduction.

A regime shift with a preponderance of fast-growing species
could mean an unfriendly scenario for the Atlantic Forest
landscapes with reduced proportions of forest cover. Less key forest
species, structural alteration, compromise ecosystem services, and
maintaining forest remnants in levels of early stages of succession,
even in the long run (Santos et al., 2008; Tabarelli et al., 2008, 2012;
Lopes et al., 2009; Rocha-Santos et al., 2016).

4.5. Subsidies for the management of
forested tropical landscapes

Changes in tree abundance may indicate vegetation structure
and composition derived from local environmental disturbances
(Karna et al., 2010; Nagendra et al., 2010). Also, maintaining carbon
stocks in tropical forests linked with maintaining biodiversity
(Magnago L. et al., 2015). In the present study, verifying the
positive influence of the habitat amount at the landscape scale on
the abundance of woody plants and the carbon stored in these
organisms was possible.

The processes that triggered such structural changes in the
Atlantic Forest were identified in the range of forest cover
variation between 5 and 60%. Woody plants are a biological
model with fairly robust responses to habitat loss. Thus, these
results provide evidence about the relationship between structural
loss and resilience of Atlantic Forest landscapes, and could be
used as a reference for managing forested tropical landscapes. As
landscape metrics, such as habitat quantity, are easy to acquire
(Banks-Leite et al., 2012; Nagendra, 2012), this information can aid
decision-making, the definition of conservation strategies, and the
standardization of appropriate management techniques in tropical
forest landscapes.

The sampling procedures and results observed here
have practical implications for the quantification of carbon
stocks in fragmented landscapes of the Atlantic Forest and,
consequently, may favor the establishment of policies aimed
at the payment for this ecosystem service. One of the fastest-
growing markets for ecosystem services is related to carbon
sequestration (Millennium Ecosystem Assessment [MEA].,
2005). Only in 2012, this market handled more than € 100
billion. In 2015, around 6.2 gigatons of emission allowances
and offsets were traded globally, amounting to € 48.4 billion
(Thomson Reuters., 2016). Thus, conservation strategies based
on payment for environmental services of sequestration and
carbon stock in tropical forests, such as the Atlantic Forest,
should consider the habitat amount at the landscape scale in that
compute.
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