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It is a challenge to reduce the uncertainties of the underestimation and

overestimation of forest aboveground biomass (AGB) which is common in

optical remote sensing imagery. In this study, four models, namely, the linear

stepwise regression (LSR), artificial neural network (ANN), quantile regression

(QR), and quantile regression neural network (QRNN) were used to estimate

Pinus densata forest AGB data by collecting 146 sample plots combined with

Landsat 8-Operational Land Imager (OLI) images in Shangri-La City, Yunnan

Province, southwestern China. The results showed that compared with the

LSR, the R2 and mean square error (RMSE) of the ANN, QR, and QRNN had

improved significantly. In particular, the QRNN was able to significantly improve

the situation of overestimation and underestimation when we estimated forest

biomass, which had the highest R2 (0.971) and lowest RMSE (9.791 Mg/ha) for the

whole biomass segment. Meanwhile, through model validation, we found that the

QRNN had the highest R2 (0.761) and lowest RMSE (6.486 Mg/ha) on the biomass

segment of <40 Mg/ha. Furthermore, it had the highest R2 (0.904) and lowest

RMSE (9.059 Mg/ha) on the biomass segment of >160 Mg/ha, which offered great

potential for improving the estimation accuracy of the Pinus densata forest AGB.

In conclusion, the QRNN, combining the advantages of QR and ANN, provides

great potential for reducing the precision influence caused by the overestimation

and underestimation in forest AGB estimation using optical remote sensing data.

KEYWORDS

uncertainty, quantile regression (QR), quantile regression neural network (QRNN),
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1. Introduction

Forest biomass is a critical factor in the carbon recycling of
forest ecosystems (Ploton et al., 2017; Qin et al., 2022). However, the
field investigation of forest biomass is time-consuming and labor-
intensive, and it is challenging to obtain biomass estimation in a
large region (Feng et al., 2021). Using remote sensing data can
help find information about forest AGB estimation quickly and
efficiently (Banerjee et al., 2020; Sun et al., 2021; Wulder et al.,
2022).

As the active remote sensing data, Radar and Light Detection
and Ranging (LiDAR), which were commonly used to access
forest AGB estimation, have intense penetration into vegetation
(Foody et al., 2003; Lu, 2005; Lu et al., 2012). LiDAR was still
hard to apply in large areas due to data collection being costly
and non-spatially continuous (Listopad et al., 2011; Geng et al.,
2021; Ehlers et al., 2022). The signal of Radar was easily limited
by fluctuating landforms, leading to Radar being unsuitable in
complex landform areas (Minh et al., 2013). It is still an excellent
alternative to use optical images for estimating and mapping
forest AGB for large areas due to the lower cost, higher temporal
resolution, and spatial coverage (Zhang and Liang, 2020; Ye et al.,
2021). However, the optical remote sensing detection of high-
density forests is a phenomenon that leads to the underestimation
of the high AGB value. Meanwhile, the mixing of light waves
from another vegetation surface would lead to an overestimation
of the lower AGB value (Chen and Cao, 2012; López-Serrano
et al., 2016; Li et al., 2019, 2021; Simona et al., 2020; Gao and
Zhang, 2021). How to improve the precision influence caused
by underestimation and overestimation is still significant work
for AGB evaluation by optical remote sensing in a large area
(Víctor et al., 2018; Li et al., 2019; Zeng et al., 2019; Sagang et al.,
2020).

More than 50% of the uncertainty is caused by the assessment
models (Shettles et al., 2015); thus, it’s important to choose
a high-precision model. The AGB estimation models include
the parametric and non-parametric models (Huang et al., 2019;
Lourenço et al., 2021). The parametric models use linear, logarithm,
exponential, and other functions to describe the correlation
between forest AGB and the remote sensing variables. This
approach has become one of the most popular estimation models
due to its ability to quantify the relationship between forest AGB
and the independent variables (Ou et al., 2019a). The stepwise
linear regression model (LSR) can select variables closely related
to the response variables by significance testing, solving the
problem of collinearity among explanatory variables (Zhu et al.,
2017). However, when the models with insignificant influence on
dependent variables are ignored, there would be a lower prediction
accuracy when the forest AGB and the independent variables do
not have a simple linear relationship (Yadav et al., 2021; Zhao et al.,
2022).

Many non-parametric models have been explored for forest
AGB estimation, such as random forest (RF) (Yadav et al., 2021),
k-nearest neighbors (kNN) (Wan et al., 2021; Andras et al., 2022;
Beaudoin et al., 2022), support vector machine (SVM) (Mountrakis
et al., 2010; Christoffer et al., 2013), and maximum entropy
(MaxEnt) (Wang et al., 2022; Zhao et al., 2022). Although the non-
parametric models can provide an excellent fitting effect, it is still

hard to improve the precision influence caused by overestimation
and underestimation.

Taylor (2000) used a neural network structure and proposed
a new non-parametric model named quantile regression neural
network (QRNN); it includes the advantages of both artificial
neural networks (ANN) and quantile regression (QR). QR was
generated by Koenker and Bassett (1978). It can more accurately
describe the change range of the dependent variables and variables
corresponding to the independent variable (Das et al., 2019; Tian
et al., 2020). QR can provide a flexible and stable value, which is
not affected by data outliers and heavy-tailed distributions under
the basic assumptions of conventional models (Cade and Noon,
2003; Julien, 2012). Meanwhile, the QR-based method is a better
choice as it cannot only reveal the mean value (Cade and Noon,
2003; Das et al., 2019) but also show its quantiles, especially when
there is a trend of the data getting close to “extreme” regimes
(Scharf et al., 1998; Cade and Noon, 2003; Friederichs and Hense,
2007; Julien, 2012). Thus, it would effectively express the shape
change and depict the features of distribution from low biomass
value to high biomass more comprehensively through different
quantiles to reduce the error caused by data dispersion and heavy-
tailed distribution. ANN has a non-linear adaptive ability and solid
ability to fit more complicated data (Alizadeh et al., 2021; Alquraish
and Khadr, 2021; Tzanis et al., 2022; Wang et al., 2022; Zhao
et al., 2022), which is widely used in forest biomass estimation.
For example, Ou et al. (2019a) used the ANN model to estimate
forest AGB of the Pinus densata., and it got a better performance
of the AGB estimation. It cannot be more clearly reflected that
with an increase in the independent variable, the data in different
ranges of the dependent variables change to different degrees,
and this conclusion could not be obtained through the previous
regression models (RF, k-NN, and SVM) analysis. QRNN combined
the advantages of QR and ANN, which means QRNN not only
has a high adaptive ability but also can depict the shape change of
dependent variables on each quantile. The forest AGB data were
usually widely distributed and had extreme values normally. QRNN
may be a suitable model to reduce the precision influence caused
by overestimation and underestimation because QRNN can reveal
the value from low biomass to high biomass by different quantiles.
It has achieved good results in many aspects (Cao et al., 2018;
Suhartono et al., 2018; Yang et al., 2021), but there are few studies
on the estimation of forest AGB.

