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The product of leaf area index (LAI) and clumping index (Cl) quantifies the
effective leaf abundance and distribution across the landscape, and therefore,
governs the radiation absorption, evapotranspiration, and carbon assimilation
processes in the terrestrial ecosystems. Previous studies were mainly focused
on developing inversion methods applicable to large scale for retrieving LAl and
Cl from multi-angular satellite observations. However, a few studies focused
on quantifying the sensitivity of canopy bidirectional reflectance distribution
function (BRDF) to changes in Cl in a forward manner, hampering an accurate
understanding of the relationship between Cl and BRDF. In this study, we
simulated how BRDF responds to changes in Cl in Qinghai spruce (Picea
crassifolia) forests based on a 3D radiative transfer model LESS and ground-
measured data. We found that the LESS model effectively simulated the hot-spot,
roof, and bowl-edge characteristics of the canopy BRDF by changing the sun-
sensor geometry. We constructed forest scenes with variable Cl (ranging from
0.4 to 0.8) to investigate the clumping effect on BRDF with different solar and
observation angles. The red band bidirectional reflectance factor (BRF) showed
higher sensitivity to changes in CI than that in the near-infrared (NIR) band.
Canopy BRFs in the red band along the principal plane and cross principal planes
measured in different seasons showed consistent sensitivity to changes in Cl,
suggesting that the red band BRF is helpful for Cl inversion for forests with
different levels of foliage clumping. In the NIR band, canopy BRFs along the
principal plane measured in growing seasons [with solar zenith angle (SZA) <40°]
and the cross principal plane measured in non-growing seasons (with SZA >40°)
were sensitive to changes in Cl in highly clumped forests (with Cl ranging from 0.4
to 0.6). However, canopy BRF in the NIR band showed low sensitivity to changes
in Cl in highly clumped forests (Cl <0.6), especially along the cross principal
plane when SZA was approximately 10°. The simulated BRFs in the red and NIR
bands showed relatively low sensitivity to changes in SZAs at a VZA of 40° and 0°,
respectively. We highly recommend including the red band BRF for Cl retrievals,
and using a VZA of 40° in the red band and 0° in the NIR band may help reduce
the Cl estimation uncertainty caused by changes in SZA. This research provides
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a new perspective for understanding the sensitivity of multi-angular satellite data
to changes in canopy structural characteristics of vegetation in global ecosystem
studies and may help improve ClI estimations using the multiangular optical

remote sensing data.

LESS, radiative transfer model, BRDF, canopy reflectance, Cl, MODIS MCD43A1, LAI

1. Introduction

Terrestrial vegetation plays a critical role in regulating the
energy, carbon, and water exchanges between terrestrial ecosystems
and the atmosphere. Forests account for 30% of the global land
area and store approximately 73% of the terrestrial vegetation
carbon (Gibbs and Ruesch, 2008), making them the largest carbon
reservoir in the terrestrial ecosystem (Dalponte et al, 2019).
Leaf area index (LAI) is perhaps the most important biophysical
parameter in terrestrial ecosystem models for modeling ecosystem
processes, such as radiation interception, evapotranspiration, and
photosynthesis. The clumping index (CI) quantifies the degree
to which foliage deviates from a random distribution and could
convert the LAI to the effective LAIL Thus, the parameterization of
CI significantly affects the accuracy of energy, carbon, and water
flux simulations in terrestrial ecosystem models.

Remote sensing provides the only viable option for estimating
LAI and CI continuously on a global scale (Roth et al., 2020).
Multi-angle canopy reflectance recorded by optical satellite sensors
is one major data source for the retrieval of global LAI and CI
maps. Among the vegetation types with discontinuous canopies,
the anisotropy characteristic of forest canopies is most pronounced
and has been well documented according to field measurements
and model simulations (Ponce de Ledn and Bailey, 2019). The
bidirectional reflectance distribution function (BRDF) is defined
as the ratio of radiant exitance to incident irradiance at a certain
point of the vegetation canopy (Nicodemus et al., 1977). The BRDF
describes the directional reflectance properties of the vegetation
canopy and determines surface albedo (i.e., the ratio of surface
reflection to incident radiation) (Dickinson, 1983). Thus, BRDF
is intimately tightly linked with the global energy, carbon, and
water cycles (Li et al., 2020) and is an essential remote sensing
monitoring parameter for the global Sustainable Development
Goals (SDGs). Ignoring the BRDF effect of land surface based on
Lambertian surface assumption would lead to inaccuracies of up
to 45% (Kimes and Sellers, 1985), while replacing surface albedo
by surface reflectance in nadir-view would lead to inaccuracies of
approximately 60% (Gao et al., 1998), respectively.

