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Landslides are a central component of tropical montane forest disturbance

regimes, including in the tropical Andes biodiversity hotspot, one of the most

biodiverse ecosystems in the world. Technological developments in remote

sensing have made landscape-scale landslide studies possible, unlocking new

avenues for understanding montane biodiversity, ecosystem functioning, and

the future effects of climate change. Here, we outline three axes of inquiry for

future landslide ecology research in Andean tropical montane forest. We focus

exclusively on the Andes due to the vast floral diversity and high endemicity of

the tropical Andes biodiversity hotspot, and its importance for global biodiversity

and regional ecosystem service provisioning; the broad elevational, latitudinal,

and topographic gradients across which landslide dynamics play out; and

the existence of long-term plot networks that provide the necessary baseline

data on mature forest structure, composition, and functioning to contextualize

disturbance impacts. The three lines of study we outline, which draw heavily

on remote sensing data and techniques, will deepen scientific understanding

of tropical montane forest biodiversity and ecosystem functioning, and the

potential impacts of climate change on both. They are: (1) tracking landslide

biodiversity dynamics across time and space with high spatial and temporal

resolution satellite and unoccupied aerial vehicle imagery; (2) assessing the

ecological influence of landslides through the lens of plant functional diversity

with imaging spectroscopy; and (3) understanding current and predicting future

landslide regimes at scale by building a living landslide inventory spanning the

tropical Andes. The research findings from these three axes of inquiry will shed

light on the role of landslides and the process of forest recovery from them in

both the Andes and worldwide.
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Introduction

Despite their importance to global biodiversity and ecosystem
services, tropical montane forest (TMF) disturbance regimes
are understudied (Crausbay and Martin, 2016; Martin and
Bellingham, 2016). Landslides, a central component of many
TMF disturbance regimes, leave long-lasting legacies on montane
landscapes (Restrepo et al., 2009; Walker and Shiels, 2013). They
have helped shape the highly diverse TMF of the tropical Andes
biodiversity hotspot (Kessler and Kluge, 2008; Richter et al., 2009),
which extends from Venezuela, through Colombia, Ecuador, Peru,
and Bolivia, to northeastern Chile and northwestern Argentina
(Myers et al., 2000; Critical Ecosystem Partnership Fund, 2021).
The hotspot is home to at least 30,000 plant species, including
an estimated 15,000 endemic species, making the Andean flora
the most diverse in the world (Mittermeier et al., 2011). Andean
TMF is also one of Earth’s most threatened habitats, with climate
change predicted to significantly alter the region’s hydrological
and temperature regimes, thus changing forest compositions,
disrupting ecosystem processes, and altering natural disturbance
regimes (Still et al., 1999; Crausbay and Martin, 2016). Increasing
scientific understanding of landslides in the tropical Andes is
integral to the long-term protection and management of Andean
TMF.

Landslides are widespread in the tropical Andes and contribute
to large-scale ecosystem processes. For example, on average, 0.08%
of Peru’s Kosñipata Valley is affected by landslides each year (Clark
et al., 2016), a rate equal to the per century rate estimated for
Puerto Rico’s Upper Luquillo Mountains (Guariguata, 1990) and
seven times greater than estimated for eastern Puerto Rico (Larsen
and Torres-Sanchez, 1992). This translates into an average hillslope
turnover time of 1,320 years, more rapid than observed rates from
13 catchments in New Zealand’s western Southern Alps (Hilton
et al., 2011), and 24 times faster than in the mountains of Mexico
and Central America (Restrepo and Alvarez, 2006). Landsliding
rates may be even higher in other parts of the Andes; a study
in an area of very steep relief in the Bolivian Eastern Cordillera
demonstrated landslides affect 4–6% of the landscape over 10–
35 years (Blodgett and Isacks, 2007), a rate of 0.11–0.6% per year,
or 11.4–17.1% per century. Landslides play a key role in landscape
evolution (Korup et al., 2010) and the mobilization of geological
material (Muenchow et al., 2012), including the export of sediment,
rock and non-rock derived nutrients, and forest carbon to rivers
(Hilton et al., 2008, 2011; Restrepo et al., 2009; Ramos Scharrón
et al., 2012; Clark et al., 2016; Croissant et al., 2019; Hilton and
West, 2020). By exposing underlying bedrock, landslides also make
nutrients available to plants (Guariguata, 1990; Zarin and Johnson,
1995; Vitousek et al., 2003; Porder et al., 2005). Finally, populations
of landslides contribute to longer-term carbon cycling in mountain
landscapes (Ramos Scharrón et al., 2012; Frith et al., 2018; Hilton
and West, 2020).