If the relationship between forest AGB and the independent
variables was linear, then, LSR would have a better performance.
Otherwise, a non-parametric like QRNN was a better choice if
the dependent variables were scattered or heavy-tailed. QRNN was
rarely used in forest biomass; hence, its estimated performance
needs to be further researched in a future study. QRNN was created
based on QR and ANN; the performance of those two models also
needs to be compared to analyze whether QRNN can improve
the precision or not. Overall, we estimated AGB by combining
QRNN with optical remote sensing data to reduce the precision
influence caused by overestimation and underestimation, and to
improve the forest AGB estimation accuracy. We analyzed the
fitting performance and residual variation for LSR, ANN, and QR.
The capability of improving the precision was compared in the
remote sensing estimation of AGB. The significant contributions
of this work are:
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(1) Four models–LSR, ANN, QR, and QRNN were used to
compare AGB estimation and we determined the fitting
performance for these models.

(2) We aimed to seek the optimal quantile that corresponds
with the different AGB segments using QRNN and QR and
explore optimal AGB estimations to improve the precision
influence caused by overestimation and underestimation of
AGB using QRNN and QR.

2. Study area and datasets

2.1. Study site

The study was conducted in Pinus densata forests in Shangri-La
City, north-western Yunnan Province, southwest China (Figure 1).
The region has a cold-temperate monsoon climate with altitudes
ranging from 3,350 to 3,696 meters above sea level. Due to the
high altitude, winters are cold but sunny, and the mean annual
temperature is 5.4◦C. The temperature in the coldest month
(December) and hottest month (July) is −3.8◦C and 13.3◦C,
respectively. The average annual precipitation in the study area is
607 mm, of which 70% occurs from June to September. Evaporation
is 1,671 mm, and relative humidity is 70%. Soil types are dominated
by dark brown forest soils (Lefsky et al., 2004; Zheng et al.,
2007).

Pinus densata is a dominant tree species mainly at an altitude
of approximately 2,700 to 4,200 meters in the Tibetan Plateau, and
a unique and pioneer species of the Hengduan Mountains (Zheng
et al., 2007; Ou et al., 2019b). Moreover, Pinus densata belongs to
the evergreen tree, which has a strong natural regeneration ability,
and it grows slowly within 1 to 2 years (Xie et al., 2018). It is the
primary type of forest in Shangri-La City and is often distributed in
the form of pure forest or mixed forest with the species of Quercus
spp., Pinus armandii, Picea spp., and Betula spp. (Ou et al., 2019a).

2.2. Sample trees measurement and
aboveground biomass calculation

There was a total of 146 sample plots that were surveyed and
calculated in August 2016, and the sample plot size was set as
30 m× 30 m. A handheld GPS was used to locate the random plots;
the coordination was recorded with UTM/WGS 84, and the mean
horizontal accuracy of the coordinate was 3 to 5 m after correcting
the deviation. The same project system images were downloaded
and georeferenced with the ground inventory data, and a 20 m
buffer was left in case the plots were outside of the research area
when the images were clipped. The diameter at breast height (DBH)
(1.3 m above ground) and height (H) of each tree were recorded, as
well as the coordinates of the location, elevation, degree, and slope
direction of the sample plot.

In all sample plots, 100 sample trees were chosen, and each
sampled tree was measured for information such as its bark,
branches, and foliage data. Sample trees were selected based on
the DBH grades, and the range was from 6 to 76 cm by 2 cm
intervals. Three trees, at least, needed to be selected for each class
of DBH. Meanwhile, the tree stems, bark, branches, and needles

were collected based on this method by Wang. Each tree stems were
cut at 2-m intervals and a 2-cm disc was gotten in each interval
(Peichl and Arain, 2007). There were three classes to be divided
for the branches: top, middle, and bottom, and two samples were
chosen for each component. The sample biomass was converted to
calculate the biomass (Xu et al., 2014). The AGB values of single
sample trees could be fitted by the following function (Ou et al.,
2019b). The AGB value of trees in one plot:

AGBi = 0.073 · DBH1.739
·H0.880 (1)

where DBH is the diameter at breast height greater than 5 cm, H
is tree height greater than 1.3 m, and AGBi is the aboveground
biomass of the sampling tree (kg).

In order to obtain the AGB of each sample plot, we used
equation (2) for the calculation to get the plot AGB (Mg/ha) with an
area of 30 m × 30 m; the AGB range was from 2.1 to 251.5 Mg/ha,
and the statistical information is listed in Table 1.

AGBi =
∑n

i = 1 AGBi
900

· 10000/1000 (2)

where AGBs is the AGB of a plot, AGBi is the biomass of individual
trees, and n is the number of trees within the plot.

