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Introduction: An unprecedented amount of Earth Observations and in-situ data 
has become available in recent decades, opening up the possibility of developing 
scalable and practical solutions to assess and monitor ecosystems across the 
globe. Essential Biodiversity Variables are an example of the integration between 
Earth Observations and in-situ data for monitoring biodiversity and ecosystem 
integrity, with applicability to assess and monitor ecosystem structure, function, 
and composition. However, studies have yet to explore how such metrics can 
be organized in an effective workflow to create a composite Ecosystem Integrity 
Index and differentiate between local plots at the global scale.

Methods: Using available Essential Biodiversity Variables, we present and test a 
framework to assess and monitor forest ecosystem integrity at the global scale. 
We first defined the theoretical framework used to develop the workflow. We 
then measured ecosystem integrity across 333 forest plots of 5 km2. We classified 
the plots across the globe using two main categories of ecosystem integrity (Top 
and Down) defined using different Essential Biodiversity Variables.

Results and discussion: We found that ecosystem integrity was significantly 
higher in forest plots located in more intact areas than in forest plots with higher 
disturbance. On average, intact forests had an Ecosystem Integrity Index score of 
5.88 (CI: 5.53–6.23), whereas higher disturbance lowered the average to 4.97 (CI: 
4.67–5.26). Knowing the state and changes in forest ecosystem integrity may help 
to deliver funding to priority areas that would benefit from mitigation strategies 
targeting climate change and biodiversity loss. This study may further provide 
decision- and policymakers with relevant information about the effectiveness 
of forest management and policies concerning forests. Our proposed method 
provides a flexible and scalable solution that facilitates the integration of essential 
biodiversity variables to monitor forest ecosystems.
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1. Introduction

Forests are complex ecosystems, and their physical, biological, and 
functional components interact with each other (Hansen et al., 2021), 
which is fundamental to maintaining ecosystem resilience and the 
capacity to provide ecosystem services (Watson et al., 2018). However, 
anthropogenic drivers such as land-use change threaten forests and 
exacerbate climate change and biodiversity loss (Díaz et al., 2019). 
Additionally, biodiversity loss may not be effectively reverted, focusing 
only on forest cover loss without considering other components of 
ecosystem functioning. For instance, fragmentation may lead to 
reduced habitat for animal species and significant degradation of the 
forest ecosystem (Morris, 2010), resulting in reduced functioning of 
the systems on which humans and other organisms depend 
(Grantham et  al., 2020). Therefore, projects related to climate 
mitigation and biodiversity loss focus not only on one specific 
ecosystem service but also include the components of ecosystem 
integrity to deliver long-term benefits for people and the environment.

The protection of forests and the assessment and monitoring of 
ecosystem integrity across scales are some of the key targets of 
international frameworks such as the Post-2020 Global Biodiversity 
Framework and the United Nations 2030 Agenda (CBD/
SBSTTA/24/3/Add.2, 2021). Ecosystem integrity has been defined as 
“a measure of ecosystem structure, function and composition relative to 
the reference state of these components being predominantly determined 
by the extant climatic–geophysical environment” (Hansen et al., 2021). 
It describes how complete, healthy, and resilient an ecosystem is to 
both natural and human perturbations (Seddon et  al., 2021). The 
structure of the forest encompasses the three-dimensional architecture 
of individual plants and the connection of their attributes (Hansen 
et al., 2021), while the function characterizes the movement or storage 
of energy or matter within an ecosystem (Bellwood et al., 2019). The 
composition describes how a forest’s natural features are distributed 
within the ecosystem (genetic diversity, species richness, and 
community assemblages).

