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Climate change significantly impacts global agricultural production, giving rise to

considerable uncertainties. To explore these climate impacts, three independent

methods have been employed: manipulated experiments, process-based crop

models, and empirical statistical models. However, the uncertainty stemming

from the use of different methods has received insufficient attention, and its

implications remain unclear, necessitating a systematic review. In this study, we

conducted a comprehensive review of numerous previous studies to summarize

the historic development and current status of each method. Through a

method comparison, we identified their respective strengths, limitations, and

ideal areas of application. Additionally, we outlined potential prospects and

suggested directions for future improvements, including clarifying the response

mechanisms, updating simulation technologies, and developing multi-method

ensembles. By addressing the knowledge gap regarding method differences, this

review could contribute to a more accurate assessment of climate impacts on

agriculture.
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1. Introduction

The impact of global climate change on agricultural production in the 21st century has
been significant, many countries and regions worldwide have observed reduced yields in
crops such as wheat, maize, rice, and oilseed rape (Luo et al., 2005; Arora, 2019; Ray et al.,
2019; Sultan et al., 2019; Ortiz-Bobea et al., 2021; Lachaud et al., 2022; Chandio et al., 2023). It
is expected that temperatures will continue to rise, leading to an increase in extreme weather
events. This trend adds to the agricultural production uncertainty, particularly for major
crops such as maize, rice, and soybeans (Vogel et al., 2019; Pörtner et al., 2022). Without
adaptation measures, global yields of important food crops could decline by 12–20% by the
end of this century (Lobell and Gourdji, 2012; Wheeler and Von Braun, 2013; Challinor et al.,
2014; Aggarwal et al., 2019). Therefore, accurately assessing the impact of climate change on
crop yields is crucial for ensuring global food security.

There are several methods are used for climate change’s effects on agriculture research,
such as manipulated experiments, process-based crop models, and empirical statistical
models. Field experiments was the earliest commonly used to expose crops to different
climatic conditions, either through natural variations or controlled climate factors, to study
their impact on crop growth and yield. With technological advancements, process-based
crop models and empirical statistical models have become more prominent. Process-
based crop models utilize computer simulations to quantitatively analyze the physiological
mechanisms and dynamic processes of crop growth and yield. Empirical statistical models

Frontiers in Forests and Global Change 01 frontiersin.org

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://doi.org/10.3389/ffgc.2023.1198186
http://crossmark.crossref.org/dialog/?doi=10.3389/ffgc.2023.1198186&domain=pdf&date_stamp=2023-07-06
https://doi.org/10.3389/ffgc.2023.1198186
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/ffgc.2023.1198186/full
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-06-1198186 July 1, 2023 Time: 14:42 # 2

Feng et al. 10.3389/ffgc.2023.1198186

establish mathematical relationships between climate change and
crop yield. Over time, significant progress have been made
in developing these methodologies. For example, Shi et al.
(2013) identified uncertainties in statistical models related to
research scale, collinearity of variables, and detrending. Similarly,
White et al. (2011) and Rötter et al. (2018) evaluated existing
process based crop models, assessing their simulation effects
and research standards while highlighting sources of error and
limitations. However, many current studies tend to focus on specific
research methods, which may introduce biases and uncertainties
into climate change impact studies. This limitation reduces the
comprehensiveness and reliability of individual approaches. For
example, empirical statistical models, based on limited historical
observations, face challenges in accurately predicting future yield-
climate relationships (Lobell et al., 2006). Conversely, process-
based crop models rely on empirical formulas to approximate
internal crop growth processes (Wang et al., 2022). Therefore, it
is crucial to understand the advantages and disadvantages of each
method and explore avenues for future improvement.

This paper presents a comprehensive review of recent
advancements in research methods used to study the impacts of
climate change on agriculture and adaptation strategies. Its primary
aim is to provide researchers with a deeper understanding of
existing methods and serve as a reference for future methodological
innovations and interdisciplinary collaborations. To achieve this
goal, the paper systematically examines three major methods:
manipulated experiments, process-based crop models, and
empirical statistical models. It critically evaluates the advantages,
disadvantages, and directions for future improvement for each
method. Additionally, the paper explores the interconnectedness of
multiple methodological approaches and their relevance to current
research. It also discusses the challenges associated with current
methods and highlights potential future research prospects.