2.3. Remote sensing data and
pre-processing

Cloud and snow will significantly affect the spectral bands
of optical remote sensing (Xu and Yue, 2014), atmospheric
corrections (Vermote et al., 2002), calculation of interference
vegetation index (Zhu et al., 2015), identification of land types,
etc., (Zhang et al., 2002). Therefore, the images required for the
experiment were obtained from Google Earth Engine (GEE). To
synthesize a completely cloudless image, Landsat 8-Operational
Land Image (OLI) atmospheric correction surface reflectance data
were operated with each scene image in 2016, using the bit
operation cloud removal method, and then the standardization
index was calculated. Finally, the average value of the annual
image data set was combined through time aggregation to obtain
a cloudless high-quality image, which cannot only significantly
reduce the amount of time spent on calculation and make the
analysis faster but also reduce the error caused by different surface
reflectance, and it can produce the same accuracy as the time series
data (Phan et al., 2020). The satellite images of the study area are
shown in Figure 1.

There were 174 variables derived from remote sensing,
including 7 spectral bands, 13 vegetation indices, 6 image
transform algorithms, and 148 textural measures (Table 2).
Pearson correlation analysis was used to analyze the correlation of
spectral variables and AGB, and spectral variables with significant
correlation with AGB were used to set the AGB estimation model.

3. Materials and methods

3.1. Flow chart

In Figure 2, the methodological framework was described
as (1) collecting data of the plots and tree biomass, Landsat 8
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FIGURE 1

(A) The location of the study area; (B) Shangri-la City shown by a composite image; (C) the spatial distribution of Pinus densata forests according to
the forest management inventory (FMI) data in 2016 and the sample plots investigated in 2016; (D) Pinus densata forests in the study area.

OLI images, and digital elevation model (DEM); (2) calculating
the plot AGB; (3) pre-processing the Landsat 8 OLI images;
(4) correlating spectral variables and AGB; (5) developing the
linear stepwise regression (LSR), artificial neural network (ANN),
quantile regression (QR), and quantile regression neural network
(QRNN); and (6) assessing the models.

3.2. Modeling methods

3.2.1. Linear stepwise regression (LSR)
The linear stepwise regression (LSR) model could automatically

select the most important variables from a large number of available
variables by regression analysis (Zhu et al., 2017). Because of

Frontiers in Forests and Global Change 04 frontiersin.org

https://doi.org/10.3389/ffgc.2023.1162291
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-06-1162291 April 12, 2023 Time: 15:1 # 5

Zhang et al. 10.3389/ffgc.2023.1162291

TABLE 1 The statistical parameters of sample plot datasets.

Variables Minimum Maximum Mean Standard deviation

Fitting data (n = 73) H (m) 2.2 21.7 10.1 4.4

Dg (cm) 2.9 39.6 14.8 3.4

Stand Density (Stocking/ha) 411 7,653 2,693 1,412

AGB (Mg/ha) 3.7 227.9 112.7 56.7

Test data (n = 73) H (m) 3.1 24.3 10 6.3

Dg (cm) 5 41.3 14.6 3.9

Stand Density (Stocking/ha) 1,044 8,500 2,628 1,417

AGB (Mg/ha) 2.1 251.5 111.2 56.4

All data (n = 146) H (m) 2.2 24.3 10.1 3.7

Dg (cm) 2.9 41.3 14.8 5.5

Stand Density (Stocking/ha) 411 8,500 2,691 1,415

AGB (Mg/ha) 2.1 251.5 111.6 56.4

H is the average tree height of the plots, Dg is the average diameter at breast height (1.3 m), and AGB is aboveground biomass.

TABLE 2 Spectral variables derived from a total of seven bands for the Landsat 8 OLI image.

SV Definitions of SV # of SV

Original band B1-coastal, b2-blue (BLU), b3-green (GRN), b4-red (RED), b5-near-infrared (NIR), b6-shortwave infrared 1 (SWIR1), and b7-shortwave
infrared 2 (SWIR2)

7

Vegetation indices Normalized difference vegetation index (NDVI), atmospherically resistant vegetation index (ARVI), difference vegetation index (DVI),
simple ratio index (RVI), modified soil vegetation index (MSAVI), short infrared temperature vegetation index (MVI5), mid-infrared
temperature vegetation index (MVI7), infrared vegetation index (II), optimization simple ratio index (MSR), brightness vegetation index
(B), greenness vegetation index (G), normalized difference vegetation index using R and G bands (ND43), and normalized difference
vegetation index using SWIR 1 and SWIR 2 bands (ND67)

13

Image
transformations

The first three components from the tasseled cap transform (K-T transform) and the first three principal components of principal
component analysis (PCA)

6

Texture measures Gray-level co-occurrence matrix-based texture measures including the mean, angular second moment, contrast, correlation,
dissimilarity, entropy, homogeneity, and variance using moving window sizes of 3× 3, 5× 5, and 7× 7 pixels

148

its feature selection technology, it can avoid the disadvantage of
predicting stability in traditional linear models to some extent (Yan
et al., 2009; Almeida et al., 2019). LSR can be expressed using
equation 3, and it was carried out using the R software, and the
MASS package was used to build the model.

y = b0 + b1x1 + b2x2 + · · · + bnxn (3)

Where y is the dependent variable, b1, b2,..., and bn are the partial
regression coefficient of the independent variables, and b0 is the
constant term; x1, x2,..., xn are the independent variables.

Moreover, to avoid poor performance due to redundancy and
collinearity, the variance inflation factor (VIF) was used to evaluate
the LSR model. Only if the VIF value of the independent variables
is lower than 10, the variables could be selected for the model (Ou
et al., 2019a).

3.2.2. Artificial neural networks model (ANN)
Artificial neural networks (ANN) are an algorithmic

mathematical model based on a large number of neurons
interacting in a distributed manner and performing information
processing, which has the characteristics of self-adaptive, self-
learning, and real-time learning. It generally consists of three
layers, including the input, hidden, and output layers. There
are many nodes in each layer, and two layers are connected

by the weights of nodes. When it receives input signals, it
makes a non-linear weight operation through the activation
function and passes the calculation result to the next neuron.
The initial weights are randomly generated, and the output
value reaches the predefined target by continuously adjusting
the weights between each neuron during the training process
(Alizadeh et al., 2021; Alquraish and Khadr, 2021; Tzanis et al.,
2022; Wang et al., 2022; Zhao et al., 2022). Building remote
sensing models of forest biomass based on artificial neural
networks has the characteristics of self-adaptive, self-learning,
and real-time learning. Currently, neural networks have been
used in ecosystem simulation, ecological data processing,
and extraction of environmental parameters from remote
sensing (Luca et al., 2022).

