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Altitudinal shifting of major forest
tree species in Italian mountains
under climate change
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Euro-Mediterraneo sui Cambiamenti Climatici, Viterbo, Italy, 2National Biodiversity Future Center

(NBFC), Palermo, Italy

Climate change has profound implications for global ecosystems, particularly

in mountainous regions where species distribution and composition are highly

sensitive to changing environmental conditions. Understanding the potential

impacts of climate change on native forest species is crucial for e�ective

conservation and management strategies. Despite numerous studies on climate

change impacts, there remains a need to investigate the future dynamics of climate

suitability for key native forest species, especially in specificmountainous sections.

This study aims to address this knowledge gap by examining the potential shifts in

altitudinal range and suitability for forest species in Italy’s mountainous regions. By

using species distributionmodels, throughMaxEnt we show the divergent impacts

among species and scenarios, with most species experiencing a contraction in

their altitudinal range of suitability whereas others show the potential to extend

beyond the current tree line. The Northern and North-Eastern Apennines exhibit

the greatest and most widespread impacts on all species, emphasizing their

vulnerability. Our findings highlight the complex and dynamic nature of climate

change impacts on forest species in Italy. While most species are projected to

experience a contraction in their altitudinal range, the European larch in the

Alpine region and the Turkey oak in the Apennines show potential gains and

could play significant roles in maintaining wooded populations. The tree line is

generally expected to shift upward, impacting the European beech—a keystone

species in the Italian mountain environment—negatively in the Alpine arc and

Northern Apennines, while showing good future suitability above 1,500 meters

in the Central and Southern Apennines. Instead, the Maritime pine emerges as

a promising candidate for the future of the Southern Apennines. The projected

impacts on mountain biodiversity, particularly in terms of forest population

composition, suggest the need for comprehensive conservation andmanagement

strategies. The study emphasizes the importance of using high-resolution climate

data and considering multiple factors and scenarios when assessing species

vulnerability. The findings have implications at the local, regional, and national

levels, emphasizing the need for continued e�orts in producing reliable datasets

and forecasts to inform targeted conservation e�orts and adaptive management

strategies in the face of climate change.
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1. Introduction

The findings of the most recent Italian National Inventory
of Forests and forest Carbon Pools (Inventario Nazionale delle
Foreste e dei Serbatoi forestali di Carbonio INFC-2015, Gasparini
et al., 2022), published in September 2021, highlight a consistent
increase in the forested area across Italy. Italian forests now cover
15 million hectares, which accounts for about one-third of the
national territory. This data emphasizes the crucial importance
of these areas from a land management perspective. Following
estimates by the Italian National Institute of Statistics (ISTAT),
the forested area was 5.7 million hectares in 1954, shortly after
the Second World War, when significant deforestation occurred
due to energy and wartime demands. However, the forested
area gradually expanded to nearly 9 million hectares by 1985,
as documented by the first National Inventory of Forests and
forest Carbon Pools, and has continued to grow since then.
Italian forests are steadily increasing in surface, recolonizing
areas that were previously abandoned due to human activities.
Recent data from the Food and Agriculture Organization (FAO)
in their Forest Resources Assessment (FAO, 2020) positions Italy
among the top ten countries globally in terms of the rate of
expansion of forested areas. Such a consistent increase is likely
influenced by various factors, including changes in land use
and management practices, but is in particular dominated by
natural processes (Agnoletti et al., 2022). This trend can have
positive implications for biodiversity providing new habitats or
corridors for wildlife. However, mountain forests in particular
face heightened vulnerability to the impacts of climate change,
primarily as a result of temperature limitations and their increased
susceptibility to warming (Albrich et al., 2020). Italian wooded
areas are of paramount importance, contributing significantly
to both economic and non-economic sectors and providing
multipurpose services in terms of production (timber, firewood,
and their derivatives), protection and recreation, among others.
Indeed, the concept of Forest Ecosystem Services (FES), intended
as the direct and indirect contributions to human wellbeing
by forest ecosystems, was developed and well-described by the
Millennium Ecosystem Assessment in 2010 (Millenium Ecosystem
Assessment, 2010). The multifaceted contributions of Italian
wooded areas underscore their significance as vital assets, crucial
for sustaining both the economy and the overall wellbeing of
society, providing industries and individuals with raw materials
and sustainable energy sources—if managed according to modern
sustainable forestry criteria (Buonincontri et al., 2023; Testolin
et al., 2023). Similarly, non-wood forest products (i.e., mushrooms,
chestnuts, truffles, seeds, etc.) represent additional sources of value
as they supply human nutrition, renewable materials, cultural
and experiential services, creating job and income opportunities
in rural areas (Weiss et al., 2020). Furthermore, forests provide
invaluable contributions to soil creation and preservation, serving
as essential regulators of the hydro-geological cycle, as well as
influencing water availability and quality. Forests also support and
enhance biodiversity, fostering the existence of a wide range of
species and contributing to the overall richness and ecological
balance of ecosystems. Lastly, the recreational benefits offered by
forests have gained recognition as essential for human wellbeing