2. Manipulated experiments

Manipulated experiments involve setting different
environmental conditions during crop growth to simulate the
impact of climate change on crop yield. As an early research
method, manipulated experiments has evolved from utilizing
natural climate variations to artificial control. This method is
simple and straightforward, with a high level of operability.
Initially, artificial manipulated experiments were conducted in
growth chambers or greenhouse, where temperature, light, water,
and gas control experiments were carried out in adjustable but fully
enclosed environments. Modern large-scale artificial greenhouse
relies on facilities such as strip lights, removable platforms, and
exhaust systems to achieve uniform distribution of meteorological
factors such as light, temperature, and water. Real-time monitoring
and precise control are achieved with the support of computers.
Hatfield and Prueger (2015) set up warmer conditions in an
artificial climate chamber and found maize yield was significantly
reduced. Besides, temperature effects are increased by water deficits
and excess.

However, artificial greenhouse block the exchange of water
and gases between crops and the external environment, lacking
the comprehensive effects of the natural environment. To avoid

abnormal increases in humidity and temperature caused by fully
enclosed environments, open-top chambers (OTCs) and open-air
CO2 enrichment systems (Free-Air CO2 Enrichment, FACE) have
been used. OTCs is a gas-enriched greenhouse without a cover
on the top, this design ensures sufficient exchange of water and
gases between crops and the external environment, significantly
enhancing the ability to simulate realistic growth conditions. OTCs
have been widely used in experiments investigating the effects of
gases such as CO2 and O2 on crop growth (Rogers et al., 1994;
Ziska et al., 1997; Ewert et al., 2002; Kakani et al., 2003; Ainsworth
et al., 2012). However, there are still some differences in conditions
such as wind speed and light within the OTCs compared to natural
conditions. Over time, the outer film of the OTCs may undergo
oxidation, yellowing, and dirt accumulation, leading to shading of
solar radiation and affecting the experimental outcomes (Leadley
and Drake, 1993).

To further enhance simulation realism, researchers have
increasingly turned to FACE systems. FACE systems release CO2
or CO2-rich air from above the ground onto plant canopies and
adjust CO2 flow rates through feedback mechanisms (Long et al.,
2004), enabling studies on the effects of elevated CO2 and O3
concentrations on crops’ productivity (Long et al., 2006; Myers
et al., 2014). Kimball et al. (2002) conducted experiments in
different countries using the FACE system and found elevated
CO2 increased crop yield substantially in C3 species, but little
in C4. Combining an infrared heater with the FACE system to
conduct experiments, known as T-FACE (Temperature-FACE),
allows for the research of the combined effects of temperature and
CO2 concentration on crops (Ruiz-Vera et al., 2013). Compared
to OTC, FACE systems effectively reduce edge effects and cause
minimal disturbance to farmland microclimates (Ainsworth et al.,
2008). Nonetheless, the vertical gradient of CO2 concentration
gradually decreases, which is also influenced by wind speed (Long
et al., 2004). Currently, FACE systems are evolving toward genetic
variation and transgenic technology research aimed at adapting
agricultural planting systems to future climates (Ainsworth et al.,
2020).