Artificial neural networks was carried out using the R software,
and the neuralnet package was utilized for building this model in
this study. Neural networks usually use a three-layer structure with
only one hidden layer. In addition, the input variables of this study
are seven, and hidden layers’ nodes are usually around 2/3 of the
input nodes (Wang et al., 2022). The number of hidden layers
is four through experiments. Before modeling, we normalized
the input variables to a value between −1 and 1 to eliminate
the algorithm impact caused by the excessive magnitude of each
number variable.
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FIGURE 2

The methodological framework of estimating the forest
aboveground biomass (AGB). LSR is linear stepwise regression, ANN
is an artificial neural network, QR is quantiles regression, QRNN is
quantiles regression neural network, QRb is the quantile regression
with the best fitting performance in each biomass segment, and
QRNNb is the quantile regression neural network with the best
fitting performance in each biomass segment.

3.2.3. Quantile regression (QR)
Quantile regression (QR) is a natural extension of the linear

regression model proposed by Koenker and Basset (Lin et al.,
2020). The linear regression model describes the conditional mean’s
change for the independent variable along with the change of
covariates while QR emphasizes the change of the conditional
quantile. The different quantiles will produce various fitting
functions of their conditional distributions (Taylor, 2000; He and
Li, 2018; Suhartono et al., 2018; Lin et al., 2020). In this study, QR
was carried out using the R software, and the quantreg package
was utilized to build this model. In addition, the more classic five
quartiles group (τ = 0.1, 0.25, 0.5, 0.75, and 0.9) (Sun et al., 2021)
was selected.

3.2.4. Quantile regression neural network (QRNN)
Quantile regression neural network (QRNN) is a method that

combines QR and ANN that can be used for non-parametric non-
linear calculations, which combines two advantages. On the one
hand, the neural network can fit the non-linear structure of the
actual problem and can achieve more accurate simulations without
relying on the setting of an explicit functional form, and it has the
characteristics of quantiles regression where different quantiles are
selected to obtain different conditional quantile of the response
variable (He and Li, 2018; Suhartono et al., 2018). On the other
hand, it is characterized by quantile regression, where different
quantiles are selected to obtain different conditional quantiles of
the response variable. Then it can be portrayed more thoroughly

and carefully, and the conditional distribution characteristics can
be comprehensively described (Cao et al., 2018; Yang et al., 2021).

Quantile regression neural network was carried out using the
R software, and the QRNN package was utilized for building this
model in this study. Like ANN, we set QRNN as a hidden layer
and four hidden nodes. In addition, the setting of the quartiles was
consistent with that of the QR.

3.3. Model assessment and validation

The determination coefficient (R2) and the root of the mean
square error (RMSE) were used to evaluate the AGB model and
the corresponding assessment. Both indices of the QRNN and QR
were listed according to the five quartiles. Then, the scatter plots
(Figure 3) of the prediction values to the observed ones according
to the modeling dataset were drawn. Furthermore, for both QRNN
and QR, the corresponding optical quartile models with the lowest
mean error at each AGB segment were combined as the best QRNN
(QRNNb) and the best QR (QRb), respectively, and the AGB
segments are 0 to 40 Mg/ha, 40 to 80 Mg/ha, 80 to 120 Mg/ha, 120
to 160 Mg/ha, and greater than 160 Mg/ha (Zhao et al., 2016; Yadav
et al., 2021).

Moreover, R2, RMSE, the mean absolute error (MAE), and
mean error (ME) were selected to validate each model using the
test dataset according to the different AGB segments. The ME and
MAE were statistically tested for their significant difference from
zero at a significant level of 0.05.

4. Results

4.1. Correlation between spectral
variables and AGB

Forest communities generally have different forest structures
and biophysical parameter characteristics expressed as various
spectral, structural, and textural features on remote sensing images.
Therefore, the remote sensing feature extraction technique can
be used to obtain the feature parameters, reflecting the biomass-
related situation and then estimate the forest biomass over a
large area. The key to using regression analysis to model forest
AGB is to select variables that correlate with the AGB. Still, it
is necessary to ensure that the correlation between the variables
chosen is weak (Zhang et al., 2018). Therefore, we listed the
remote sensing variables that significantly correlated with AGB
and Pearson correlation coefficients that are more significant than
0.1 in Table 3. The 66 remote sensing factors related to the AGB
of Pinus densata are extensive, ranging from 0.153 to 0.550, and
the texture variable occupies the most significant number for the
correlations among these variables. The second is the vegetation
index. Therefore, the variables are used in AGB estimation models.

4.2. Model fitting

Seven independent variables related to AGB were selected,
including VA3_3, VA3_1, VA5_7, VA5_1, ND43, CC5_1, and
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FIGURE 3

The scatter graphs of the predicted plot AGB values against the observed or reference values based on the modeling dataset (n = 73) (A) linear
stepwise regression (LSR); (B) artificial neural network (ANN); (C) quantiles regression (QR): the quartiles groups are 0.1, 0.25, 0.5, 0.75, and 0.9,
respectively; (D) quantiles regression neural network (QRNN): the quartiles groups are 0.1, 0.25, 0.5, 0.75, and 0.9, respectively; (E) the quantile
regression with the best fitting performance in each biomass segment (QRb); and (F) the quantile regression neural network with the best fitting
performance in each biomass segment (QRNNb).

CC7_3. The largest value of VIF for these seven factors is 5.37,
meeting the requirements of subsequent modeling (Zhang et al.,
2018).

Three models–LSR, ANN, and QR were applied to compare
with QRNN, and the results are shown in Table 4. In terms of
the model fitting ability, LSR was the weakest fit for the AGB of
Pinus densata forest in Shangri-La City. The fit results of QR are
higher than LSR except for 0.1 quantile due to the extreme quantile
having more significant uncertainty (Koenker and Bassett, 1978).