(Anderson et al., 2023). Hence, Italian forests offer valuable aid to
local economies, even in cases where woodmay not be fully utilized
or economically optimized as a resource. Finally, forests are the
most efficient and cheapest means of carbon dioxide removal from
the atmosphere.

The rapid changes in climate, as highlighted by the
Intergovernmental Panel on Climate Change (IPCC, 2022),
have raised significant concerns regarding the health and
functionality of forest ecosystems. Over the past few decades,
there has been a notable intensification of disturbance regimes,
posing challenges to the provision of various FES, particularly
in terms of biodiversity protection. Extreme events such as
droughts and storms are becoming more frequent, prolonged,
and intense, significantly impacting the resilience of Italian
forests (i.e., the “Vaia” storm in the North-Eastern Alps, in
November 2018). Over several decades, widespread reports of
forest mortality and decay have emerged in both the Apennines
and plain environments [e.g., leading to the deterioration
of oak species (Conte et al., 2019)] as well as in Alpine
regions [notably with Scots pine forests in the North-West
(Vacchiano et al., 2012)]. Additionally, the climate crisis has
undeniably contributed to an increase in the number, intensity,
and relative risk of forest fires (Bacciu et al., 2012). These
mounting pressures are driving substantial changes in the
species composition of historic Italian forest stands (Di Pasquale
et al., 2020; Pecchi et al., 2020; Sferlazza et al., 2023). The rapid
pace of these complex transformations surpasses the potential
for evolutionary adaptation (Lindner et al., 2010; Trumbore
et al., 2015) and migration processes. Fully understanding
these dynamics is crucial to try defining hypotheses about
future scenarios.

Species Distribution Models (SDMs)—also referred to as
Correlative Species Distribution Models, bioclimatic envelope
models, correlative ecological niche models, or habitat suitability
models—are computational models used to examine the
relationships and equilibrium between the geographic distribution
of species or species groups and a set of environmental variables
(Guisan and Thuiller, 2005; Austin and Niel, 2011; Noce et al.,
2017, 2019). SDMs, in conjunction with Geographic Information
Systems (GIS) tools, offer promising approaches for mapping
and predicting the potential range expansion of endemic or
invasive species in both historical and future contexts, respectively
(Franklin, 2010; Ali et al., 2021; Sofi et al., 2022). By integrating
species presence-location data with geospatial information, SDMs
rely on various algorithmic approaches, including machine
learning and regression-based methods, among others, to develop
non-linear and discontinuous relationships between species and
their environmental conditions (Heumann et al., 2013). These
models provide valuable insights into the potential distribution
ranges of species under different environmental scenarios,
aiding in the assessment of species’ responses to changing
environmental conditions. Through the utilization of SDMs, a
better understanding of how species distributions may shift in
response to factors such as climate change, land use change, or
other environmental drivers can be obtained (Salinas-Ramos
et al., 2021; Jamwal et al., 2022). Such information is crucial
for effective conservation and management strategies, as it
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allows for proactive measures to be implemented to mitigate
potential negative impacts or to promote the preservation of
endangered species.