In recent decades the number of open-source satellite image 
collections has increased tremendously, which resulted in a growing 
number of high-quality biological remote-sensing products (de Paula 
et al., 2019). One well-known example is the Global Forest Cover 
Change map by Hansen et al. (2013). These remote sensing products 
are also known as Earth Observations (EO) and are particularly useful 
due to their global coverage and high temporal resolution (Skidmore 
and Pettorelli, 2015). The potential of EOs to measure and monitor 
biological products globally has not gone unnoticed. In 2013, the 
Group on Earth Observations Biodiversity Observation Network 
(GEO BON) set up a new framework to develop Essential Biodiversity 
Variables (EBVs) (Pereira et al., 2013). EBVs can be a combination of 
in-situ and remotely sensed data, or they can be derived from either 
(Giuliani et al., 2017; Schmeller et al., 2017; Kissling et al., 2018). There 
are currently 20 EBVs in six classes, including genetic composition, 
species populations, species traits, community composition, 
ecosystem function and structure (Hansen et al., 2021). Since the 
introduction of this concept, global political frameworks have 
proposed EBVs as the basis for monitoring advancements towards 
biological targets (Geijzendorffer et al., 2016). However, researchers 
have emphasized the importance of continuous testing of the 
application of EBVs across different scales and ecosystems (Pereira 
et al., 2013).

Reliable and consistent monitoring of forest ecosystem integrity 
is crucial to mitigating climate change and biodiversity loss (Keenan 
et al., 2015). Integrating different EBVs to monitor ecosystems globally 
may enable the development of a more consistent, accurate and 
scalable framework for sustainable management and global 
collaboration (Reddy, 2021). Although scientists have attempted to 
quantify ecosystem integrity, few studies have explored how EBVs can 
be organized in an effective workflow to create a composite index 
describing forest ecosystem integrity and differentiate between plots 
at the local and global scale (Hansen et al., 2021). Here, we build on 
previous studies defining forest ecosystem integrity by using available 
EBVs to present and test a framework which assesses forest ecosystem 
integrity of plots at the global scale. Using readily available EBVs to 
assess and monitor ecosystem integrity will help scientists and 
policymakers to acquire comparable information more easily on the 
state of ecosystems. Ultimately, knowing where ecosystem integrity is 
high or low may also help land managers and conservationists 
prioritize areas of high importance.

2. Materials and methods

2.1. Measuring ecosystem integrity

To assess forest ecosystem integrity, we developed an Ecosystem 
Integrity Index score (EIIscore) for forested plots based on the 
aggregation of spatially explicit EBVs representing structure, function, 
and composition, the three components defining ecological integrity. 
Our framework is consistent with previous definitions of ecosystem 
integrity, such as the one provided by Hansen et al. (2021). We focused 
on forested ecosystems across the globe (Hansen et al., 2013), as EBVs 
of forested ecosystems are the most readily available compared to 
other ecosystems.

The first component of ecosystem integrity, structure, is designed 
to capture aspects of ecosystems related to vegetation structure and 
spatial configuration, including fragmentation. The second 
component, function, captures the amount of specific ecosystem 
function variables such as energy flow and nutrient cycling. The third 
component captures ecosystem composition, which accounts for 
species abundance and community composition.

Here we used the following indicators to characterize the elements 
of ecosystem integrity: the Biodiversity Intactness Index (BII, 
Newbold et  al., 2016) representing the element composition, Net 
Primary Productivity (NPP, Running and Zhao, 2019) describing the 
element function, and Loss in Forest Connectivity (LFC, Grantham 
et al., 2020) representing the element structure (Table 1). Each EBV 
was selected according the following criteria: ability to describe of the 
ecosystem integrity components, resolution, open access and 
publication date.

The BII is defined as the average richness- and area-weighted 
impact of a set of activities on the populations of a given group of 
organisms in a specific area (Scholes and Biggs, 2005; Newbold et al., 
2016) based on the Projecting Responses of Ecological Diversity In 
Changing Terrestrial Systems (PREDICTS) database (Hudson et al., 
2017) with the most recent update occurring in October 2021 (Phillips 
et al., 2021). Newbold et al. (2016) developed hierarchical mixed-
effects models that considered four human-pressure variables, 
including land use, land-use intensity, human population density and 
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distance to the nearest road to explain differences in local biodiversity 
among sites. Biodiversity is measured as sampled species richness and 
abundance based on the PREDICTS database. Further details are 
provided in Newbold et al. (2016). The resolution of the BII is 1 km2.