Here, we outline a vision for three axes of study for
landslide research in Andean TMF that apply remotely-sensed
data to understand how landslides contribute to TMF biodiversity,
ecosystem functioning, and the potential effects of climate change
on landslide regimes (Figure 1). We focus exclusively on the
Andes for three reasons: (1) the vast floral diversity and high
endemicity of the tropical Andes biodiversity hotspot, and its
importance for global biodiversity and regional ecosystem service

provisioning (Myers et al., 2000; Breuer et al., 2013; Spracklen
and Righelato, 2014); (2) the broad elevational, latitudinal, and
topographic gradients, longer than all other tropical mountain
ranges in the world (Young et al., 2007), across which landslide
dynamics play out; and (3) the existence of several long-term
and thoroughly characterized plot networks across the region that
provide the baseline data on mature forest structure, composition,
and functioning necessary to contextualize disturbance impacts
(Malhi et al., 2010; Malizia et al., 2020). Though we focus on the
Andes, the themes, and research avenues we discuss are broadly
applicable to TMF globally.

Technological developments in remote sensing over the
past few decades have increased the efficiency and accuracy of
landslide mapping, analysis, and monitoring (Lin et al., 2004;
Petley, 2012; Amatya et al., 2021; Casagli et al., 2023). The
relatively recent availability of medium- to high spatial and
temporal resolution satellite imagery (e.g., Sentinel-2 visible bands
at 10 m every 5–10 days, PlanetScope at 3 m daily), now
allows scientists to observe the planet in near real-time and
high detail (Finer et al., 2018). The high spatial resolution is
important because previously, many freely available images (e.g.,
Landsat at 30 m) were not at sufficient spatial resolution to
capture small landslides, an important component of landslide
regimes (Clark et al., 2016; Fayne et al., 2019). Satellites with
high temporal resolution largely solve the challenge of procuring
cloud-free imagery from a given time period (Roy et al., 2021),
which can be difficult in tropical montane locations. However,
satellite imagery is just one tool of many useful for landslide
research (Casagli et al., 2023). There are myriad other existing
and in-development remote sensing tools, some of which are
integrated in the vision outlined here, that could also be applied
to these endeavors, each with their unique combination of spatial
resolution, revisit time, scene extent, and accuracy (Casagli et al.,
2023).

Axis 1: Tracking landslide biodiversity
dynamics across time and space

Studies from TMF in Puerto Rico, Hawaii, Jamaica and
elsewhere have identified general types of plants present during
landslide succession (Guariguata, 1990; Dalling, 1994; Restrepo and
Vitousek, 2001; Walker et al., 2010). However, Andean TMF are
home to hyperdiverse and unique floral assemblages, with ∼50%
of plant species endemic to the region (Myers et al., 2000). There
remains a gap in our understanding of the types and diversity
of landslide-establishing plants in the Andes. For example, the
families of Asteraceae, Melastomataceae, Poaceae, and Solanaceae
are both species-rich (Pérez-Escobar et al., 2022) and establish
on Andean landslides during succession (Kessler, 1999; Ohl and
Bussmann, 2004; Restrepo et al., 2009; Meier, 2013; Freund, 2022),
meaning there may be groups of plants never or rarely observed
on landslides in other regions that play important roles in Andean
landslide succession. Fully cataloguing the diversity of plants found
on landslides will shed light on the role of these disturbances,
which provide habitat for species that do not establish, survive or
grow in closed-canopy forests (Kessler, 1999), in maintaining TMF
biodiversity at regional scales (Ohl and Bussmann, 2004; Richter
et al., 2009).
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FIGURE 1