This study aims to project the potential suitability of selected
target forest species in Italy into the medium-term future,
considering the foreseen environmental changes associated with
the ongoing climate crisis, especially in mountain areas. We
seek to assess the potential shifts in the distribution areas
of these species under two distinct socio-economic forcing
scenarios: a moderate scenario (RCP 4.5, Thomson et al.,
2011) and a high-emission scenario (RCP 8.5 Riahi et al.,
2011). By examining the variations in potential distribution
areas, both in terms of areas lost and gained, we aim to
provide insights into the potential impacts of different future
trajectories on these forest species. This analysis will contribute
to a better understanding of the potential consequences of the
climate crisis on Italian mountain forest ecosystems and will
assist in developing informed strategies for their conservation
and management.

2. Materials and methods

For comprehensive methodological reporting, we adhered to
the ODMAP (Overview, Data, Model, Assessment, Prediction)
protocol v1.0 (for detail see Supplementary Table 1), as proposed
by Feng et al. (2019) and Zurell et al. (2020). Further details can be
found in the Supplementary material. All analyses were conducted
in ESRI ArcGIS Pro 3.1.1, ESRI ArcMap 10.8.2 and SAGA-GIS

7.8.2. NetCDf files were processed with the Climate Data Operators
2.0.6 collection.

2.1. Study area and species occurrence data

To encompass the entire Italian territory, the study area
was delimited by national administrative boundaries. Presence
data for forest species were obtained from the second National
Inventory of Forests and forest Carbon Pools - INFC 2005 (https://
www.inventarioforestale.org/it/). This inventory, freely available
for research purposes, provides presence data (Figure 1A) for both
native and allochthonous forest species across Italy. The data was
collected using a random sampling method based on a 1 km x 1
km grid system aligned withmeridians and parallels (Gasparini and
Tabacchi, 2011). From this dataset, we derived a subset consisting
of the 20 most representative species in terms of coverage across
the entire territory, including 13 broad-leaved and seven needle-
leaved species (Table 1). The characteristics of the survey that
generated the INFC 2005 inventory led us to classify the occurrence
dataset used for the SDM approach as a presence-only dataset.
At the time of our analysis, the most recent data from the third
National Inventory of Forests and forest Carbon Pools—INFC
2015 (published in a geospatial compatible format in October
2022) was not yet available, thus necessitating the use of the INFC
2005 dataset. The final rarefied occurrence dataset was obtained
removing spatially autocorrelated occurrence points with a 20 km
distance.

FIGURE 1

(A) Locations of INFC2005 samples. (B) Sections considered from the “Italian Ecoregion Map” dataset (Blasi et al., 2014, 2018).
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TABLE 1 Species selected for the analyses, with their Latin and Common

names.

Latin name Common name Presence
points

AUC

Abies albaMill. Silver fir 348 0.928

Acer campestre L. Field maple 533 0.815

Carpinus betulus L. European hornbeam 296 0.845

Castanea sativaMill. Chestnut 1,150 0.844

Corylus spp. Common hazel 393 0.817

Fagus sylvatica L. European beech 1,316 0.910

Fraxinus ornus L. Manna ash 1,506 0.804

Larix deciduaMill. European larch 661 0.906

Ostrya carpinifolia Scop. Hop hornbeam 1,403 0.824

Picea abies (L.) H.Karst Norway spruce 951 0.901

Pinus cembra L. Swiss stone pine 87 0.963

Pinus halepensisMill. Aleppo pine 172 0.810

Pinus pinaster Aiton Maritime pine 149 0.922

Pinus sylvestris L. Scots pine 437 0.910

Quercus cerris L. Turkey oak 1,468 0.822

Quercus ilex L. Holm oak 708 0.822

Quercus petraea (Matt.)
Liebl.

Sessile oak 313 0.847

Quercus pubescensWilld. Downy oak 2,111 0.771

Quercus robur L. Pedunculate oak 126 0.866

Quercus suber L. Cork oak 205 0.921

Presence points identify the number of INFC2005 samples where individuals of the selected

species have been identified. The AUC is the Area Under Curve value obtained from the best

MaxEnt model.