NPP is a well-known representation of the net input of carbon to 
vegetation impacted inter-alia by climate (e.g., solar inputs, 
precipitation), soil quality, and nutrient status (Walker et al., 2021), 
with a well-known relationship to biomass production (Vicca et al., 
2012) and carbon-use efficiency (DeLucia et al., 2007).

LFC represents the average connectivity of a forest around a pixel 
and was estimated following Grantham et al. (2020). The method 
compares currently observed forest extent with potential forest extent 
given human modification to the landscape to ensure that areas with 
naturally low connectivity are not penalized. The final estimate ranges 
from 0 to 1, so low values represent the least loss and high values 
represent the greatest loss.

As both NPP and LFC have different resolutions (1 km2) from the 
BII, we used a bilinear method (Gorelick et al., 2017) to resample the 
pixel size of NPP and LFC to 1 km2. This step was necessary to enable 
us to perform zonal statistics and derive the EII. Our EII has therefore 
a pixel size of 1 km2.

The EIIscore of any given forested land can be calculated using 
three EBVs, e.g., BII, NPP and LFC. First, (i) we calculate the global 
90th percentile values for each of the three EBVs considering only the 
global intact forest area (Hansen et  al., 2013) that has a Global 
Human Footprint Index value (Kennedy et al., 2019) of less than 0.4 
and which is outside plantations mapped by Harris et al. (2019). 
Then, (ii) for each pixel, we calculate the relative value of each EBV 
by dividing the pixel value by the corresponding global 90th 
percentile value (Figure  1), with pixels with value above 90th 
percentile were given the value of 1. Subsequently, (iii) we calculate 

the EII value for each pixel in the study forest plots by taking the 
mean of the relative BII, NPP and LFC values. Note, using this 
methodology, EII values should only be calculated for forested areas 
where the BII, NPP and LFC values are known. Finally, (iv) the EIIscore 
of the plot is found by taking the sum of all EII pixels in that given 
plot (Figure 1). Throughout this paper, we use two different notations: 
EII and EIIscore. With EII, we refer to the index at the pixel level and 
with EIIscore to the index at the plot level.

2.2. Extracting validation plots

To validate the EIIscore, we first extracted 333 plots (polygons) of 
5 km2 through stratified sampling. We  hypothesized that different 
forest conditions could affect ecosystem integrity (Potapov et  al., 
2011). The plots were selected in two categories; 166 plots were 
assigned the “Top” category with high-quality forests, and 167 lower-
quality forests were assigned the “Down” category. The high-quality 
forest plots were selected so that they would contain forest cover 
classified with no forest conversion or degradation by Potapov et al. 
(2011), while lower-quality forest plots were selected to have forests 
classified by Potapov et al. (2011) that have not experienced loss and 
have at least 30% forest cover by Hansen et al. (2013), however, are 
classified as deforested or partially deforested by Potapov et al. (2011).

All plots were extracted outside of plantations (Harris et al., 2019), 
protected areas (UNEP-WCMC and IUCN, 2022) and islands (Sayre 
et al., 2019), were located below 1,000 m altitude (Sayre et al., 2019) 
and not located in Antarctica. Each plot was extracted by hand 
through Google Earth Engine, was automatically assessed for 
suitability and manually assessed through visual confirmation 
(Supplementary Figure 1). Suitability was acknowledged when more 

TABLE 1 Datasets used to calculate the EIIscore with their respective resolution, a brief description of what the data entails and the reference.

Dataset Spatial resolution Details Data link Reference

Net Primary Production 

(NPP)

~500 m2 MODIS MOD17A3HGF Version 6 

product on annual Net Primary 

Production (NPP) at 500-meter (m) 

pixel resolution.

Google Earth Engine Running and Zhao (2019)

Biodiversity Intactness Index 

(BII)

~1 km2 Extent and spatial patterns of changes 

in local biodiversity based on modeled 

responses to land-use and related 

pressures.