Conceptual representation of the three axes of landslide ecology research outlined here. We propose (1) tracking landslide biodiversity dynamics
across time and space (e.g., elevational gradients) using high-resolution satellite and UAV imagery; (2) assessing plant functional diversity on and
around regenerating landslides with air and/or space-borne imaging spectroscopy; and (3) understanding current and predicting future landslide
regimes across large landscapes using a combination of deep learning and high-resolution satellite imagery to build a living landslide inventory
spanning the tropical Andes. The spatial scale of inquiry changes with each axis, starting with data collected from collections of individual landslides
for Axis 1, examining populations of landslides within discrete regions (e.g., catchments) for Axis 2, and finally mapping landslides across the entire
tropical Andes biodiversity hotspot for Axis 3.

This knowledge gap is compounded by the fact that existing
information comes from piecemeal, rather than systematic, samples
of a relatively small number of Andean landslides. Plant diversity
on landslides is known to vary with age (a proxy for successional
stage), elevation (Ohl and Bussmann, 2004; Bussmann et al., 2008),
and the presence of residual forest soils (Walker et al., 1996). But
in the Andes many landslides occur in steep, inaccessible parts of
the landscape, making systematic field collection of vegetation data
difficult or precluding it entirely. This biases the understanding of
landslide vegetation to only the most readily accessible landslides
(e.g., those near research stations or roads), complicating efforts
to understand how biodiversity on regenerating landslides changes
with time and/or across elevational or other environmental
gradients. Field studies of Andean landslides have produced
information from a relatively small sample of landslides of disparate
(and sometimes unknown) ages between 1,400–2,800 m a.s.l.
(Stern, 1995; Kessler, 1999; Ohl and Bussmann, 2004; Meier, 2013),
just a portion of the expansive TMF elevational gradient found
across much of the Andes. We still do not know how the types
and diversity of plants occupying regenerating landslides varies
with elevation, particularly below 1,400 m and above 2,800 m.
Given the pool of colonizing tree species and the community of
animal seed dispersers (and presumably pollinators) is known to
continuously turn over across TMF elevational gradients (Patterson
et al., 1998; Jankowski et al., 2013; Lough, 2017; Mena and Pacheco,
2020), the suite of species that establish on landslides, and therefore
the successional process itself, likely also differs across low- and
high-elevation landslides.

High resolution satellite and unoccupied aerial vehicle (UAV)
imagery (Figure 2), as well as other remote sensing techniques, can
help mitigate these biases by expanding the extent of TMF in which
tree biodiversity can be assessed. Previous work has demonstrated
that high resolution satellite imagery (Quickbird at 2.4 m and
RapidEye at 5 m, respectively) alone or in combination with LiDAR
can be used to measure tropical tree diversity (Fricker et al., 2015;

George-Chacon et al., 2019). Very high resolution WorldView-2
satellite (Wagner et al., 2018) and UAV (Peck et al., 2012) imagery
have also been used to delineate and identify tree species. On
landslides specifically, high- resolution satellite and UAV imagery
(at resolutions <1 m) have been used to map land cover and
manually identify tree species (Furukawa et al., 2021; Freund, 2022;
Saito et al., 2022). Deep learning algorithms can automate the
identification of both canopy and shorter-statured species (such as
those present during early stages of landslide succession), including
in regenerating forests, from UAV-acquired images (Zhang et al.,
2020; Moura et al., 2021; Veras et al., 2022). Using these tools,
landslide researchers can now investigate ecologically relevant
questions such as how plant species richness and diversity vary
on landslides of similar ages across expansive elevational gradients
(400–3,800 m in much of the Andes), as well as how these metrics
vary across landslides of different ages within elevational bands, to
better characterize the process of TMF regeneration after landslides.