The R2 and RMSE of ANN are 0.48 and 40.33 Mg/ha, respectively,
indicating that the fitting result of ANN is better than LSR and
QR. In general, QRNN performs best, especially since it has
the highest R2 with 0.78, and the lowest RMSE is 29.84 Mg/ha
at 0.5 quantile. The results showed that the fitting ability of
LSR could not appropriately explain the correlation of remote
sensing variables and sample plot biomass. ANN, QR, and QRNN
further improve the fitting ability to explain the data compared
to LSR.
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TABLE 3 Significant pearson correlation coefficients between remote sensing factors and AGB (ND43, normalized difference vegetation index using R
and G bands; B5_PCA, the 5th component of PCA; B7_PCA, the 7th component of PCA; MSAVI, modified soil vegetation index, and all other variables
are texture measures).

No. Variables Correlation
coefficients

No. Variables Correlation
coefficients

No. Variables Correlation
coefficients

1 ND43 −0.231** 23 ME5_1 −0.153* 45 EN7_1 −0.305**

2 b5_PCA 0.177* 24 ME5_3 −0.233** 46 EN7_3 −0.248**

3 b7_PCA −0.181* 25 ME5_4 −0.198* 47 EN7_7 −0.208*

4 MSAVI −0.230* 26 ME5_5 −0.251** 48 DI3_1 −0.177*

5 VA3_1 −0.224** 27 ME5_7 −0.226** 49 DI3_4 0.237**

6 VA3_3 −0.199* 28 ME7_1 −0.162* 50 DI5_1 −0.200*

7 VA3_4 0.343** 29 ME7_3 −0.225** 51 DI5_4 0.245**

8 VA5_1 −0.258** 30 ME7_4 −0.169* 52 DI7_1 −0.185*

9 VA5_4 0.233** 31 ME7_5 −0.235** 53 DI7_4 0.193*

10 VA5_7 0.550** 32 ME7_7 −0.220** 54 CO3_1 −0.162*

11 SM3_1 0.255** 33 HO3_1 0.180* 55 CO3_4 0.329**

12 SM3_3 0.191* 34 HO3_3 0.165* 56 CO5_4 0.319**

13 SM5_1 0.315** 35 HO5_1 0.236** 57 CO7_4 0.214*

14 SM5_3 0.215** 36 HO5_3 0.195* 58 CC3_1 0.226**

15 SM5_7 0.156* 37 HO5_4 −0.155* 59 CC3_2 0.164*

16 SM7_1 0.338** 38 HO7_1 0.216** 60 CC5_1 0.206*

17 SM7_3 0.238** 39 HO7_3 0.185* 61 CC5_7 −0.216**

18 SM7_7 0.197* 40 EN3_1 −0.250** 62 CC7_1 0.198*

19 ME3_3 −0.235** 41 EN3_3 −0.207* 63 CC7_2 0.170*

20 ME3_4 −0.225** 42 EN5_1 −0.300** 64 CC7_3 −0.212*

21 ME3_5 −0.260** 43 EN5_3 −0.229** 65 CC7_5 −0.244**

22 ME3_7 −0.225** 44 EN5_7 −0.161* 66 CC7_7 −0.289**

The first two capital letters represent the names of texture measures, including variance (VA), angular second moment (SM), mean (ME), homogeneity (HO), entropy (EN), dissimilarity (DI),
contrast (CO), and correlation. The first number represents window size: 3 for 3 × 3, 5 for 5 × 5, and 7 for 7 × 7, and the second number denotes the band number of the Landsat images;
* and ** indicate significant levels of 0.05 and 0.01.

By comparing QR and QRNN with the ability of quantile, we
found that the AGB fit coefficient of QRNN was more than double
of QR at each quantile. The RMSE also showed the same results,
which demonstrated that QRNN can supply the highest accuracy
for the AGB assessment. When the RMSE of the five quantiles of
QR and QRNN were calculated in SPSS, the coefficients of variation
of QR and QRNN were 0.386 and 0.061, respectively. It indicated
that the relevant results of QRNN at different quantiles were more
stable and less influenced by the quantile level.

Figure 4 shows that QR, except at the 0.25 quantile, has
abnormal values during model fitting. QRNN has no abnormal
value on each quantile, compared with QR; QRNN improves
the situation of abnormal values during model fitting. From the
aggregation of scattered distribution, the LSR is the most spread
and far from the fully fitted line. In particular, LSR showed obvious
overestimation when the values of the AGB plot were lower than
approximately 80 Mg/ha and underestimation when the values
of the AGB plot were lower than 160 Mg/ha (Figure 3A). The
scatter distribution of the ANN model has improved to some
extent compared with the aggregation of LSR. However, the scatter
distribution of ANN still does not reach an ideal result; that is, ANN
does not solve the problem of overestimation and underestimation

well (Figure 3B). The scatter of the QRb (Figure 3E) model is
more aggregated to the fully fitted line than ANN. The errors for an
overestimation in low AGB segments and underestimation in high
AGB segments are reduced, and the scatter of QRNNb (Figure 3F)
is closest to the linear of y = x. It may be because QRb and
QRNNb have the advantage of integrating the quantitative models
corresponding to the lowest errors for each biomass segment.
Compared with ANN, the scatter points of QRb and QRNNb
were more aggregated toward the fully fitted line than ANN.
Moreover, the overestimation error for low AGB segments and
the underestimation error for high AGB segments were reduced,
which significantly solved the problem of low-value overestimation
and high-value underestimation of biomass. In addition, the scatter
points of QRNN matched the fully fitted line, and the scatter points
were most aggregated compared to the fully fitted line. So QRNN
has a better fitting effect than QR.

Moreover, the linear regression’s R2 between predicted
and observed AGB can also reflect the fitting performance
difference among the four models. The order of R2 is
QRNNb > QRb > ANN > LSR, and the R2 of LSR is lower
than 0.2, but the value of QRNNb reaches 0.885. All R2 of the
different quantiles of the QR is approximately 0.1, and for the
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TABLE 4 The evaluation results of four models (n = 73).