Canopy BRDF is known to be a function of tissue optical
properties, vegetation physiological and biochemical parameters,
and the canopy structural parameters (e.g., LAI, canopy height,
and CI) (Cui et al, 2019; Wei et al, 2019; Pu et al,, 2020).
The LAI and the CI are two of the most important canopy
structure parameters that need to be characterized in state-of-the-
art terrestrial ecosystem models (Duthoit et al., 2008; Hill et al.,
2011; Ryu et al., 2011; Sprintsin et al., 2011; Fang et al., 2013;
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Govind etal, 2013). LAI quantifies the abundance of green leaves in
canopies. The Cl is defined as a ratio of the effective LAI to true LAI
(i.e., Q = LAL/LAL) (Croft and Chen, 2018), which quantifies the
non-randomness of leaf distribution. If leaves distribute randomly
in the canopy, CI equals one. When the vegetation is equally
distributed, the value can be more than one. CI decreases when
the leaves in a canopy get more clumped, and its value is usually
less than one (Chen and Black, 1992). For the same canopy leaf
area, the interception of solar radiation and precipitation by the
canopy or the distribution of nutrients in the foliage will be distinct
due to the different distribution of leaves in space (Chen, 1996).
Thus, neglecting the clumping effect of leaves within the canopy
will lead to large uncertainties in simulations of water and carbon
cycles (Chen and Liu, 2020). It is still largely unknown how canopy
reflectance changes with CI in forest ecosystems. As a result,
it is essential to evaluate the clumping effect on forest canopy
BRDF characteristics and test whether CI and LAI are helpful in
representing the realistic 3D structure of the forest canopies.

To study the relationship between BRDF and canopy structural
parameters, we need a BRDF model to simulate the radiation
transfer process in forest canopies. Typically, empirical (Blinn,
1998), semi-empirical (Roujean et al., 1992), and physical BRDF
models are commonly used in literature. Among them, the physical
BRDF models generally have a solid theoretical foundation and
most of the model parameters have a clear physical meaning. The
mainstream physical BRDF models can be classified into three
different categories, including the radiative transfer models (Suits,
19715 Verhoef, 1984), the geometric optical models (Li and Strahler,
1992), and the computer simulation models (North, 1996; Gastellu-
Etchegorry et al., 2015). The ability of radiative transfer models
and geometric optical models in simulating the interaction between
solar radiation and vegetation is still limited with small simulation
scenarios, simplified scene details, difficulty considering terrain
effects, low computational efficiency, and complicated usage (Qi
et al., 2017). In contrast, the 3D radiative transfer models can
deal with both realistic structural scenarios and simulate large-scale
remote sensing data. For example, Qi developed a realistic 3D scene
canopy radiative transfer model based on a ray-tracing algorithm
using the acceleration framework provided by Mitsuba rendering
software (i.e., the LESS BRDF model). The simulation accuracy of
the LESS model is reliable, and the calculation efficiency is greatly
improved (Qi et al., 2019). Thus, the advancement of the LESS
model has provided a new opportunity to quantitatively explore
the relationship between forest canopy structural parameters and
BRDF characteristics.

Previous studies were mainly focused on developing inversion
methods applicable to large scale for retrieving CI from satellite
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observations. Various multi-angular satellite data (e.g., POLDER,
MODIS, and MISR) have been successfully applied to retrieve
global and regional CI products (Chen et al, 2005; He et al,
2012, 2016; Jiao et al., 2018; Wei et al., 2019). The CI over a
large area can be estimated from remote sensing data through
from the normalized difference between the hotspot and darkspot
reflectance (NDHD) based on an empirical relationship between
NDHD and CI (Chen et al., 2005). The hotspot corresponds to
the maximum reflectance in the backward scattering direction on
the principal plane when the solar radiation and view directions
coincide. The darkspot refers to very low reflectance values on
the principal plane in the forward scattering direction when the
view directions are away from the direction of illumination (Jiao
et al, 2018). In addition, changes in solar zenith angle (SZA)
strongly affect the NDHD method for CI estimation; However,
current CI products are generally produced based on a constant
SZA assumption (Fang, 2021) with only a few exceptions (Wei et al.,
2019). Improper configuration of the BRDF model and SZA may
introduce uncertainties into CI estimates (Wei and Fang, 2016).
Our knowledge about how canopy reflectance in different seasons,
bands, and view zenith angles (VZAs) respond to changes in CI
is limited, hampering accurate estimation of CI from multi-angle
optical remotely sensed data.

While a high value has been placed on the representation
of vegetation structure in simulating the response of vegetation
dynamics to climate change, the concomitant increase in our
understanding of how canopy BRDF respond to changes in CI in
forest canopies has only partially been realized. The objective of this
study was to quantify how canopy BRDF responds to changes in CI
in forest canopies, which provides a theoretical basis for retrieving
canopy structural parameters from BRDF remote sensing products.
Specifically, we address the following three scientific questions: (1)
How does canopy BRDF in the red band and near-infrared (NIR)
band change with SZA for canopies with different levels of CIs? (2)
Which band is more sensitive to changes in CI? (3) Which VZA
should be included when inverting CI from the BRDF data? It is
envisaged that a broader impact of this work will be to guide future
efforts to retrieve canopy structural parameters using multi-angle
satellite observations.

2. Materials and methods

2.1. Study area and field measurements

All the ground measured data used in this study were obtained
from the HIWATER program (Li et al., 2013) and were collected
in the Dayekou Guantan forest station (10015'E, 3832'N), south
of Zhangye city, Gansu province, China. The study area is in the
middle valley of the Heihe river basin in the Qilian Mountain area.
The main vegetation types in Dayekou also include Qinghai spruce
(Picea crassifolia) forests, shrubland, and upland meadow. The
Guantan forest station was dominated by Qinghai spruce forests.