Landslides as potential tree migration
corridors

Andean tree communities are currently shifting their
distributions upslope as temperatures warm, and communities
are undergoing thermophilization (Duque et al., 2015; Fadrique
et al., 2018). But in all except a few locations, this appears
to be occurring too slowly to track rising temperatures
(Feeley et al., 2011; Fadrique et al., 2018; Farfan Rios, 2019).
Our current understanding of plant migration (e.g., Ibáñez et al.,
2009; Jump et al., 2012; Feeley et al., 2013) has come from studies in
mature and undisturbed habitats, highly competitive environments
that may stymie the movement of migrating species (Caplat et al.,
2008, 2013). However, recent evidence from a variety of forest and
disturbance types suggests that disturbances may facilitate plant
migration in response to climate change by creating opportunities
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FIGURE 2

Example of high-resolution UAV imagery of a landslide in Manu
National Park, Kosñipata Valley, Peru (13◦06′31′′ S, 71◦36′22′′ W),
demonstrating the utility of UAVs for surveying TMF vegetation on
landslides. This image was taken at 3 cm resolution with a DJI Mavic
Pro UAV equipped with a 12.35-megapixel camera and a 1/2.3
CMOS sensor.

for trees to establish above their current latitudinal or elevational
ranges (Landhäusser et al., 2010; Leithead et al., 2010, 2012; Duque
et al., 2015; Guo et al., 2018; Tanner et al., 2022). It is very likely
that migration through disturbed areas is also occurring in Andean
TMF (Lutz et al., 2013). High-resolution satellite and/or UAV
imagery should be applied to examine the role of landslides in this
process.

Landslides are suitable pathways for rapid movement as they
open competition-free space across vertical gradients spanning
tens-to-hundreds of meters. Given an adiabatic lapse rate in the
Andes of ∼5.5◦C km−1 (Bush et al., 2004), mean temperatures on
a landslide with 100-m elevational range could differ by >0.5◦C
from top to bottom. The slow recovery rates characteristic of
Andean TMF on landslides can maintain competition-free space
for years (Blodgett and Isacks, 2007; Dislich and Huth, 2012;
Freund et al., 2021), providing opportunities for trees to establish
above their current elevational ranges. There is some evidence for
species migration through landslides from the Peruvian Andes.
A comparison of the abundances of small and large (<5 cm
and >10 cm diameter at breast height, respectively) trees in
permanent vegetation plots identified 21 species abundant as
large trees but rarely present as smaller size-classes in mature
TMF (Garcia Cabrera, 2011), suggesting they may have originally
established after a landslide or other disturbance and persisted
in the canopy through succession. We have observed at least 12
of them (e.g., Alzatea verticillata, Axinaea pennellii, Weinmannia
spp.) on landslides in the same study site (Freund, unpublished
data1). Further research is needed to compare the elevational ranges
of these species in mature and disturbed sites. The combination
of canopy species identification from high-resolution UAV and
satellite imagery with machine learning now puts this within reach
(Brodrick et al., 2019).

Answering this question of whether TMF trees use landslides
to shift their elevational distributions would fundamentally change

1 Freund, CA (2017–2018). Investigating the effects of landslides in Andean
tropical forests. (Unpublished data).

the way we think about their responses to climate change. Current
understanding of tree migration paints a bleak picture for the
future of Andean tree communities as at most study sites trees are
seemingly migrating at a fraction of the rate needed to maintain
equilibrium with climate (e.g., Fadrique et al., 2018; Farfan Rios,
2019), and much of the population shift attributed to migration
is simply due to mortality of species at the warm margin of their
range, with little or no expansion at the cool margin (Feeley
et al., 2013; Farfan Rios, 2019). Migration must be examined in a
landscape context as the permeability for movement will vary both
with disturbance regimes and the traits and regeneration niches of
the species themselves; in the tropical Andes, landslides are an ideal
part of the landscape for such an examination.