Natural History Museum Newbold et al. (2016)

Loss of Forest Connectivity 

(LFC)

300 m Average connectivity of forest lost 

around a pixel.

Adapted from Grantham 

et al. (2020)

Grantham et al. (2020)

Human Modification Index 

(HMI)

~1 km2 Cumulative measure of human 

modification of terrestrial lands based 

on modeling the physical extents of 13 

anthropogenic stressors and their 

estimated impacts in 2016.

Google Earth Engine Kennedy et al. (2019)

Global Forest Cover Change ~30 m Global Landsat data characterizing 

forest extent, loss, and gain from 2000 

to 2012.

Google Earth Engine Hansen et al. (2013)

Plantations Polygons Global map of the world’s planted 

forests and tree crops.

ArcGIS Harris et al. (2019)

Rows highlighted in gray indicate datasets used to derive the EIIscore, while rows without highlighting indicate the datasets used to filter the plots used to validate the EIIscore.

https://doi.org/10.3389/ffgc.2023.1098901
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Dias et al. 10.3389/ffgc.2023.1098901

Frontiers in Forests and Global Change 04 frontiersin.org

than 90% of the plot was covered with intact forest (Hansen 
et al., 2013).

For each of the plots, the mean biomass density according to 
Global Ecosystem Dynamics Investigation (GEDI) L4B product 
(Dubayah et al., 2022) and the mean canopy height (Potapov et al., 
2021) were recorded to compare the relationship between the EIIscore 
and these variables.

2.3. Statistical analyses

Using the 333 plots mentioned above, we tested for significant 
differences between areas of high integrity (“Top”) and low integrity 
(“Down”). After testing for normality of the data through a Shapiro–
Wilk test and visual assessment of the Q-Q plots and histograms, 
we determined that the data were non-normally distributed, despite 
transformations and removal of outliers. Thus, we moved on with a 
nonparametric Kruskal Wallis test using R (package stats v4.1.1) to 
test if the response variable (EIIscore) could be  explained by the 
explanatory variable (Categories: ‘Top’, ‘Down’).

2.4. Sensitivity and validation analyses

We performed a sensitivity analysis to assess to what extent the 
results for the EIIscore are sensitive to the weight used to define the 
importance of the different indicators making up the EII. To assess the 
sensitivity of EIIscore to weight, we compared the degree of concordance 
between plot ranking estimated by the EIIscore considering BII, NPP and 
LFC having the same weight to the median plot ranking estimated by 
considering the following weight possibilities: BII has weight 0, BII has 
weight ½, LFC has weight 0, LFC has weight ½, NPP has weight 0, and 

NPP has weight ½. The benefit of the EIIscore is that it provides a single 
and simple measure that can be used to monitor progress and inform 
management planning without having to measure the full array of 
metrics related to forest integrity. Such benefit of an ecosystem integrity 
composite index and exercise of validation considering the correlation 
with other metrics has been previously used for other ecosystem integrity 
indices, such as the forest landscape integrity index (Duncanson et al., 
2022). Here, we present an example of a validation exercise demonstrating 
how EIIscore is correlated with field measurements related to forest 
conditions, specifically canopy height and biomass. All these analyses 
were done considering each of our 333 plots.

Using a Kendall Tau correlation test (R package stats v4.1.1), 
we estimated if there was a significant correlation between our EIIscore 
and the validation datasets of biomass and canopy height. All data 
were tested for normality with a Shapiro–Wilk test (R package stats 
v4.1.1). A visual analysis of the residual distribution was done before 
moving on to a parametric or non-parametric test.