Field measurements were obtained in a super sample plot at
Guantan forest station in June 2008. The super sample plot was
100 m x 100 m in size and was divided into 16 quadratus subplots
with 25 m x 25 min size (Figure 1). At the Dayekou Guantan forest
station, there were 30 field measurement sample plots either with
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a size of 20 m x 20 m (plot A in Figure 1A) or 25 m x 25 m
(plot B in Figure 1A). In this study, only field measurements in
the super sample plot were involved (Li et al., 2015). The vertical
forest canopy cover for the super sample plot was approximately
70% based on the canopy height model (CHM) image derived from
Lidar data and the measured locations and mean crown radius
of trees. LAI was measured for the 16 subplots with a size of
25m x 25 m using Tracing Radiation and Architecture of Canopies
(TRAC, Natural Resources Canada, Canada Centre for Remote
Sensing, Saint-Hubert, QC, Canada) (Chen and Cihlar, 1995) and
the LAI-2000 Plant Canopy Analyzer (LAI-2000, LI-COR Inc.,
Lincoln, NE, USA) (Gower et al., 1999). LAI-2000 was used to
measure the effective LAI (LAI.) and TRAC was used to measure
LAI and the foliage CI () (Chen, 1996). The true LAI (LAIL) for
each subplot was calculated through the equation of LAI; = LAL/Q.
The field measurements of LAI were used to facilitate the
construction of forest scenes in the LESS model with different CIs.
In addition, detailed canopy structure parameters were measured
for every single tree at the super site. The geometrical structural
characteristics measured included tree height, crown base height,
diameter at breast height, and crown horizontal radius. A laser
altimeter [TruPulse 200, Laser Technology Inc. (LTI), Norristown,
PA, USA] was used to measure the tree height. Field-measured
canopy structure parameters provide prior knowledge of the stem
density and single-tree size for the LESS model. The protocols
for each instrument used in the sample plots and the sample plot
layouts were described in detail in a previous study (Fu et al., 2011).

2.2. MODIS BRDF product

The Moderate
(MODIS) MCD43A1 version 6 Bidirectional Reflectance
Distribution Function and Albedo (BRDF/Albedo) model
parameters dataset is produced at a daily temporal scale and 500-m

Resolution Imaging Spectroradiometer

spatial resolution.! In this study, long time series MODIS data
covering the study area was selected for model inter-comparison
purposes. More specifically, MCD43A1 data with good quality
between January 2000 and December 2020 was downloaded for
model validation purposes. The red band and the NIR band are
two typical spectral bands commonly used for vegetation remote
sensing. Thus, we selected the red and the NIR bands to study the
relationship between canopy BRDF and CI. The canopy BRDF
in the NIR and the red band were calculated from MCD43A1
data in band 1 (red, 620-670 nm) and band 2 (NIR, 841-876 nm)
using the RossThick-LiSparse-Reciprocal (RTLSR) semi-empirical
kernel-driven BRDF model (Schaaf et al., 2002, 2010).

2.3. LESS model

The LESS model is a newly suggested ray-tracing-based 3D
RT Model that can properly and effectively simulate multispectral
and multiangle images, especially for simulating the radiation
properties of complicated realistic landscapes (Qi et al., 2022). We

1 https://appeears.earthdatacloud.nasa.gov/
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Land cover classification and field plots at the Dayekou Guantan forest station. (A) Field plots with a size of 20 m x 20 m (15 plots A) or 25 m x 25 m
(16 plots B) on MODIS land cover data (MCD12Q1) with a spatial resolution of 500 m. Pixels where the A sample plots were located were outlined in

red and the pixels where the B sample plots were located are outlined in black in panel (A). (B) Canopy height model (CHM) image for the
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simulate canopy BRDF following specific simulation steps. First, a
forest scene of the super study plot (Figure 2) was constructed with
cone crown assumption using LESS. Second, several fundamental
input parameters were set for LESS, including sun-sensor geometry,
illumination conditions, and optical properties of leaf and soil
parameters. The input parameter values were set based on the
ground-measured data obtained at the Guantan super sample plot,
and the specific values are given in Tables 1, 2. Furthermore, Qi
et al. (2019) indicated that the performance of the LESS model is
steady and reliable compared to other 3D models, such as the DART
and Radiosity Applicable to Porous Individual Object (RAPID)
models and validated by published field data (Qi et al.,, 2019). The
3D canopy structure, component spectrum, sun-sensor geometry,
and illumination parameters of the scene are the fundamental
inputs of the LESS model. Based on a ray-tracing method, LESS
can simulate the transmission process of incident light in a scene
and output the related simulated variables (such as directional
reflectance, albedo, fPAR, and so on) (Yan et al, 2022). The
LESS model can serve as a benchmark for various applications in
remote sensing with high computation efficiency, solid theoretical

Frontiers in Forests and Global Change 04

foundation, and well-assessed accuracy. In this study, we used the
LESS model to construct forest scenes, calculate LAI, and simulate
the BRDF characteristics of forest scenes with different CIs. The
website? contains details about the LESS model.