Axis 2: Assessing the ecological
influence of landslides through the
lens of plant functional diversity

Understanding how populations of landslides influence carbon
uptake and storage, primary productivity, and related ecosystem
processes at the landscape scale will help elucidate the resilience
of montane landscapes to global change (Restrepo et al., 2009).
Quantifying the ecological influence of landslides can be achieved
by using air- and/or satellite-borne hyperspectral imaging, or
imaging spectroscopy, to measure plant functional diversity (Jetz
et al., 2016; Asner et al., 2017) of landslide-affected and undisturbed
areas. This approach views plant biodiversity through the lens
of species’ structural and biochemical functional traits, which
correspond to their roles in ecosystem processes and services
(Díaz et al., 2007). Field studies of TMF plant functional diversity
have demonstrated elevational and topographic trends in plant
functional diversity (Duivenvoorden and Cuello, 2012; Homeier
et al., 2021; Báez et al., 2022b; Pierick et al., 2023) though
these have largely focused on adult trees in mature forest (Báez
et al., 2022a) covering a relatively small proportion of the wider
landscape. An exception to these small-scale studies is Asner et al.’s
(2014a) airborne imaging spectroscopy and LiDAR-based study,
which revealed high landscape diversity and elevational turnover
in functional traits and forest structure across the Amazon-Andes
gradient and demonstrated the clear signature of landslides on the
landscape (Asner et al., 2014a). There remains much to learn about
the plant functional diversity of disturbed and regenerating Andean
TMF, and how it contributes to ecosystem processes.

Hyperspectral imaging measures electromagnetic reflectance
from surfaces, in this case forest canopies, in narrow spectral bands
(typically 5–10 nm) in the electromagnetic spectrum ranging from
ultraviolet through medium-wave infrared (400–2,500 nm). The
technique can be used to detect the chemical properties of trees,
among them functional traits linked to photosynthesis, primary
production, defense, biogeochemical processes, and evolutionary
history. Unique combinations of these values can be used to
accurately assign functional traits to canopy assemblages and even
describe individual species (Clark et al., 2005), especially when
paired with remote sensing techniques to measure forest structure,
such as LiDAR (Lucas et al., 2008; Asner et al., 2015; Shi et al.,
2018). While many studies have applied imaging spectroscopy
to the detection, monitoring, and characterization of landslides
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(e.g., Vellico et al., 2010; Ye et al., 2019), to our knowledge this
method has not yet been applied to studies of landslide regeneration
in highly diverse tropical forests. However, given its power for
measuring tropical plant functional diversity and linking plant
communities to ecosystem-level processes (see review in Asner
et al., 2017), it is a powerful option for understanding the role of
landslides in Andean TMF.

Community and ecosystem dynamics on
regenerating landslides

One major outstanding question about Andean landslides that
analyses of satellite and LiDAR data have not yet been able to clearly
answer is how long it takes tree species composition, diversity, and
aboveground biomass to recover to mature forest levels (Freund
et al., 2021). Field studies of landslides in Puerto Rico and Jamaica
estimate it can take between ∼52 to 500 years, respectively, for
aboveground biomass to recover (Guariguata, 1990; Dalling, 1994).
However, current best estimates of forest recovery post-landslides
come from a modeling study of the Ecuadorian Andes, which
estimated that species composition can recover in 100–200 years
and aboveground biomass within 300 years (Dislich and Huth,
2012). These wide-ranging estimates must be constrained if we
are to quantify TMF carbon balances and understand the lasting
effects of landslides on Andean forests it is important to refine these
estimates (Duque et al., 2021).

Applying hyperspectral imaging to large sample sizes of
regenerating landslides, particularly decades-old landslides where
forests have regained the stature and surface-level appearance
of undisturbed/mature forests, could achieve this goal in a way
that previous attempts field and other remotely-sensed data have
not (Asner, 2008). Recovery of forest structure and volume
generally happens relatively quickly after disturbances (Letcher
and Chazdon, 2009; Pan et al., 2011), but changes in species
composition as light-wooded pioneer species by successively
heavier-wooded mid- and late-successional species take much
longer (Denslow, 2000; ter Steege and Hammond, 2001; Slik,
2005). While LiDAR has been useful in refining estimates of forest
structure recovery times on regenerating landslides (Freund et al.,
2021), applying imaging spectroscopy will unlock the ability of
researchers to examine changes in landslide species composition
during regeneration, characterize community composition and
functional diversity (Kalacska et al., 2007), and compare the
characteristics of regrown landslides to surrounding mature forest
across environmental gradients (Asner et al., 2014a). Historical
aerial and/or satellite imagery will be important in this line
of inquiry, specifically in identifying decades-old landslides not
easily identifiable in the field (Ohl and Bussmann, 2004) or from
contemporary imagery.