2.2. Environmental predictors

To ensure optimal modeling performance, we incorporated
Very High Resolution (VHR) climate data into our analyses. The
VHR-REA_IT dataset (Raffa et al., 2021), with a resolution of 2.2
km, covers the entirety of the Italian territory. This dataset was
obtained by downscaling the ERA5 reanalysis dataset, which has
a native resolution of ‘31 km (Hersbach et al., 2018), to a resolution
of around 2.2 km for the reference period 1981–2020, and using
the Regional Climate Model (RCM) COSMO-CLM (Rockel et al.,
2008).

From the VHR-REA_IT dataset, we selected four variables
(maximum, minimum, mean temperature, and precipitation) at a
native temporal resolution of 1 hour. These variables were then
converted into monthly mean values for the period 1991-2020,
referred to as the “historical” period. Subsequently, the Climate
Tools Library in SAGA-GIS 7.8.2 (https://saga-gis.sourceforge.io/
saga_tool_doc/7.7.0/climate_tools.html) was employed to process
these variables and derive a series of 19 bioclimatic indicators
following the definitions provided by Worldclim (https://www.
worldclim.org/data/bioclim.html).

For the analysis of altitude and slope, the Digital Elevation
Model (DEM) over Europe (EU-DEM v1.1) was used, as available
from the Copernicus Land Monitoring Service (https://land.
copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1). This DEM
combines data from SRTM and ASTER GDEM sources, is at
25 m resolution and covers the EEA39 countries and provides
information on altitude within the study area, allowing to derive
other topographic derivatives through GIS tools. In this case, the
slope was calculated. The environmental predictors considered for
the SDM analyses comprise the 19 bioclimatic indicators and the 2
topographic variables.

2.3. Model fitting and tuning

To tune the modeling process, we used the SDMtoolbox
package v2.5 (Brown et al., 2017) based on MaxEnt v3.4.3 (Merow
et al., 2013; Phillips et al., 2017) (http://biodiversityinformatics.
amnh.org/open_source/maxent) to develop spatial models with a
logistic output of historical suitability. The presence data for the
20 target species, obtained from INFC2005, were used for model
training. The MaxEnt machine learning algorithm was selected
due to its several advantages over other algorithms, particularly its
requirement of presence-only data (Chiang and Valdez, 2019).

During the tuning phase, various settings were explored to
train the MaxEnt models, including the number of predictors,
background data selection, model complexity, and threshold
selection. To address multicollinearity among the predictors, a
preliminary analysis was conducted as indicated by Dormann et al.
(2013). Additionally, to prevent overfitting (Elith et al., 2010), we
performed correlation analyses with pairwise Pearson excluding
predictors higher than defined thresholds (0.7, 0.8, 0.9).

For the background data, different selection types (Minimum
Convex Polygon, Buffer Distance from Observation Points) and
selection distances ranging from 20 to 500 km were considered. As
it was not possible to calibrate the model on independent data as
suggested by Araujo et al. (2005), in each run, the presence data
were divided into three groups to train both spatially segregated
and non-spatially segregated models.

In the MaxEnt settings, “logistic” was set as the output
format, the replicated run type was selected as “crossvalidate”,
and the random test percentage was set to 20. The Replicates
number was set to 5. Five feature classes were included: linear,
quadratic, product, hinge, and threshold. Moreover, a combination
of regularization multipliers (0.2, 0.5, 1, 1.5, 2, 5, 10) was employed
to fine-tune the models. Response curves were generated to analyze
the relationships between predictor variables and habitat suitability
for the target species. Additionally, we assessed the importance
of the predictor variables through jackknifing (Baldwin, 2009)
with minimum occurrence points set to 15. The best model was
selected considering AUC values and then the Omission Error Rate
(OER). Additionally, the True Skill Statistic (TSS) (Allouche et al.,
2006) was assessed for the best models. The minimum number of
occurrence points to model distribution of species was set to 5.

We generated both continuous and binary outputs to assess
the habitat suitability, or probability of occurrence, for each
species. However, this study will focus solely on the discussion
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of the continuous outputs, whereas the binary outputs (presence-
no presence) will not be addressed. To convert the continuous
data into binary format, we employed two threshold methods: the
10th percentile training presence (PTP) and the maximum test
sensitivity and specificity logistic (MTSS).