2.4. Simulation design

To accomplish the goal of this study, first, we constructed a
3D scene of a forest canopy and simulated canopy BRDF using
the ray-tracing method. Then, the scene reflectance signal was
compared with MODIS MCD43A1 products to test the reliability of
the LESS model in calculating canopy BRDEF. To further understand
the relationship between CI and canopy BRDE, the LESS model
was used to how canopy reflectance changes with LAI and CI in
different SZAs and observational zenith angles.

2 http://lessrt.org/

frontiersin.org


https://doi.org/10.3389/ffgc.2023.1106773
http://lessrt.org/
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/

Wu et al.

10.3389/ffgc.2023.1106773

3D forest scene

FIGURE 2

1.62 m. (C) Top-view of the forest scene in panel (A).

Cc

3D forest scene (nadir-view)

Crown Radius Buffer (Mean R = 1.62 m)

Measured Trees

Three-dimensional forest scene generated based on measured tree locations in the super sample plot. (A) Three-dimensional forest scene of
100 m x 100 m simulated by LESS. (B) Locations of the 1,656 measured trees and buffer areas of crown coverage with a mean crown radius of

TABLE 1 Clumping scene parameters of cylindrical canopy.

o-04 2-06 2-03 |

Clumping scene

TABLE 2 Simulation parameter design.

23

P(6) 0.45 0.29 0.20 CI(Q) 0.4 0.6 0.8
Scene effective LAI 1.58 2.48 3.18 LAI 4 4 4
Scene true LAL 4 4 4 BRDF type Lambertian Lambertian Lambertian
Scene LAD Spherical Spherical Spherical Terrain (m x m) 100 x 100 100 x 100 100 x 100
Terrain (m x m) 100 x 100 100 x 100 100 x 100 Pixels (m x m) 500 x 500 500 x 500 500 x 500
Single leaf area/m? 0.0035 0.0035 0.0035 Bands Red, NIR Red, NIR Red, NIR
Leaf shape Disk Disk Disk VZA! (°) —60°, 60°; 10° —60°, 60°; 10° —60°, 60°; 10°
Leaf numbers 50,000 50,000 50,000 VAA! (°) 0°;90°; 180° 0°;90°; 180° 0°;90°; 180°
Cylinder height/m 8 8 8 SZA! (°) 0°, 60°; 10° 0°, 60°; 10° 0°, 60°; 10°
Cylinder diameter/m 3 3 3 SAA! (°) 0°;180° 0°; 180° 0°; 180°
Cylinder numbers 230 230 230 Branch reflectance? 0.12,0.44 0.12,0.44 0.12,0.44
P(6), canopy gap probability; LAI, leaf area index; LAD, leaf angle distribution. Soil reflectance? 0.24,0.34 0.24,0.34 0.24, 0.34
Leaf reflectance? 0.05, 0.48 0.05, 0.48 0.05, 0.48
2.4.1. Model parameters determination Leaf transmittance? 0.03,0.48 0.03,0.48 0.03,0.48

A single tree is the basic unit of the forest. Although there are
differences between single trees, the structure of single trees of the
same species is similar. To simplify the construction of the forest
canopy simulation scene, we use a cone crown shape to represent
single trees with similar structures within the scene. In this study,
we assumed that the branches and leaves of the same tree species
are organized similarly in a single tree crown. In this study, we
determined the single tree structural parameters (Wu et al., 2022)
based on the ground-measured data obtained at the Guantan super
sample plot. Furthermore, two unknown parameters, including the
single leaf area and leaf numbers (Wu et al., 2022), were calibrated
to optimized values. We set the upper and lower boundary of these
two parameters to 250% of the default value in the LESS model. The
optimal value of single leaf area and leaf numbers were determined
when the LAI for the forest scene simulated by the LESS model was
closest to the true LAI based on field measurements.

First, we constructed a 3D scene of a forest canopy and
simulated canopy BRDF using the ray-tracing method. Then, the
scene reflectance signal was compared with MODIS MCD43A1
products to test the accuracy of the LESS model in calculating
canopy BRDF. To further understand the relationship between
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CI, clumping index; LAI leaf area index; BRDF bidirectional reflectance distribution
function; VZA, view zenith angle; VAA, view azimuth angle; SZA, solar zenith angle; SAA,
solar azimuth angle.

1VZA change from —60° to 60° with a step of 10°. Negative and positive VZAs represent the
backward and forward observation directions, respectively. VAA is fixed at 0°, 90°, and 180°.
SZA change from 0° to 60° with a step of 10°. SAA is fixed at 0° and 180°.

2The optical properties of the leaves and soil were determined based on the ground measured
data. Refer to http://poles.tpdc.ac.cn/zh- hans/data/fb1622b0- 9fc2-4fa3-b04d-b49d5aff90e9/
2q=%E5%85%B3%E6%BB%A9 (accessed on 23 July 2023) for more details.

CI and canopy BRDE the LESS model was used to how canopy
reflectance changes with LAI and CI in different SZAs and
observational zenith angles.