Models Quantile R2 RMSE (Mg/ha)

LSR – 0.15 51.78

ANN – 0.48 40.33

QR 0.1 0.11 76.79

0.25 0.21 61.38

0.5 0.33 48.87

0.75 0.31 60.41

0.9 0.2 84.75

QRNN 0.1 0.7 39.69

0.25 0.71 38.13

0.5 0.78 29.84

0.75 0.7 37.99

0.9 0.66 44.91

LSR, linear stepwise regression; ANN, artificial neural network; QR, quantile regression;
QRNN, quantile regression neural network; R2 , coefficient of determination; and RMSE, the
root of the mean square error.

FIGURE 4

Boxplot of QR and QRNN fitting values on five quantiles (QR:
quantiles regression; QRNN: quantiles regression neural network).

QRNN, the values are greater than 0.4; even the R2 of the 0.5
quantile in QRNN reaches 0.713. Furthermore, the absolute
intercept values of the QRNNb and QRb are lower than 10, and the
value is the lowest for the QRNNb. Meanwhile, the slope value of
the QRNN is 1.004 and 1.116 for QRb. But the intercept values of
LSR, ANN, and five quantiles of QRNN and QR are greater than
20 Mg/ha, even reaching 80 Mg/ha. The slope values of LSR and
five quantiles for QR are lower than 0.18, and the value range of
ANN and five quantiles for QRNN is from 0.583 to 0.790. These
indicate that the QRNN has the best fitting performance compared
with LSR, ANN, and QR (Figure 3).

4.3. Model assessment

Seventy-three test plots were used to compare the coefficients of
determination of these four models to further verify each model’s

predictive power for each biomass segment (Table 5). The R2

and RMSE as shown in Table 5 can intuitively know that the
effect of model performance is QRNNb > QRb > ANN > LSR.
At the stage of AGB <40 Mg/ha, the fitting results of each
model were arranged in descending order as QRNN, QR,
ANN, and LSR. In the 40 to 80 Mg/ha stage, the fitting
performance order was LSR < QR < ANN < QRNN. The
fitting results in the 80 to 120 Mg/ha stage were ranked as
QR < ANN < LSR < QRNN, while in the 120 to 160 Mg/ha
stage, the ranking was ANN < LSR < QR < QRNN. The fitting
results at the highest stage of the AGB rank are ordered as
QR < LSR < ANN < QRNN. This study has shown that the
use of the QRNN model performs better and has more stability,
compared to the remaining three models for AGB estimation in
the low AGB segment (AGB < 80 Mg/ha) and high AGB segment
(AGB >160 Mg/ha), where the forest AGB estimation is more
complicated.

As shown in Figure 5, in both the low to medium and mid-high
biomass segments, the negative mean errors (overestimations) of

TABLE 5 Model validation results using the test dataset (n = 73).

Indices Models

LSR ANN QRb QRNNb

R2 <40 0.025 0.109 0.384 0.761

40–80 0.063 0.181 0.131 0.844

80–120 0.183 0.088 0.024 0.621

120–160 0.082 0.006 0.178 0.631

>160 0.028 0.543 0.01 0.904

Total 0.175 0.601 0.808 0.971

RMSE (Mg/ha) <40 12.439 11.895 9.887 6.486

40–80 14.78 13.821 14.241 7.747

80–120 10.576 11.172 11.557 13.006

120–160 10.61 11.043 10.04 6.741

>160 28.915 19.813 29.181 9.059

Total 51.631 35.909 24.915 9.791

ME (Mg/ha) <40 −9.125 −28.765 2.206 2.353

40–80 −35.662 −21.708 −0.724 4.152

80–120 −7.081 −6.664 −2.743 −1.251

120–160 14.602 6.024 −11.45 −2.072

>160 77.374 44.864 0.834 2.735

Total 0.001 0.039 −2.941 1.74

MAE (Mg/ha) <40 69.125 33.219 7.866 2.353

40–80 37.985 21.708 12.739 4.152

80–120 17.44 25.791 14.315 8.518

120–160 24.013 16.252 23.661 2.636

>160 77.374 45.322 29.353 2.532

Total 39.358 27.767 17.814 2.934

R2 , the determination coefficients; RMSE, root means square errors; ME, mean error; and
MAE, mean absolute error. LSR, linear stepwise regression; ANN, artificial neural network;
QRb, best quantile regression in each biomass segment; and QRNNb, best quantile regression
neural network in each biomass segment.
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predictions from LSR and ANN were statistically and significantly
different from zero. The positive mean errors (underestimations)
from LSR and ANN were also statistically and significantly different
from zero (Figure 5A). This study has shown that all models are
statistically and significantly different from zero except QRNN on
the low and high biomass segments (Figure 5B). Moreover, ANN
has a more significant mean absolute error in the low and high
biomass segments, and it indicates that LSR and ANN have more
obvious disadvantages in overestimating and underestimating
biomass. Comparing (Figures 5A, B), we can see that the ME
and MAE of both QR and QRNN are lower than LSR and ANN,
especially on the low and high biomass segments with significant
improvement, which solves the problem of overestimation of low
values and underestimation of high values.

Moreover, Figure 5 shows that QRNN performs better than
QR overall. QRNN is more stable in estimating biomass, and both
the low and high biomass segments are significantly better. It also
improves the accuracy of the underestimation of high values.

4.4. Spatial distributions of the predicted
aboveground biomass

As shown in Figure 6, the AGB maps of the Pinus densata
forests were inverted using four models. The heterogeneity of
the AGB distribution for both LSR and QR is lower than that
of the other two models, and the proportion of the larger AGB
segments is high. It is difficult to distinguish the biomass segments
below 160 Mg/ha. Compared with the ANN, the AGB inversion
map using the QRNN model has a higher heterogeneity. QRNN
has a better performance in all segments, especially at segments
<40 Mg/ha and >160 Mg/ha. On the contrary, the red and blue
color is hard to recognize in the ANN figure, which means ANN
neither had a good performance at low nor at high biomass
segments <40 Mg/ha and >160 Mg/ha. This study has shown
that QRNN can better estimate the lower and higher biomass
segments, and QRNN can improve the accuracy influence caused
by underestimation and overestimation.