Effects of landslides on adjacent intact
forest

In addition to directly stripping slopes of vegetation and soil,
landslides may affect adjacent intact forest through above- and
belowground edge effects. Edges are boundaries between two

habitat types that delineate areas with different environmental
characteristics (Ries et al., 2004), in this case, intact TMF and
landslide scars. Abiotic factors such as temperature, light, and
relative humidity vary across edges, altering growing conditions
and tree mortality in adjacent forests (Cadenasso et al., 1997;
Gehlhausen et al., 2000; Harper et al., 2005), which in turn can
affect forest structure and composition (Young, 1993; Murcia,
1995; Harper et al., 2005; Marchand and Houle, 2006). Studies
have found mixed effects of edges on tree functional diversity
(Apaza-Quevedo et al., 2015; Razafindratsima et al., 2018), and
there are many unknowns about the relevance of edges to
larger ecosystem processes. However, given the high edge-to-
interior ratio of many Andean landslides (Bussmann et al.,
2008; Freund et al., 2021), the existence of detectable edge
effects of landslides on functional diversity of adjacent intact
forest could substantially increase the total footprint of landslides
on TMF. Finally, while nearly all discussion of edge effects
is focused on aboveground processes, landslides fundamentally
change the local hydrology of hillslopes (Mirus et al., 2017), and
the importance of this on the surrounding vegetation remains
unknown.

The importance of a landscape
perspective

A full accounting of landslide effects on TMF ecosystem
functioning requires putting landslides in the context of the
wider landscape. Landslides create hot and cold spots of forest
productivity (sensu Dislich and Huth, 2012), which contribute to
substantial observed variation in above and belowground TMF
biomass and carbon density (Girardin et al., 2014; Spracklen and
Righelato, 2016; Malhi et al., 2017). However, given the diverse
evolutionary histories of Andean TMF tree lineages (Griffiths
et al., 2021) and the region’s complex terrain and biophysical
characteristics, landslides are likely not the only source of this
heterogeneity (Spasojevic et al., 2014; Pierick et al., 2021).
Using imaging spectroscopy to survey plant functional diversity
across large spatial scales, and therefore a range of topographic
and environmental conditions, will reveal the contribution of
cycles of landsliding and subsequent forest regeneration to
landscape-level variability in TMF processes. This work would
build on existing large scale surveys of leaf optical traits and
canopy chemistry across an Andes-to-Amazon elevation gradient,
which identified clear patterns in canopy chemical traits with
elevation and a strong influence of phylogeny (Asner et al.,
2014b,c). There may be similar trends in functional traits
with slope inclination, aspect, or other topographic variables
that interact with disturbance histories in previously unforeseen
ways.

Axis 3: Understanding current and
predicting future landslide regimes
across large landscapes

Technological advances in remote sensing technology continue
to expand scientific understanding of current and future landslide
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regimes, particularly by opening new possibilities for mapping,
monitoring, and studying these natural phenomena at very large
spatial scales (Guzzetti et al., 2012; Casagli et al., 2023). One
additional challenge for large-scale landslide mapping not readily
solved by improvements to satellite imagery alone is that the
creation of landslide inventory maps has traditionally required
researchers to manually examine aerial and satellite imagery to
delineate affected areas (e.g., Guns and Vanacker, 2014; Clark
et al., 2016; Delgado et al., 2022). However, high-resolution satellite
data paired with computer vision for object and change detection
(Zhong et al., 2020; Amatya et al., 2021; Lu et al., 2022) unlocks
the ability to identify past landslide activity and monitor landslides
in near real-time at regional and even continental scales (Yang
et al., 2022). For example, this approach has recently been used
to detect and map landslides in Nepal (Prakash et al., 2021;
Meena et al., 2022), Taiwan, China, Japan (Ghorbanzadeh et al.,
2021, 2022), and the Patagonian Andes (Morales et al., 2022).
In the Andes, Morales et al. (2022) applied a convolutional
neural network to Sentinel-2 images to develop a 10,000-landslide
inventory covering approximately 20,000 km2. Their model, the
first automated landslide detection model in the region, was most
accurate in areas with vegetation cover (Morales et al., 2022),
suggesting this approach will work well across forested regions of
the Andes.