2.4.2. Variation of clumping index

To quantitatively analyze the effect of clumping on canopy
reflectance, we assumed the forest scenes of the study area to
have different CIs in the LESS model. According to Fang et al.
(2013), the global CI ranges between 0.4 and 0.9. Therefore, we
selected three typical values (i.e., 0.4, 0.6, and 0.8) of the CI to stand
for forest canopies with the same true LAI at different clumping
scales. Figure 3 shows the simulation of scenes with a true LAI
(LAL) of 4 m?/m? and a CI of 0.4, 0.6, and 0.8, respectively. The
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A LAL =4 m¥m?, CI=0.4

FIGURE 3

B LAIL=4m¥m? CI=0.6

Top-view of the 3D forest scenes generated with a true leaf area index (LAly) of 4 m?/m? and a clumping index of (A) 0.4, (B) 0.6, and (C) 0.8.

Cc

LAL =4 m*m? CI=0.8

differences between these three scenes could be explained by the
mutual shadowing or mutual occlusion effect of crowns (Wang
et al., 2020).

The CI is calculated as the ratio between effective LAI and true
LAI using the following equation (Chen et al,, 2019):

_ LAL
T LAL

where LA is the effective LAI and LAl is the true LAIL The CI, Q,
is therefore a correction factor required to convert LAl. to LAIL.
The LESS model calculates the LAI; of the scene, which is also
known according to field measurements. To construct forest scenes
of three different Cls, we calculated the LAI, from the simulated
total gap probability by directly inverting the Beer’s law and using
the following equation (Hu et al., 2018):
LAL — cos () In [P (0)] 2)
G(9)

where 6 is the sun zenith angle (SZA), P(0) is the canopy gap
probability, and G(6) is the leaf projection coeficient.

The average gap probability of forest scenes was calculated from
the four-component images using the following equation:

Sob = PixelNum (1 () + K, (1))
PixelNum

1

Gap = (3)

where PixelNum is the total number of pixels in the forest scene,
K is the fraction of sunlit soil (i.e., band 2) and K is the fraction of
shaded soil (i.e., band 4) in the four-component images simulated
by the LESS model. Detailed model input parameters of the forest
scenes with different CIs were given in Table 1.

2.4.3. Directional canopy reflectance simulation
The LESS model is based on ray-tracing algorithms, and
the reflectance of the simulated scene can be obtained at each
viewpoint. To analyze the influence of clumping on forest canopy
reflectance, we simulated canopy reflectance in the red and NIR
bands in the principal plane and cross principal plane with different
clumping status assumptions. Details about the basic structures,
the optical properties of scene components, and the illumination
geometry inputs for the LESS model could be found in Table 2.
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3. Results

3.1. Comparison of clumping effect on
canopy BRDF in the (cross) solar
principal planes

The directional canopy reflectance simulated by the LESS
model along with the VZA (—60° to 60° with a 10° interval) showed
high consistency with the BRDF calculated from MCD43A1 data in
the principal plane for the pixel where the sample plot was located,
with an R? of 0.97 and an RMSE of 0.03 in the red band and an R?
0f 0.94 and an RMSE of 0.05 in the NIR band (Wu et al., 2022).

The general pattern of how canopy reflectance changes with
SZA was similar for canopies with the same canopy structure
(Figure 4). However, there was considerable variability in terms
of the magnitude and shape of the seasonal variations of BRDF
for the same canopy in different observation planes and with
different degrees of canopy aggregation. Figure 4 shows how
canopy reflectance changes with SZA (—60° to 60° with a 10°
interval) for the red and NIR bands along the solar principal plane
and cross the solar principal plane with different CIs.

In the solar principal plane, the multi-angle bidirectional
reflectance factor (BRF) in the red band decreased with the SZA
(Figure 4A). However, canopy reflectance in the red band increased
slightly at large SZA (e.g., when SZA increased from 50° to 60°)
and such a phenomenon is even more pronounced in less clumped
forest canopies (with a CI of 0.6 and 0.8) than highly clumped
forests (with a CI of 0.4). In the NIR band, the BRF of highly
clumped canopies was higher than that of less clumped forests
(Figure 4A). On the contrary, the canopy reflectance in the NIR
band in the solar principal plane increased with both the SZA and
the CI. In addition, variations in SZA have a stronger influence on
the NIR reflectance than on the red reflectance, especially when
SZA was larger than 40° (Figure 4A). The canopy reflectance in the
NIR band in the principal plane was sensitive to changes in CI only
when CI was larger than 0.6 while became insensitive in moderate
clumped forests. However, the canopy reflectance in the NIR band
become abnormal (>1.0) when the SZA was larger than 50°, which
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matches with the well-known “edge-bowl” effect of BRDF in forest
canopies.

In the cross solar principal plane, as the SZA increased from
0° to 10°, the mean canopy reflectance in the red and the NIR
bands dropped by 60% (from 0.1 to 0.04) and 21% (from 0.58
to 0.46), respectively (Figure 4B). The red reflectance decreased
rapidly when the SZA increases from 0° to 10° and continued to
decrease afterward with a much slower changing speed. In contrast,
the NIR reflectance increased with the SZA when SZA was larger
than 10°. In the cross solar principal plane, the canopy reflectance
in the red band decreased with the CI, while the canopy reflectance
in the NIR band increased with the CI, which is consistent with the
results in the principal plane.

We calculated the seasonality of SZA for the study site based
on the MODIS Aqua satellite transit time (13:29:58 pm daily) and
the latitude and longitude (100°15'E, 38°32'N) of the Dayekou
Guantan forest station. The SZA first decreased from the maximum
value of approximately 60° in January to a minimum value of 15°
in June and then increased to larger than 60° in December again
(Figure 5).