5. Discussion

5.1. Reducing the uncertainties from
overestimation and underestimation of
forest AGB using QRNN

Variable selection is the first step of model construction. In
general, most of the significant correlation variables which were
extracted from remote sensing of the AGB of Pinus densata forest
are texture measures in this study, and the rest are vegetation
indexes. Since texture measures can describe subtropical forest
canopy structure to a certain extent (Gao et al., 2018), which makes
up for the shortage of using remote sensing data to describe forest
stand structure, it further improves the possibility of forest AGB
estimation accuracy. The vegetation index describes vegetation
information by calculating spectral information between bands,
which can better reflect vegetation characteristics in the region than

single optical remote sensing image band information (Jiang et al.,
2022). As early as Lu (2005) found that using texture information
and vegetation index in Landsat Thematic Mapper (TM) data
helps improve tropical forest AGB estimation accuracy. Since the
vegetation indices integrate the information of infrared bands and
other bands, the vegetation index is selected in addition to the
texture measures in the variable selection of this study.

From the estimation and test results of the four models, it
is evident that the AGB assessment of the Pinus densata forest
has different degrees of overestimation and underestimation. The
estimation error is significant when AGB is less than 40 Mg/ha and
AGB is greater than 160 Mg/ha. The LSR shows a large estimation
error in each AGB segment through the analysis. In addition, except
for the segment of 120 to 160 Mg/ha, the estimation error of ANN is
larger than QR and QRNN. It indicates that the QR and QRNN can
estimate the entire dependent variable of conditional distribution
or a specific quantile function for the pure natural forest with a
wide distribution range and high complexity of AGB. Moreover,
it allows the derivation of conditional estimates corresponding to
each quantile, is less susceptible to extreme values, and has an
excellent fitting performance.

The LSR mainly focuses on explaining the dependent variable’s
mean value under each specific independent variable to describe the
relationship between the independent variable and the dependent
variable (Main-Knorn et al., 2011; Zhu et al., 2017). When
generalizing the dependent variable under the specific value of
the independent variable, LSR cannot be easily extended to the
non-mean estimate. However, the non-mean estimate, such as the
overestimation and underestimation in the forest AGB estimation
mentioned in this paper is the most difficult in most studies. QR
estimated the impact of potential changes in covariates on different
quantiles in conditional distribution (Taylor, 2000) such as the
five quantiles (0.1, 0.25, 0.5, 0.75, and 0.9) we selected in this
paper. These five fitting regression lines of QR can capture location
changes (median regression line), scale, and more complex shape
changes (the other non-median regression lines). The distribution
of vegetation index data has an unequal variation which is caused
by complex interactions in factors affecting biomass that cannot
all be loaded into the model and cannot all be measured and
explained; there is no zero-change in heterogeneous distributions.
The valuable information about the distribution of dependent
variables will be neglected if only the concentration trend is the
focus, especially when the distribution of dependent variables is
asymmetrical. The right skewness of the distribution will cause the
mean value to be much larger than the median, which will lead to
overestimation, and a lower estimation will present on the contrary.
This phenomenon of overestimation or lower estimation could be
solved as the QR model can model the shape change and skewness
of multi-variable in which the slopes range from minimum to
maximum, and the quantile sampling changes can vary rapidly
over short quantile intervals, especially when the data is close to an
extreme value. Therefore, QR allows the derivation of conditional
estimation corresponding to each quantile and is less susceptible
to extreme values to reduce the error in biomass estimation (Lin
et al., 2020; Tian et al., 2021). Moreover, the lack of both parametric
models is obvious in the lower AGB fitting and prediction accuracy.

Artificial neural networks is a simplified simulation that
simulates the characteristics of the intelligent structure of the
human brain and abstracts problems with unique information
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FIGURE 5

The statistical results of significant differences in the mean errors from zero. (A) The statistical test results of significant differences of mean errors
from zero; (B) the statistical test results of significant differences of mean absolute error (LSR, linear stepwise regression; ANN, artificial neural
network; QRb, best quantile regression in each biomass segment; QRNNb, best quantile regression neural network in each biomass segment; AGB,
aboveground biomass; ME, mean error; MAE, mean absolute error; * and ** represent significant levels of 0.05 and 0.01, respectively).

processing and solution capabilities. Moreover, this estimation
is used in ecosystem simulation, ecological data processing, and
extraction of environmental parameters from remote sensing
(Yadav et al., 2021; Andras et al., 2022). Combining the advantages

of QR and ANN, the QRNN is not affected by the outliers in
the data and does not fit the data in the regression to meet the
basic assumptions of the conventional model (He and Li, 2018;
Wang et al., 2022). Therefore, it is more suitable for the data
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FIGURE 6

The spatial distributions of the predicted aboveground biomass
(AGB) values of the Pinus densata forests using four models (LSR,
linear stepwise regression; ANN, artificial neural network; QRb, best
quantile regression in each biomass segment; QRNNb, best quantile
regression neural network in each biomass segment).

fitting of Pinus densata forest with a large AGB span. This study’s
results show that the error of the AGB assessment of Pinus densata
forest in different AGB segments of QRNN is the lowest among all
models, and QRNN can effectively reduce the underestimation and
overestimation error of AGB estimation of Pinus densata forest.
Furthermore, its stability is also higher than other models. So,
the QRNN is an optimal choice to solve the overestimation and
underestimation of the AGB estimation of the Pinus densata forest
in Shangri-La City.