We also validated our EII against the forest landscape integrity 
index from Grantham et al. (2020), which is a well-validated index of 
forest modification, and therefore, forest integrity. We extracted the 
average values of our index (EII) and the average values of the forest 
landscape integrity index (FLII) from Grantham et  al. (2020) by 
forested biomes. We  extracted only values of both indices that 
overlapped with the map of intact forest landscapes (Potapov et al., 
2017). With this analysis, we provide a better representation of our 
index across biomes. As our EII includes an indicator, the LFC, which 
is also included in the FLII, we performed a sensitivity analysis to 
prevent a potential similarity between EII and FLII due to the 
influence of LFC. We calculated global maps of the EII considering the 
absolute relative change for each indicator (BII, LFC, and NPP), 
highlighting which has the lowest deviation from the EII at every 
geographical point. This approach captures the magnitude of deviation 

FIGURE 1

Visual representation of the workflow used to calculate the EIIscore for forested plots. NPP is the Net Primary Product, BII is the Biodiversity Intactness 
Index, LFC is the Loss of Forest Connectivity, and HFI is the Human Footprint Index. EII is the ecosystem integrity index. The EIIscore, NPP, BII, LFC, and 
HFI all have a pixel size of 1  km2. Note values shown are for this example only and are not real values from the sampled lands in this study.
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without bias towards its direction. By analyzing the geographical 
distribution of these deviations, we can discern if a particular indicator 
consistently dominates or if the influence is balanced among all three.

3. Results

Model results from our plots (n = 333) revealed that the EIIscore 
strongly related to the categories of forest condition (Down: n = 167, 
Top: n = 166). Furthermore, the EIIscore was not sensitive to weight but 
was sensitive to plot size. Forest condition metrics, including biomass 
and canopy height, were correlated with the EIIscore. Forests with high 
ecosystem integrity are located particularly in the Boreal forests and in 
the tropical rain forests in South America, Africa and Asia (Figure 2).

3.1. Assessment of ecosystem integrity index

Our results showed a significant difference between EIIscore in the 
forest condition categories ‘Top’ and ‘Down’ (χ2 = 19.193, df = 1, 
p < 0.001). We found that Top category has significantly higher values 
of the EIIscore, with a mean of 5.88 (CI: 5.53–6.23), whereas the Down 
category has a mean of 4.97 (CI: 4.67–5.26) (Figure 3).

3.2. Assessment of sensitivity and validation

We used the Kendall concordance coefficient to verify if the 
median rank of all plots across the six different weight possibilities 
(y-axis in Figures 4A,B) changed, considering the situation where all 
indicators have the same weight (EIIscore reference weight x-axis in 
Figures 4A,B). Considering Top category, we did not find a significant 
change in the rank of the plots when using different weights for the 
indicators (Kendall coefficient = 0.93, P ~ 0). Similarly, we did not find 
a significant change in the rank of the plots when using different 
weights for the indicators considering the Down category (Kendall 
coefficient = 0.92, P ~ 0) (Figure 4).

Metrics related to field measurements of forest conditions, like 
biomass and canopy height, can be described by the EIIscore in the 333 
plots. The positive term of biomass (z = 2.859, p = 0.004) and the 
Kendall concordance coefficient (τ = 0.194) illustrate the weak but 
significant correlation with the EIIscore (Figure  5A). Confidence 
intervals around the trend are smaller in areas with lower biomass; 
thus, the EIIscore is more likely to give accurate results in areas with 
biomass up to 200 Mg ha−1. Canopy height, like biomass, was positively 
correlated (z = 3.610, p < 0.001) with the EIIscore in the plots and the 
Kendall concordance coefficient (τ = 0.245) showed a weak correlation, 
too (Figure 5B). The confidence intervals around the trend for the 
EIIscore compared to canopy height are relatively small, particularly 
between the 10–20 m height range.

We found a strong agreement between the average values of our 
EII across forested biomes with the FLII (Figure 6). Our results also 
confirmed that the concordance between the EII and the LFII is not 
driven by any single indicator (Supplementary Figure S4).

3.3. Uncertainty

The individual components of the EIIscore (i.e., BII, NPP, and LFC) 
all contain inherent uncertainty and variability derived from 
measurement errors associated with spatial and temporal scales across 
datasets. In addition, each of the underlying components were 
developed for other purposes. Thus, qualitative uncertainty is also 
associated with combining and applying these individual components 
in different contexts and answering different questions. Underlying 
uncertainties associated with each individual component apply 
equally to the EIIscore.