Subsequently, we employed a model selection approach (Zurell
et al., 2020) to identify the best model. This approach involves
comparing different model structures and settings to choose a
single optimal model or a set of best-performing models. The
selection of the best model is based on the need to enhance
prediction accuracy by reducing the variance of predicted values
or to facilitate interpretation (Hastie et al., 2009). In our study,

the best model from MaxEnt was chosen based on a combination
of evaluation measures, including omission error, area under the
receiver operating characteristic curve (AUC), and prediction rate.

2.4. Future projections

Following the tuning phase and selection of the best model,
we proceeded to use it to generate maps depicting the future
land suitability for the target species for the future time period of
2021–2050. To obtain future projections, we recalculated the 19
bioclimatic indicators using the VHR-PRO_IT dataset (Raffa et al.,

FIGURE 2

Example of raw data, representing the output of our modeling procedure. Map of expected suitability for European beech 2021–2050, under the RCP

8.5 scenario. Visualization threshold 0.2.
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TABLE 2 Results for Section 1—Western Alps.

Species 1991–2020 STD 2021–2050
4.5

STD 2021-2050
8.5

STD An 4.5 (%) An8.5 (%)

Silver fir 0.35 0.27 0.19 0.19 0.28 0.24 −44.73 −19.77

Field maple 0.34 0.26 0.43 0.23 0.45 0.27 26.15 32.16

European
hornbeam

0.33 0.32 0.34 0.30 0.39 0.32 3.24 17.13

Chestnut 0.43 0.35 0.40 0.31 0.40 0.31 −7.65 −7.17

Common hazel 0.55 0.32 0.40 0.27 0.31 0.23 −26.80 −42.27

European beech 0.39 0.28 0.28 0.26 0.35 0.27 −26.79 −8.66

Manna ash 0.30 0.27 0.28 0.27 0.38 0.29 −6.40 29.16

European larch 0.44 0.27 0.59 0.38 0.61 0.40 32.61 37.18

Hop hornbeam 0.30 0.26 0.29 0.22 0.47 0.29 −4.37 54.82

Norway spruce 0.49 0.26 0.57 0.32 0.52 0.33 17.52 6.98

Swiss stone pine 0.16 0.20 0.16 0.20 0.13 0.19 0.50 −17.74

Aleppo pine 0.03 0.08 0.02 0.06 0.06 0.11 −26.61 73.14

Maritime pine 0.10 0.21 0.07 0.18 0.11 0.23 −29.19 4.93

Scots pine 0.43 0.30 0.50 0.31 0.40 0.29 16.79 −5.66

Turkey oak 0.17 0.23 0.20 0.25 0.24 0.26 14.72 37.97

Holm oak 0.05 0.14 0.04 0.13 0.07 0.15 −29.43 29.23

Sessile oak 0.52 0.39 0.46 0.36 0.43 0.34 −11.79 −17.45

Downy oak 0.28 0.26 0.21 0.24 0.33 0.27 −23.50 19.21

Pedunculate oak 0.19 0.27 0.20 0.29 0.21 0.25 6.22 9.54

Cork oak 0.01 0.06 0.01 0.03 0.01 0.06 −42.60 47.59

The values shown represent the average suitability and the standard deviation referred to the species, obtained within the mountain section. The historical and future periods, the two RCPs,

and the anomaly (%) between the future and historical periods are reported.

2023). This dataset is a downscaled version of the COSMO-CLM
simulation over Italy, previously produced at 8 km (Bucchignani
et al., 2016; Zollo et al., 2016) resolution and driven by the CMCC-
CM General Circulation Model (Scoccimarro et al., 2011).