5.2. Comparison and implication of
similar studies

To analyze the results of this study, some research on AGB
estimation of Pinus densata forest in Shangri-La City was used
for comparison. Ou et al. (2019b) assessed the AGB of Pinus
densata forest in Shangri-La City using Landsat 8 OLI image data
by the ordinary least square method and four non-parametric
regression methods. The study found that the estimation model
considering the spatial features of the plot data can improve
the AGB fitting performance of Pinus densata forests, and the
geographically weighted regression (GWR) model has the best
estimation performance, with R2 and RMSE of 0.665 and 34.507,
respectively. The fit result is lower than the QRNN with the best-
fit performance in this study, which indicates that in the AGB
assessment of the natural Pinus densata forest in Shangri-La City,
the model considering the data distribution features is preferred
to the data model considering the geographical distribution
characteristics. It is consistent with the research of Loiselle
et al. (2007). Data distribution characteristics are more critical
in estimation and prediction on a large scale. Ou et al. (2019b)

pointed out that with an AGB <70 Mg/ha and AGB >150 Mg/ha,
there will be an apparent overestimation and underestimation of
AGB in the Pinus densata forest. In this study, using QRNN,
the overestimation and underestimation can be controlled to
AGB <40 Mg/ha and AGB >160 Mg/ha, which improves the
performance of AGB estimation. It may be because QRNN can
embed quantile regression into the estimation for a complex
environment (Chen et al., 2021), reflecting the stress variable’s
characteristics in the whole distribution condition. More accurate
estimation results can be obtained in the higher and lower biomass
segments than in other methods (Xu et al., 2014). Moreover, the
spatial difference in the stand distribution in the forest will affect the
AGB distribution of the woods (Zhang and Shi, 2004; Assal et al.,
2016). Integrating the spatial distribution features of the forest into
the estimation parameters of the QRNN would further improve the
AGB estimation accuracy. Moreover, Zhang et al. (2018) applied
continuous Landsat images and national forest inventory data from
1987 to 2007 to estimate the AGB of Pinus densata forest in Shangri-
La City with the use of parametric models and non-parametric
models. Their research results show that the result of the non-
parametric model for Pinus densata forest AGB is better than that
of the parametric model, which is consistent with that of non-
parametric ANN, and QRNN is better than LSR in our paper. It is
not easy to estimate forest AGB with a simple linear model (Huang
et al., 2017). In Zhang et al.’s (2018) study, the R2 of the gradient
boosted regression tree model with the best accuracy for estimating
the AGB of Pinus densata forest reached 0.94, and the RMSE was
only 14.94, which was slightly lower than the QRNN of 0.971 and
9.791 in this study. The reason may be that in this study, quantile
fitting was carried out with QRNN, which fully considered low and
high biomass values, making the final results more accurate (Chen
and Cao, 2012).

5.3. Limitations and future research

There were 174 factors responsible for building the model and
gaining the relationship between the biomass and the dependent
variables. The factors included 148 textural measures and 26
variables derived from remote sensing, which had 7 spectral bands,
13 vegetation indices, and 6 image transform algorithms (Table 2).
In addition, we obtained a more accurate biomass value by five
quantiles group modeling. We aim to conduct further research,
hoping to solve the problem of low accuracy of large-scale carbon
storage estimation from the perspective of the correlation between
biomass and the influencing factors. The QR model can provide
more values than other models and effectively avoid the loss of valid
information. Unequal variation is better than a single slope (rate of
change) which may lead to uncertainty among the response variable
and the predictive variable in influencing factors. A bootstrap
procedure can be applied to get a distribution of slope value instead
of a single punctual estimate (Hao and Daniel, 2007). In this study,
a quartile group (0.1, 0.25, 0.5, 0.7, and 0.9) was used to improve the
models combined within the textural features and vegetation index.
In the future, 19 equidistant quantiles (Cade and Noon, 2003) or
more can be selected to reveal the influence which was mentioned
above to compare the estimated value of QR and QRNN models
for image interpretation and to measure the quantitative method
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for shape change, including position, scale, and skew. Suppose 19
quantiles ranging from 0.05 to 0.95 were used, it means 19 or more
fitted regression lines can capture changes in position (median
regression line), scale, and more complex shape changes (non-
median regression line). Then, we will boldly attempt multi-factors
and multi-quantiles modeling directly to solve: (1) Extreme value
problem. It would be a methodology used to capture more accurate
carbon storage data to obtain the stable biomass value range and
provide an objective basis for global large-scale biomass calculation.
(2) Uncertainty problems. The multi-scale, multi-location, and
multi-skewness information can be calculated via modeling multi-
factors and multi-quantiles without screening, which helps us solve
the uncertainty problem that affects biomass assessment.

In addition, except LSR, the other three models are non-
parametric. For the non-parametric model, it is not necessary
to make any assumptions about the distribution of the samples
(Mountrakis et al., 2010; Yadav et al., 2021; Andras et al., 2022), and
it is possible to use the samples for analysis directly. Moreover, in
this study, the minimum value of AGB of sample plots is 2.1 Mg/ha
greater than zero, and the maximum value is 251.5 Mg/ha; they
cover the AGB value of Pinus densata in the study area, and the
AGB low value in the study area is less. Meanwhile, the study
area is very typical of northwest Yunnan, and the Pinus densata
forest is principally distributed there. Therefore, it is necessary to
validate the model in other forest stands and regions in the future.
Furthermore, the feasibility of the method also would be further
confirmed by increasing the sample size in subsequent experiments.

6. Conclusion

To promote the evaluation accuracy of forest AGB of Pinus
densata with Landsat 8 OLI images and reduce the precision effect
from the overestimations and underestimations, four models–LSR,
ANN, QR, and QRNN were compared in this study. The following
conclusions were obtained: (1) the texture features extracted from
the Landsat 8 OLI images had greater correlations with the Pinus
densata forest AGB than the single spectral band and other
variables. (2) The QRNN has the highest R2 (0.971) and smallest
RMSE (9.791 Mg/ha), representing an excellent first-choice model
for AGB evaluation of Pinus densata forests. (3) QRNN showed
a reduced estimation error and remarkably promoted assessment
accuracy of Pinus densata forests AGB compared with LSR, ANN,
and QR for all biomass segments and the pooled dataset by
significantly decreasing the overestimations for the plots with
lower AGB values and the underestimations for the plots with
higher AGB values. In conclusion, this study supplies a more

accurate model for the AGB evaluation of the Pinus densata forest
in Shangri-La City by improving the precision effect from the
overestimations and underestimations.
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