The 333 plots were assessed for differences between the “Top” and 
“Down” classifications. A significant difference between the two 
categories was apparent but came with inherent uncertainty. 
Confidence intervals for the EIIscore, which were developed graphically 
using the R package ggplot2 (v. 3.3.6), represent the confidence that 
the total sum of EIIscore values of all the pixels in a “Top” or “Down” 
category land falls within a certain range. The results showed us that 

FIGURE 2

Global map of the ecosystem integrity index. The map is not in the original resolution of 1km2 for representation proposal.
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there was a 95 percent chance that our output was correct and that the 
EIIscore was significantly different in the “Top” category compared to 
the “Down” category. Despite this certainty, the underlying variables 
increased the uncertainty of our results.

The primary uncertainty associated with the BII is that the species 
population sampling is not comprehensive. In practical terms, species 
may or may not be  observed at any given sampling location for 
reasons other than that they were not actually present. Related to 
species absence/presence is species misidentification. Another 
uncertainty is that the data in the PREDICTS database (Hudson et al., 
2017) are for individual species and, by definition, do not address the 

impacts of human activities on species interactions or the importance 
of trophic relationships. Finally, these data are designed to be used 
in  localized contexts, while the EIIscore is used to make global-
level inferences.

The loss in forest connectivity is calculated as the ratio between 
the current forest configuration around each pixel to the potential 
forest configuration (Grantham et al., 2020). As the current forest 
configuration is represented by the forest cover maps from Hansen 
et al. (2013), likely, uncertainties associated with the estimation of 
forest cover maps (e.g., cloud cover, edge effects, changing land use at 
differing spatial and temporal scales) are introduced when estimating 
the loss in forest connectivity.

4. Discussion

The EIIscore provides an indication of how forest ecosystems across 
the world perform, considering ecological integrity. Our index is built 
on the efforts to operationalize the concept of ecosystem integrity 
across scales using satellite-based EOs and essential EBVs (Hansen 
et al., 2021). However, our approach differs from previous studies as 
we not only produced a global map of EIIscore, but we also developed a 
scalable workflow that estimates EIIscore at local scales but can easily 
be applied at larger scales. Our index showed an important property: 
it is insensitive to the weight used for the indicators of ecosystem 
integrity (structure, function, and composition). Overall, our results 
suggest that our index provides a reliable picture of the plots’ 
performance that is not driven by the importance (weight) assigned 
to the EIIscore indicators. However, it can be  used to identify the 
importance of area-based conservation efforts. Both characteristics are 
important in the context of ongoing efforts to support the monitoring 
and reporting of progress within the Post-2020 Global 
Biodiversity Framework.

The EIIscore differentiated pristine from degraded forests globally, 
indicating that the combination of EBVs used in this study can capture 

FIGURE 3

Mean (± 95% confidence intervals) of the EIIscore for the 227 plots by 
forest condition category type (levels: Down, Top). A lower EIIscore 
indicates that the structure, function, and composition were lower, 
whereas a higher EIIscore means those predictors were higher. 
Confidence intervals are of similar size. EII is the ecosystem integrity 
index.

FIGURE 4

The relationship among the median rank of each plot with a given category compared to the reference estimation of EIIscore where the three indicators 
have the same value. (A) shows the relationship considering plots within the category top and (B) plots within the category down. Note that most 
points in both figures align with a 1:1 dashed line, which indicates that plots did not change their original rank (EIIscore reference weight – all indicators 
have the same weight) in relation to the median across a plot rank considering six possibilities of weights (EIIscore simulated rank) as explained in the 
text. EII is the ecosystem integrity index.
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different aspects of ecosystem integrity. Previous studies have 
emphasized the need to reconnect forested habitats to protect 
threatened species (e.g., Newmark et al., 2017) and thus highlight the 
need for an index that can measure and monitor multiple 
interdependent ecosystem characteristics. This study focused on 
differences in ecosystem integrity among plots on the global scale. 
Based on such an assessment, policymakers and institutions 
facilitating monetary incentives to conserve forested lands can make 
key policy decisions related to the conservation of ecosystems. 
However, we recognize that measuring the EIIscore at other scales (e.g., 
global, biome, political region, ecoregion) is fundamental to halting 
forest integrity reduction (Keenan et al., 2015). For example, local 