3. Process-based crop models

Process-based crop models are a type of models based
on the internal physiological mechanisms of crops, which can
comprehensively consider the relationships among the soil-crop-
atmosphere system. They describe various physiological processes
of crop growth as equations and incorporate various environmental
factors (meteorological modules such as temperature, water,
and light, as well as soil parameters, cultivars, and agronomic
management). The earliest crop models can be traced back to
the model on corn canopy photosynthetic rate developed by de
Wit (1965). Subsequently, scientists from different countries have
developed series of models, such as the DSSAT series (Jones et al.,
2003), and the APSIM series (Keating et al., 2003), WOFOST (Van
Diepen et al., 1989), CropSyst (Stöckle et al., 2003), SIMPLE (Zhao
et al., 2019), etc. In recent years, through setting different climate
inputs, crop models have been widely applied in studies on the
impacts of climate change on crop yields, whether in long-term
changes (Leng and Hall, 2019; Shahid et al., 2021) or in quantifying
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extreme weather events (Xiao et al., 2022a; Júnior et al., 2023).
Researchers have integrated and compared multiple crop models,
consistently reached the conclusion that global warming has a
significant negative impact on crop yields (Asseng et al., 2013; Bassu
et al., 2014; Sultan et al., 2019; Zhao et al., 2022).

Process-based crop models based on site scale consider only the
small-scale climate of individual locations. To incorporate large-
scale regions, countries, or global scales, it is necessary to utilize
crop models at a larger scale. One commonly approach is the
grid-scale crop model. It involves dividing the geographic region
into grids of specific resolutions and inputs gridded meteorological
data, soil data, management data. For example, Deryng et al.
(2011) used the PEGASUS model to simulate the response of
major cereal crops to future climate change under different
agronomic management. Rosenzweig et al. (2014) combined
multiple global crop models to simulate the yield impact under
historical climate conditions and found that the results were in
good agreement with observed values, confirming the applicability
of global grid-scale crop models. In recent years, the application
of machine learning methods has made remarkable progress
in regional or global-scale research, complementing traditional
modeling methods through data-driven approaches (Reichstein
et al., 2019). Studies have shown that machine learning-based
crop modeling systems can accurately and rapidly predict crop
yields in large regions at different spatial resolutions (Xiao et al.,
2022b).

4. Empirical statistical models

Empirical statistical models is an approach used by establishing
mathematical models that describe the relationship between
climate factors and crop production. These models rely on both
crop yield data and climate data to establish this correlation.
Prior to developing empirical statistical models, it is necessary to
separate the climate yield from trend yield and error terms. This is
crucial because variations in crop yield are influenced not only by
climate change but also by factors like technological advancements.
Common methods employed to detrend the original yield data
include differencing, multi-year moving averages, linear regression,
and filtering analysis (Meza and Silva, 2009; Osborne and
Wheeler, 2013; Troy et al., 2015; Kukal and Irmak, 2018).
Additionally, considering the nonlinear relationship between
economic factors and natural factors in grain production (Xu
et al., 2021), econometric models have been introduced. These
models include production functions (Just and Pope, 1978; Isik
and Devadoss, 2006), economic-climate models (C-D-C models)
(Chou and Ye, 2006), and the Ricardo model (Deressa and Hassan,
2009).

Empirical statistical methods have evolved from simple
univariate linear regression models to more complex multivariate
regression models, incorporating multiple influencing factors.
The development has further advanced with the integration of
machine learning and deep learning techniques, enabling the
transition from univariate to multivariate and from linear to
nonlinear modelling. The univariate linear regression model
establishes a straightforward linear relationship between crop
yield and a single climate factor (Parry and Martens, 1999).

For example, Peng et al. (2004) constructed a simple univariate
linear model using rice yield data and seasonal temperature
data from observation stations in the Philippines. They found a
significant negative correlation between rice yield and minimum
temperature, with approximately a 10% yield reduction for each
1◦C increases in minimum temperature. Univariate regression
models can only consider the influence of a specific climate
condition, such as temperature alone, and cannot account for
all factors affecting yield (Carter et al., 1992). However, climate
change is complex and often involves multiple simultaneous
climate conditions impacting crop yield. Hence, the application
of multivariate regression models has emerged. Multivariate
regression models establish climate-yield correlation models with
multiple climate conditions as independent variables and yield as
the dependent variable. These models can be categorized based
on temporal variations (time series models), spatial variations
(cross-sectional models), or both (panel models) (Lobell and
Burke, 2010). They have demonstrated good performance in
simulating the impacts of climate change on crops like maize,
wheat, and soybeans (Malikov et al., 2020; Ranjan et al., 2020).
For instance, Lobell and Field (2007) established a multivariate
linear regression model between temperature, precipitation, and
yield, revealing a clear negative response of global wheat, maize,
and barley yields to temperature increases. Schlenker and Lobell
(2010) developed panel models and projected varying degrees
of decline in crop yields such as maize, sorghum, and millet
in Sub-Saharan Africa by the mid-century as climate change
progresses.