Building on the success of Morales et al. (2022), we propose
that a combination of deep learning and high-resolution satellite
imagery be used to develop and maintain an automated “living
landslide inventory” spanning all Andean TMF. By maximizing
the spatial extent of study, and therefore range (and possible
combinations) of abiotic variables represented, this effort would
increase scientific understanding of how the environment and
human activity (e.g., Guns and Vanacker, 2014) shapes landslide
occurrences, extents, and frequencies without the limitations
and biases inherent to studies at smaller spatial scales (Lobo
and Dalling, 2014; Marvin et al., 2014). It will also lay the
groundwork for studies of how South American landslide
regimes shift in response to global climate change, a critical
knowledge gap (Gariano and Guzzetti, 2016) and fill an important
environmental planning and policymaking need for local, regional,
and national governments in Andean countries (Hermanns et al.,
2012). Here, we detail several specific scientific contributions
that would be made possible by this pan-Andean landslide
inventory.

Characterizing factors shaping current
landslide regimes in Andean TMF

Smaller-scale studies of Andean TMF, generally at the
catchment scale, have characterized landslide regimes with
landslide inventory mapping (Clark et al., 2016; Vanacker et al.,
2020) and hazard/susceptibility modeling (Brenning, 2005; Roa
Lobo, 2007; Muenchow et al., 2012; Younes Cárdenas and
Erazo Mera, 2016; Palacio Cordoba et al., 2020), among other
methods. Such studies have found that landsliding rates and
risks vary with elevation, geology and geomorphology, rainfall
and soil permeability, and slope (Ließ et al., 2011; Clark et al.,
2016; Aristizábal et al., 2022). They are also influenced by

anthropogenic disturbance (Guns and Vanacker, 2014; Brenning
et al., 2015). However, these variables are often correlated with
each other. For example, in Peru’s Kosñipata Valley elevation
and slope co-vary, with slopes >40◦ more common below
2,000 m (Clark et al., 2016). Aligning the large-scale living
landslide inventory with other available environmental data
(e.g., high-resolution digital terrain models, soil maps) could
uncover the relative influences of abiotic variables on landslide
rates.

The limited spatial scale of landslide investigations to
date has potentially also biased estimates of landslide size-
frequency distributions by underestimating the occurrence of
large landsliding events. Landslide populations follow power law
distributed size-frequency distributions (Pelletier et al., 1997; Stark
and Hovius, 2001; Brown et al., 2002; Larsen and Montgomery,
2012; Clark et al., 2016), with frequent small landslides and
relatively few large landslides. For example, landslides >50,000 m2

made up approximately 1% of events in a 25-year inventory
from southeastern Peru (Freund, 2022). However, studies of gap
size frequency distributions in TMF have been limited in spatial
scale due to their reliance on ground-based (field) sampling or
airborne LiDAR. Because size-frequency distribution estimates
vary with the spatial scale at which they are measured (Lobo
and Dalling, 2014; Marvin et al., 2014), with larger sample
areas yielding more accurate estimates due to the capture of
larger, more rare events, it is possible current understanding of
Andean landslide regimes underestimates the sizes and frequencies
of events at the heavy tail of the power law distribution.
Filling this gap is important because large landslides, while
rare, play fundamental roles in hillslope evolution (Densmore
et al., 1997; Korup et al., 2007), sediment export (Vanacker
et al., 2007; Townsend-Small et al., 2008), and the movement of
organic carbon through TMF ecosystems (Ramos Scharrón et al.,
2012).