forest management strategies will need to calculate the EIIscore over 
much smaller scales to facilitate comparisons across forests with 
similar characteristics. Our EIIscore has a resolution of 1 km2, which is 
why we recommend using the EIIscore only over large, forested areas to 
increase the variety of pixels. Additionally, this coarse resolution has 
resulted in some regions being assigned forest pixels even though no 
forest exists. This results from edge effects, which occur on the edges 
of plots. Edge effects are a result of pixels being square and the size of 
their resolution. Pixels can not be split or cut off, so sometimes the 
edge of a pixel falls inside or outside a plot of interest. In this example, 
some areas have forests, but on the edge of the forests, there is some 
overlap of forest pixels into areas without forests. When more detailed 

FIGURE 5

Relationship of the EIIscore with (A) biomass and (B) canopy height for the 227 plots. The raw values (as jitter) and the effects with their respective 
confidence intervals (95%) are shown. Additionally, the Kendall Tau coefficient and the respective value of p are given. A lower EIIscore indicates the 
structure, function and composition were lower, whereas a higher EIIscore means those predictors were higher. EII is the ecosystem integrity index.

FIGURE 6

Average values of the ecosystem integrity index (EII) and the forest landscape integrity index (FLII) from Grantham et al. (2020). Note that the average 
values per biome are almost the same for both indices.
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EBVs regarding biodiversity become available, we  will be  able to 
improve the quality of the resolution and thus reduce the edge effects.

Weights may have an impact on the value of a composite index, 
as weighting is strongly related to how the information conveyed by 
the different dimensions is aggregated into a composite index. Here 
we used only one indicator to represent each of the components of 
ecosystem integrity and considered our main underlying objective 
that each indicator has the same importance to ecosystem integrity. 
Indeed, we did not find a significant difference between the median 
EIIscore using equal weight compared to the six possibilities of 
assigning different weights to the EIIscore indicators. It is likely that 
we could have found a different result if we had used more indicators 
that are interrelated or if we had used more possibilities of weight 
distribution among the indicators than the six we used here. Note 
that when one indicator has weight 0, the other two indicators have 
weight ½, and when one indicator has weight ½, the other two 
indicators have weight ¼. Additionally, we tested for linearity of the 
EIIscore with plot size (Supplementary Methods). Finally, 
we acknowledge that the EIIscore may correlate with a broad range of 
metrics related to forest integrity and anthropogenic pressures. 
Examples of these metrics include measures related to forest 
condition (e.g., canopy height, biomass, structural complexity), forest 
ecosystem state (e.g., species diversity and abundance), and the 
intensity of anthropogenic pressures (e.g., land conversion). However, 
independently of the method used to assign a weight, weighting 
implies a ‘subjective’ evaluation. Like the choice for weight, we also 
chose to sum the pixel values to get a plot’s EIIscore. As expected, 
we thus also found a linear relationship between the EIIscore and plot 
size (Supplementary Figure  2). Therefore, we  encourage future 
studies to use other indicators to assess ecosystem integrity and use 
different weighting distributions among those indicators. This will 
improve our knowledge about casual relationships among ecosystem 
integrity indicators and their application in different contexts.