In the red band, the BRFs in both the principal and the
cross principal planes for canopies with different CIs were highly
distinctive without overlaps (Figures 4A, B). In the NIR band, the
BRFs in the solar principal plane measured with SZA <50° were
sensitive to changes in CI for highly clumped forests (CI <0.6)
(Figure 3A).

3.2. Impacts of changes in VZA on
canopy reflectance at typical solar
positions

To illustrate the difference in the red and NIR canopy BRDF
with various degrees of canopy aggregation. Figure 6 compares
the BRFs in the red and NIR bands for a range of VZAs (ie.,
—60° to 60° with an interval of 10°) at four different SZAs (i.e.,
0°, 20°, 40°, and 60°) and three different CIs (i.e., 0.4, 0.6, and
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0.8) levels. The first three columns in Figure 6 represent BRDF for
forest scenes with a CI of 0.4, 0.6, and 0.8, respectively. Overall,
there is an enormous deviation of canopy reflectance in terms of
the magnitude and shape of canopy BRDF with different SZAs,
suggesting that BRDF shows different sensitivity to CI with the
season.

We found that canopy BRDF in the red band was more sensitive
to changes in CI than that in the NIR band. According to the
LESS simulations, the differences in BRDF were distinguishable
in the red band with various VZAs, Cls, and SZAs (Figure 6). In
contrast, canopy BRF in the NIR band in the forward direction was
insensitive to CI, especially for less clumped forests with higher CI
(e.g., CI=0.8) and when the VZA was larger than 30°. Canopy BRF
in the backward direction along the principal plane was sensitive to
changes in CI, especially at the hotspot. Canopy reflectance in the
NIR band increased significantly at large VZAs when SZA was 60°
with a strong “bowl-edge” effect (Yan et al., 2012), suggesting that
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SZA = 0°

SZA =20°
SZA = 40°
SZA = 60°

Comparison of the simulated directional canopy reflectance in the red and NIR bands under different clumping indexes (Cls) and solar zenith angles
(SZAs): (A) Cl = 0.4, SZA = 0°, (B) Cl = 0.6, SZA = 0°, (C) Cl = 0.8, SZA = 0°, (D) CI = 0.4, SZA = 20°, (E) Cl = 0.6, SZA = 20°, (F) Cl = 0.8, SZA = 20°,
(G) Cl = 04, SZA = 40°, (H) Cl = 0.6, SZA = 40°, (1) Cl = 0.8, SZA = 40°, (J) Cl = 0.4, SZA = 60°, (K) Cl = 0.6, SZA = 60°, and (L) CI = 0.8, SZA = 60°.
The top row displays three forest scenes with a Cl of 0.4, 0.6, and 0.8, respectively. The rightmost column exhibits corresponding SZAs for the BRDF.

canopy BRDF data obtained in winter was unsuitable for in-version

of canopy CI.

3.3. Sensitivity of seasonal BRDF to
changes in view zenith angle

To determine the sensitivity of BRDF to changes in CI, we then
calculated the relative deviations of directional canopy reflectance
with different CIs (Figure 7). At a specific VZA, Figures 7A, B
illustrated how the canopy reflectance at different SZAs (i.e., 0°
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to 60° with an interval of 10°) deviated from the average value of

canopy reflectance in the red and NIR band, respectively.

For canopies with different CIs, the relative deviations of

canopy reflectance ranged from 14.5 to 73.9% in the red band
(Figure 7A) and from 8.0 to 31.9% in the NIR band (Figure 7B).
In the red band, the relative deviations of canopy reflectance were

largest at the nadir view. Overall, the relative deviation of canopy
reflectance in the red band was greater than that in the NIR band.

Additionally, the difference in the relative deviation of reflectance
between various CI at the same VZA in the red band was greater
than that in the NIR band. Figure 7A showed that the relative

deviation of the red reflectance decreased with VZA from 0° to 40°

08
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FIGURE 7
The relative deviation of canopy reflectance along the principal planes with SZA ranges from 0° to 60° for forest canopies with three different
clumping indexes in the (A,C) red and the (B,D) NIR bands.

and increased with VZA from 40° to 60°. It was worth noting that
the relative deviation of the red reflectance almost doubled when
CI increased from 0.6 to 0.8 (Figure 7A) since canopy reflectance
was relatively low with a mean value of 0.03 (Figure 7C). At a
specific VZA, the mean canopy reflectance for highly clumped
forests in the red band at different SZAs was lower than that
for randomly distributed forests (Figure 7C). The mean canopy
reflectance in the red band for forests with CI of 0.4, 0.6, and
0.8 was 0.08, 0.05, and 0.03, respectively (Figure 7C). In addition,
the distribution of directional canopy reflectance in the red band
almost has no overlaps for canopies with different Cls, suggesting
that the canopy reflectance in the red band was sensitive to changes
in CI. When VZA was approximately 40°, the relative deviation of
the red reflectance reached the minimum value, suggesting that the
impacts of changes in SZA on canopy reflectance in the red band
were relatively low when viewed from this direction.