While regression models excel at capturing linear relationships,
they face limitations when it comes to simulating nonlinear
relationships. To overcome this limitation, machine learning
techniques have gained widespread use in climate change impact
assessment (Cao et al., 2021; Guo et al., 2021; Lischeid et al., 2022).
Machine learning approaches employ semi-parametric variables
based on deep neural networks (Crane-Droesch, 2018) or decision
systems like support vector machines and fuzzy logic for yield
modelling (Palanivel and Surianarayanan, 2019). They leverage
algorithms such as decision trees and random forests for prediction
(Jeong et al., 2016). Machine learning demonstrates significant
potential in yield assessment, surpassing traditional regression
models. Unlike traditional empirical statistical models that rely on
specific-shaped response functions, machine learning compensates
for their limitations by effectively capturing complex nonlinear
relationships in high-dimensional datasets. For example, Leng
and Hall (2020) compared the performance of machine learning
and multivariate regression models and found that machine
learning explained 93% of the yield variability, significantly higher
than the 51% explained by multivariate regression. Moreover,
under a global warming scenario of 2◦C, the maize yield in the
United States is projected to decrease by 13.5% (Leng and Hall,
2020).

5. Methods comparison

To date, these methods have been widely used. However, due to
differences in their underlying principles, these methods have both
advantages and disadvantages in practical applications (Table 1).
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TABLE 1 Advantages and disadvantages of each method.

Method Advantages Disadvantages

Manipulated experiments • Strong environment controllability
• Interpretability of growth and development processes
• High reliability of results

• Hard to upscale to regional level
• Limited to some specific years
• Time and money expense

Process-based crop models • The physiological mechanism of crop growth included
• High simulation efficiency
• Strict control on climatic variables

• Parameter uncertainties
• Large input data requirements
• Empirical physiological processes included
• Lack processes of extreme climate impacts

Empirical statistical model • Clear and simple equations between yield and climate
• No calibration process
• Rich input data sources

• Strong empirical assumptions
• Lack of complex nonlinearity relationships collinearity problems between
different factors
• Limitation of future scenario extrapolations

5.1. Manipulated experiments

Using manipulated experiments to precisely regulate the
thresholds of climate factors can simulate the actual environmental
conditions of crop growth and development, resulting in high
reliability of the obtained results. Therefore, the results obtained
from controlled experiments are often used to calibrate crop
models (Asseng et al., 2004). However, the experimental period
of manipulated experiments is dependent on the crop’s growth
cycle, and it involves complex operations, a long experimental
cycle, and substantial human and material resources. Consequently,
it is challenging to conduct long-term studies on future climate
changes spanning several decades to centuries. Furthermore,
due to the heterogeneity of the climate terrain and soil in the
experimental area, the site-based experimental results have poor
representativeness to larger areas. To upscale to the regional
scale, a large amount of experimental data might be needed. A
plausible solution is to establish a unified research framework.
For example, Coordinated Distributed Experiments (CDE) offers
the advantage of addressing global problems while ensuring
the inherent accuracy of control experiments (Fraser et al.,
2013).

5.2. Process-based crop models

Process-based crop models can effectively simulate the physical
mechanisms of crop growth and strictly control the impact of
single variables, avoiding the need for long-term field experiments.
However, operating such models requires a significant amount of
parameter calibration work, especially for large scale and long term
simulations, and the process is complex. Within the model, crop
growth processes and growing environments are approximately
described using empirical or descriptive formulas, which results in
some deviations in the response of crop physiological processes.
Moreover, this uncertainty varies among different models (Wang
et al., 2022).