In addition to very large landslides, an automated pan-Andes
landslide inventory would help identify the frequency and spatial
distribution of clustered landsliding events triggered by extreme
precipitation or seismic activity. These events create populations
of similar-aged landslides concentrated in small geographic areas
(Garwood et al., 1979; Restrepo et al., 2009; Clark et al., 2016),
leaving visually striking patterns on the landscape that may
persist for decades (Freund et al., 2021). The prevalence of
these events across time and space in the Andes (and South
America, generally) is virtually unknown (Benz and Blum, 2019),
though it is clear they are a substantial component of at least
some landslide regimes. For example, a 2010 extreme rainfall
event in Peru’s Kosñipata Valley triggered at least 185 landslides
below 2,600 m within a 185 km2 area, comprising 27% of
the total observed landslide footprint in the catchment over a
25-year period (Clark et al., 2016). As a result, Clark et al.
(2016) found high landslide susceptibility at low elevations, a
pattern not evident when the landslide cluster was excluded
from the dataset. Obtaining more information on the frequency
and spatial organization of clustered landslide events on the
landscape (e.g., do they recur on the same slopes, are they
constrained to certain orographic exposures or geologies?) will
reveal the role of clustered landsliding events on shaping TMF
ecosystems.
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Applying current knowledge to future
landslides

Landslide regimes will be altered by climate change through
changes in temperature and hydrological patterns (Gariano and
Guzzetti, 2016). Exactly how and where they will be most affected is
a critical outstanding question for predicting the future of Andean
TMF. While some factors that contribute to a location’s landslide
susceptibility, such as slope steepness and lithology, are unchanged
by warming temperatures (Guzzetti et al., 1999), climate change
is projected to alter the timing, frequency, volume, and intensity
of rainfall in the Andes (Urrutia and Vuille, 2009; Magrin et al.,
2014; Eghdami and Barros, 2019; Sarmiento and Kooperman,
2019). It will also likely affect cloud regimes, which are highly
complex due in part to the rugged topography of the Andes
(Halladay et al., 2012a,b). In general, Andean cloud bases are
predicted to move upslope, shrinking the amount of TMF subject
to persistent cloud immersion (Still et al., 1999; Helmer et al.,
2019), though it is difficult to downscale regional-scale climate
models to predict future moisture/precipitation regimes in specific
locations (Buytaert et al., 2010). If the elevational distribution of
rainfall events (particularly extreme rainfall events, e.g., Clark et al.,
2016) and moisture input from persistent cloud cover is altered
(Bruijnzeel et al., 2011), the elevational distributions of landslides
in Andean TMF will also change, though the direction and exact
magnitude of those changes will likely vary across the region.

An automated landslide inventory spanning the tropical Andes
region, with its extreme environmental heterogeneity and long
climate gradients, will be a valuable tool for exploring how
climate change will alter TMF landslide regimes (Crausbay and
Martin, 2016), especially when coupled with additional remotely-
sensed data. Moisture regimes in the Andes are spatio-temporally
complex. Precipitation varies across the region due to large-scale
geographic and orographic effects (Garreaud, 2009; Hierro et al.,
2020), and also varies seasonally and on interannual time scales
(Segura et al., 2019; Sierra et al., 2022). Comparing landslide sizes,
frequencies, and spatial distributions in historically dry and wet
valleys with similar topography and geology, as well as comparing
across valleys with different local cloud and humidity dynamics
(Muenchow et al., 2012), are two ways among many a pan-
Andes landslide inventory would help to answer questions about
how climate change will affect landslide rates. Results can then
be integrated into models of forest change and other ecosystem
processes to forecast the future of Andean TMF (e.g., Caplat et al.,
2008). A living landslide inventory and associated environmental
data, all remote-sensing derived, would make this possible.

Conclusion

Although landslides are a large and severe example of
natural forest disturbances, their study is rooted in fundamental
principles of ecosystem succession, plant physiology and
demography, and landscape ecology. The three axes of inquiry
we pose here advance important and timely questions about
landslide ecology in the tropical Andes biodiversity hotspot.
Answering them will require a variety of advanced remote
sensing methods, including but not limited to high-resolution

UAV and satellite imaging, airborne LiDAR, and satellite-
borne and airborne imaging spectroscopy. This work will
improve scientific understanding of the region’s biodiversity,
natural disturbance dynamics, ecosystem functioning, and
responses to climate change. Achieving an automated pan-
Andes landslide inventory will have additional benefits for
environmental policy and planning in the region, thus increasing
the resilience of human and ecological communities in this critical
biodiversity hotspot.
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