As illustrated in Figure 7B, the relative deviation of NIR
reflectance gradually increased with VZA. Specifically, the relative
deviations of NIR reflectance at various CI increased slowly when
the VZA increased from 0° to 20°. When VZA was larger than 30°,
the relative deviation of canopy reflectance increased rapidly and
reached the maximum value of approximately 31% at a VZA of
60°. Thus, the sensitivity of canopy reflectance to changes in SZA
in the NIR band got enhanced with increasing VZAs (Figure 7B).

Frontiers in Forests and Global Change 09

In addition, the canopy reflectance in the NIR band measured in
forests with different Cls overlapped at larger VZAs (Figure 7D),
suggesting that NIR reflectance measured at large VZAs were
sensitive to changes in sun-sensor geometries and insensitive to
changes in Cs.

4. Discussion

There still exists some discrepancies between canopy BRDF
simulated by the LESS model and that calculated from the
MCD43A1 data (Wu etal., 2022). The simulated canopy reflectance
was larger than the MCD43A1 BRDF in the NIR band while lower
than the MCD43A1 BRDF in the red band (Wu et al., 2022). In
terms of the relative magnitude and BRDF shape in evergreen
forests, the dependency between the simulated directional canopy
reflectance and BRDF calculated from MODIS observations in
this study was reasonable compared with the model simulations
and satellite observations as reported by previous studies (Jiao
et al., 2016). There still exists some uncertainties in the initial
input parameters for the LESS model. When simulating canopy
BRDE, the input parameters of the LESS model were determined
by field data collected in the super sample plot with a size of
100 m x 100 m, which only reflects part of the simulation scene
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(500 m x 500 m). Thus, the incompatible pixel size of forest scenes
could partly explain the differences between model simulations
and satellite observations. Furthermore, it is difficult to determine
the vegetation-to-bare-soil ratio on the forest floor based on the
underlying surface field-measured data. The simulation results
of the LESS model might also be impacted by the reflectivity
of the underlying vegetation. For example, an overestimation of
understory vegetation LAI could result in an overestimation of the
simulated BRDF in the NIR band and an underestimation of the
simulated BRDF in the red band (Chen et al., 2022).

As one of the main factors that determine sun-sensor geometry,
the solar position is crucial to the simulation of canopy reflectance.
The lower the SZA, the smaller the heating surface area, the
more concentrated light-heat, and the greater the solar radiation
intensity; conversely, the higher the SZA, the larger the heating
surface area, the more dispersed light-heat, and the lesser the
solar radiation intensity. This study investigated how the canopy
reflectance change with the SZA by accounting for the clumping
effect in the LESS model. Results showed that regardless of the
canopy clumping effect, changes in SZA will cause a corresponding
difference in canopy BRDF. More specifically, the hotspot would
migrate to the sun position (Figure 6). As SZA increased from 0°
to 60°, the hotspots for canopy BRDF in the red and NIR band
progressively shift from 0° to 60° with a dome or bowl shape.
Furthermore, the maximum reflectance at the hotspot displayed a
downtrend in the red band and an uptrend in the NIR band as the
SZA increased. The main reason was that when the SZA increased,
the crown gap probability increased, resulting in greater reflectance
in the NIR band.

The canopy reflectance in the red band decreased as the CI
increased, whereas the reflectance in the NIR band increased as the
Clincreased (Figure 4). The difference in canopy BRDF when SZA
was 0° and 60° was significant, this could partly explain why SZA
observations at 0° and 60° were typically selected to invert CI when
employing remote sensing products (Wei and Fang, 2016). The CI
change effect on canopy reflectance was substantially stronger in
the red band than in the NIR band (Figures 4, 7). This explains
why the red band performs better for CI estimation than the NIR
band, and why the red band has also been used for global CI
estimation (Hill et al., 2011). These results were consistent with the
contrasting leaf optical properties in the red and NIR spectrum.
Due to the strong multi-scattering effect of leaf reflectance in the
NIR band, leaf reflectance in the NIR band was much higher than
that in the red band. In contrast, leaf absorption was high, and the
leaf reflectance was low in the red band with a marginal multi-
scattering effect. However, canopy reflectance tended to be more
easily influenced by atmospheric contamination in the red band
than in the NIR band. Under the assumption that the BRDF curve
is free of atmospheric contamination, simulation using the 5-Scale
model indicates that the NIR band performs marginally better than
the red band in retrieving CI (Chen and Cihlar, 1995).

As the VZA increased, the magnitude of canopy reflectance
in the NIR band changed more significantly than that in the red
band. However, the relative deviation of canopy reflectance in
the NIR band was lower than that in the red band (Figure 6).
These results revealed that the BRDF effect of canopy reflectance
differed in the visible and NIR spectrum, with a stronger anisotropy
effect in the red band and a lower anisotropy effect in the
NIR band. Sandmeier provides a comprehensive analysis of the
mechanisms underlying the differences in the spectral impact of
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canopy reflectance (Sandmeier et al., 1998). Weak absorption and
high reflectance and transmittance of vegetation leaves in the NIR
band result in enhanced multi-scattering effects within the canopy,
reducing the anisotropy of vegetation in this band. The strong
absorption of chlorophyll by the vegetation in the red band makes
the vegetation more anisotropic in this band. As discussed above,
changes in CI and sun-sensor geometries had significant impacts
on canopy reflectance in the red band, while changes in VZA were
the prominent factor affecting canopy reflectance in the NIR band.
Therefore, a more comprehensive analysis was required to better
understand canopy BRDF. For example, changes in other canopy
structural parameters (Song et al., 2007), leaf optical properties (Wu
et al., 2018), the impacts of understory vegetation on background
reflectance (Li et al., 2021), and the complicated clumping effect at
different scales (e.g., shoot to branch scale) (Chen et al., 2022) could
also impact on canopy reflectance and worth for more attention.