5.3. Empirical statistical models

Empirical statistical models evaluate and predict crop yields
by establishing a correlation between climate factors and historical

yields, avoiding the complex tuning required by crop models
and the need for inputting soil properties and management
practices measured in the field. These models are relatively easy to
apply and suitable for regional and global-scale studies. However,
the climate factors used as input for these models are often
monthly or seasonal averages, smoothing the impact of climate
variability during the growing season and neglecting the effects
of extreme weather events (Chen et al., 2004). Additionally, the
accuracy of detrending methods used in empirical statistical models
is difficult to evaluate. Moreover, empirical statistical models
are based on limited historical observations, which introduce
sampling uncertainty and simulation bias (Lobell et al., 2006).
Because these models lack a reliable physical mechanism for
extrapolation, they exhibit uncertainty in predicting yields beyond
the historical range, and are more suitable for historical or near
future studies.

6. Perspectives

6.1. Clarifying crop response
mechanisms

The majority of existing yield prediction models operate as
“one-way” mechanisms, failing to account for the fact that crops
can alter their morphology and physiological functions to adapt
to climate change. Moreover, current models are inadequate in
assessing the chain reaction of crops to a series of weather events,
their ability to adapt to the combined effects of multiple factors,
and their response to the precursors of impact factors (Suzuki
et al., 2014). In the future, more attention should be paid to
the comprehensive influence of soil conditions, hydrological cycle,
pest problems, and other factors in crop models (Newbery et al.,
2016; Basso et al., 2018; Deutsch et al., 2018; Tomaz et al., 2020;
Wei et al., 2021; Denissen et al., 2022). Additionally, the potential
impact of climate change on crop production is not limited to
the growth period, as environmental changes during non-growth
periods can also indirectly affect crop production. Therefore, it
is necessary to establish a model that comprehensively considers
the basic knowledge of plant physiology and atmospheric science,
including feedback mechanisms (Tonnang et al., 2022), in order to
achieve a balance between the authenticity and controllability of the
simulation.
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6.2. Introducing emerging simulation
technologies

The incorporation of emerging technologies can significantly
enhance the research capabilities of traditional methods during
the process of methodological development. For instance, the
integration of remote sensing, big data, and artificial intelligence
into existing approaches (Jiang et al., 2020) can address more
complex data acquisition and processing requirements, enabling
large-scale simulation and regulation. The utilization of remote
sensing technology allows for weather and crop data with multiple
spatial and temporal resolutions, enabling the assimilation of
dynamic crop phenotype data provided by satellites to achieve
closer real-time monitoring. This, in turn, enhances the ability of
crop models to monitor and predict large-scale crop yields (Huang
et al., 2019). However, the current stage of development of data
assimilation technology and its application in this field is still in its
early stages. As such, machine learning technologies may be key to
enhancing the maturity of this approach (Cai et al., 2019).

6.3. Application of method ensemble

Many researchers have assembled multiple crop models to
optimize simulation effectiveness and avoid systematic errors
associated with a single model (Bassu et al., 2014; Martre et al.,
2015), which have been shown to provide more reliable results
(Asseng et al., 2013). However, integrating models does not
fundamentally improve the underlying mechanisms, combining
physiological principles and basic science can be essential (Yin
et al., 2021). What is more remarkable is that combining multiple
methods can effectively reduce uncertainty (Zhao et al., 2017).
For instance, the integration of manipulated experiments with
process-based crop models can supplement missing modules
within existing models or establish more targeted new models by
observing various physiological processes throughout the entire
growth period of crops under particular conditions. In addition,
developing a joint model that combines process-based crop models
with statistical models (Roberts et al., 2017) can be beneficial. Such
models use simple statistical models to summarize and statistically
analyze simulation results generated by process-based crop models.

By using polynomials and limited weather variables, these models
can accurately replicate process-based crop model results in global
grid cells, avoiding the complex parameter adjustment process
associated with process-based crop models while also predicting
long-term trends (Blanc and Sultan, 2015).
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