We found that the EIIscore was consistent with positive forest 
condition trends, including biomass and canopy height. This result 
thus supports the idea that our EIIscore can distinguish between a 
healthy, thriving forest and a degraded forest (Shapiro et al., 2021). 
Forest degradation is often a product of human modification through, 
for example, land-use change, leading to forest fragmentation and 
resulting in reduced functioning with biodiversity loss and decreased 
ecosystem services (Potapov et al., 2012; Chaplin-Kramer et al., 2015; 
Haddad et al., 2015; Betts et al., 2019). Monitoring forests using EOs 
will help scientists and policymakers to identify degradation patterns 
and act upon them to halt or even reverse the trend. Although the 
results are consistent, the confidence intervals in plots with high 
biomass are still large making the EIIscore less trustworthy in such areas. 
The high variation may be because the indicators we chose are not 
necessarily the best ones to capture this specific dimension of the 
ecosystem. Previous literature has found that old-growth forests could 
generate relatively lower values of NPP (Wang et al., 2011), while these 
forests have been used as indicators of high ecological integrity 
(DellaSala et  al., 2022). Biomass, like NPP, is related to forest age 
(Wang et al., 2011), so this could have influenced our results.

As originally calculated (Scholes and Biggs, 2005) for one specific 
region (Africa), the BII provided confidence intervals consistently 
within 10% of the reported best estimate. Subsequently, Hui et al. 
(2008) conducted a more detailed analysis to disaggregate the 
uncertainty across taxonomic groups and biomes and found similar 
overall uncertainty but were able to identify mammals as the 

taxonomic group with the highest uncertainty as well as degraded 
areas and savannas.

Globally, large climatic and water availability gradients result in 
two orders of magnitude variation in field-measured NPP for any 
vegetation type on an annual scale (Running et al., 2004; Running and 
Zhao, 2019). Interannual variability in vegetation response to 
precipitation and temperature variation is estimated at 20–30% 
(Running et al., 2004). Validation studies show that MODIS data can 
largely duplicate field observations and capture observed variability in 
field data. Unquantifiable sources of error in MODIS data include the 
effects of poor weather station coverage (Zhao et al., 2006), extreme 
weather events, and cloud contamination, which has been estimated 
to differ across ecoregions.

A future next step in the development of the approach presented 
here is to include optimization algorithms to classify areas of high 
integrity within ecoregions. Our approach was based on the overlap 
across different global layers and EBVs to extract averaged values per 
pixel. Using optimization algorithms would make it possible to 
directly maximize the search for high-integrity pixels and 
simultaneously other ecosystem services or species richness. Further 
work should consider how businesses can use the EIIscore to account 
for the risks and impacts of their operations on biodiversity and 
ecosystem services. These may include assessing the risks across a 
business portfolio, considering the implementation of certain projects, 
or producing a business counterfactual for EIIscore so that the company 
can compare its nature and biodiversity impact against a standard 
baseline. From conservation and management perspectives, the EIIscore 
can be a valuable metric to assess how different project interventions 
can deliver the best results considering nature conservation and social 
benefits for the local populations directly related to those projects.

Finally, in our study, we have used EBVs which have global coverage, 
but it is important to consider that there are still global biases in the 
availability of EBVs (Peterson and Soberón, 2018). Therefore, it is 
important that future studies using EBVs to account for ecosystem 
integrity consider carefully spatial and temporal resolutions of EBVs in 
order to continue improving their use to support efforts to monitor 
nature state such as the recently agreed Kuming-Montreal Global 
Biodiversity Framework. This also brings the opportunity for 
collaboration among countries and initiatives such as the GEOBON (The 
Group on Earth Observations Biodiversity Observatory Network) and 
fosters data availability and training capacity necessary at the global scale.

5. Conclusion

This study relied on integrating global EBVs to develop and test a 
framework to assess and monitor forest ecosystem integrity and health 
from local to global scales. Data availability, scalability, and 
functionality will be essential in the new Post-2020 Global Biodiversity 
Framework context. Therefore, the proposed methodology and EII are 
easily implementable and can be applied across multiple scales. The 
EIIscore can be used as a valuable metric for countries and businesses 
to quantify the impact of their actions on biodiversity and forest 
health monitoring. Still, further research is needed to improve 
methodology limitations and understand underlying dataset 
uncertainties. We expect that our study adds to the ongoing efforts to 
provide a solid ground for decision-making questions impacting the 
climate and biodiversity in the context of the recently agreed 
Kunming-Montreal Global Biodiversity Framework.
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