Clumping indexes show a strong dependence on SZA (Chen
et al, 2012). Previous studies proved that high uncertainties of
CI can be introduced when the BRDF model and SZA are not
properly configured (Wei and Fang, 2016). Global to regional CI
data were generally estimated using a constant SZA (e.g., 0°, 60°,
and 45°). For example, the MODIS CI data was estimated from
the RossThick-LiSparse Reciprocal model with a fixed SZA at 0°
(He et al,, 2012, 2016). The MISR regional CI used the Rahman-
Pinty-Verstraete model with four parameters and a fixed SZA
at 60° (Govind et al,, 2013). This BRDF and SZA configuration
underestimated CI for small to medium-clumped vegetation, while
overestimated the CI for lightly clumped and sparsely vegetated
areas (Wei and Fang, 2016). The MODIS CI estimated by Jiao et al.
(2018) fixed the SZA at 45° to calculate the normalized difference
between hotspot and darkspot reflectance (NDHD). According to
the LESS simulations, canopy reflectance measured in the direction
of VZA = 40° in the red band (Figure 7A) and VZA = 0° in the
NIR band (Figure 7B) showed the lowest sensitivity to changes in
SZA compared with other VZAs. This finding may help explain
why 45° and 0° are typically selected for CI retrievals. Compared
with field measurements of CIs at 48 global validation sites, the
MODIS CI derived using the NDHD method with SZA = 45° and
VZA = 45° (which is very close to 40°) have the highest accuracy
compared with other VZAs (Jiao et al., 2018). Thus, selecting a
VZA of approximately 40° in the red band and a VZA of 0° in the
NIR band could potentially reduce the estimation uncertainty in CI
caused by changes in SZA.

Only the NIR band was used for deriving the first global CI
map (Chen et al., 2005). However, our results showed that canopy
reflectance in the red band was more sensitive to changes in CI
than in the NIR band (Figure 4). Later, the red band BRF has been
successfully applied for regional CI mapping based on the MISR
data (Govind et al., 2013). He et al. (2012) also reported that CIs
retrieved from the red band are more accurate than those from the
NIR band for dense forests, which further supports our findings.
NIR was less sensitive to vegetation structure because the strong
multiple scattering effects in NIR within vegetation decrease the
shadow darkness (Chen et al., 2005). In addition, we found that
the NIR band shows stronger dependence on SZA than the red
band (Figure 4), which is in accordance with Chen et al. (2012).
Considering the stronger influence of exposed soil in the red band
than the NIR band (Li et al., 2021), a more oblique SZA (e.g.,
40—60°) may help suppress the influence of the background when
estimating CI for sparse forests.
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5. Conclusion

Based on ground-measured data, this paper constructed a
3D forest canopy scene using the LESS model and quantitatively
analyzed how canopy reflectance change under different
influencing factors, including CI, SZA, and VZA. We found that
the BRDF simulated by the LESS model matched well with the
BRDF estimated from the MODIS MCD43A1 data based on the
RTLSR semi-empirical kernel-driven BRDF model. As the CI
increases from 0.4 to 0.6, the canopy reflectance decreased in
the red band while increasing in the NIR band. Moreover, we
found that canopy reflectance in the red band was more sensitive
to changes in CI than in the NIR band. Although the strong
atmospheric effect in the red band may lead to uncertainties in
CI estimations, we strongly recommend including the clear-sky
observations in the red band for CI retrievals considering its
high sensitivity to changes in CI. The LESS simulations suggested
that the BRFs in the red band measured at different SZAs and
VZAs were all helpful for CI inversion, and the BRFs in the NIR
band along the solar principal plane measured during growing
seasons (from April to September) were sensitive to changes in
CI for highly clumped forests (CI <0.6). Canopy BRFs in the
NIR band in the backward direction along the principal plane
were sensitive to changes in CI, especially at the hotspot. In
contrast, canopy BRF in the NIR band in the forward direction
was insensitive to CI, especially for less clumped forests with
higher CI (e.g., CI = 0.8) and when the VZA was larger than
30°. To take full advantage of satellite data measured in different
seasons, changes in SZA need to be considered. The relative
deviations of directional canopy reflectance with different Cls at
different VZAs showed different sensitivity to changes in SZA.
Based on the LESS simulations, we recommend selecting a VZA of
approximately 40° in the red band and a VZA of 0° in the NIR band
to reduce the estimation uncertainty caused by changes in SZA.
The findings of this study contribute to a better understanding
of the relationship between forest canopy structural parameters
and BRDF characteristics and offer a theoretical basis for the
retrieval of canopy structural characteristics from multiangular
remote sensing data.
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