The VHR-PRO_IT dataset covers the time window of 1981-
2070, for 1981-2005 under the historical greenhouse gas forcing,
and for 2006-2070 under the Representative Concentration
Pathways (RCPs) 4.5 and 8.5 (also “scenarios” hereafter). RCP
4.5 is a stabilization scenario where total radiative forcing is
stabilized, shortly after 2100, to 4.5 Wm-2 ( 650 ppm CO2-
equivalent) by employing technologies and strategies to reduce
GHG emissions, whereas RCP 8.5 is a business as usual
scenario and it is characterized by increasing GHG emissions
and high GHG concentration levels, leading to 8.5 Wm-2 in
2100 (1,370 ppmv CO2-equivalent). In our calculations, we
specifically considered the time span of 2021–2050, aligning
with the guidelines provided by the Intergovernmental Panel
on Climate Change (IPCC) in their 6th Assessment Report
(IPCC, 2022) for evaluating climate change. Additionally, we
adhered to the recommendations of the World Meteorological
Organization (https://public.wmo.int/en/media/news/updated-30-
year-reference-period-reflects-changing-climate) and the National
Oceanic and Atmospheric Administration (NOAA, Bates et al.,
2016) for statistical analyses of climate data, which recommend

using a 30-year period as a representative measure of climate
conditions in a given area.

The VHR-PRO_IT dataset is a scenario-driven simulation,
therefore a correction of model bias was required to ensure
comparability with the historical dataset VHR-REA_IT.We applied
a constant anomaly correction based on the difference (for
temperatures) or ratio (for precipitation) between VHR-REA_IT
and VHR-PRO_IT during the overlapping period of 1991–2020,
following the approach outlined in Maraun and Widmann (2018).
This corrected version of the VHR-PRO_IT dataset was denoted
as VHR-PRO_IT-ac and was calculated according to the following
equations:

TxVHR-PRO_IT-ac(fut) = TxVHR-PRO_IT(fut)

+ (TxVHR-REA_IT(over)− TxVHR-PRO_IT(over)) (1)

PxVHR-PRO_IT-ac(fut) = PxVHR-PRO_IT(fut) ∗
PxVHR-REA_IT(over)

PxVHR-PRO_IT(over)

where
PxVHR-REA_IT(over)

PxVHR-PRO_IT(over)
< 4 (2)
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and

PxVHR-PRO_IT-ac(fut) = PxVHR-PRO_IT(fut) ∗ 4

where
PxVHR-REA_IT(over)

PxVHR-PRO_IT(over)
> 4 (3)

Where fut is the 2021–2050 time period; over is the 1991–
2020 overlapping period; T x are temperatures (mean, max,
min); P is precipitation. The threshold for the correction factor
of precipitation was set to 4, simplifying the approach in
Sperna Weiland et al. (2010) and considering analyses previously
done for the domain under study.

To address the potential challenges arising from differences
in environmental conditions between the historical and future
periods, we employed the clamping option in MaxEnt during
the future projection phase (Phillips et al., 2006; Radosavljevic
and Anderson, 2014). This approach helps mitigate the effects of
environmental discrepancies by constraining the model’s response
to values within the range observed during the calibration phase.
By setting the clamping option, we aimed to enhance the reliability
and accuracy of future projections, enabling better comparisons
and interpretation of the results.

2.5. Elevation analyses

At first, the EU-DEM dataset was classified into 150-
meter bands. Afterward, zonal statistics were conducted on the
three suitability datasets within five distinct and homogeneous
mountainous biogeographical regions defined by the “Italian
Ecoregion Map” (Blasi et al., 2014, 2018). Specifically, we focused
on five sections representing two regions in the Alps (Western and
Central-Eastern) and three regions in the Apennines (Northern-
Northwestern, Central, and Southern) (refer to Figure 1B for a
visual representation of the selected sections). This division allowed
for a more focused analysis of the suitability data within these
specific mountainous regions, taking into account their unique
characteristics and ecological dynamics.

3. Results

3.1. Model performance

The tuning phase, aimed at optimizing the model performance
based on AUC values, resulted in the selection of specific MaxEnt
settings. These settings include the exclusion of highly correlated
predictors with a threshold of 0.9, background selection using the
Minimum Convex Polygon method with a distance of 500 km, 5
replicates, and the consideration of Linear, Quadratic, Hinge, and
Threshold feature classes with a regularization multiplier of 0.5.
These settings were carefully chosen to ensure that a consistent
and effective set of parameters maximized the performance of all
20 species simultaneously. The AUC results for these settings can
be found in Table 1, providing a comprehensive overview of the
model’s discriminatory power for each species. We found higher
AUC values for Swiss stone pine (0.963), Silver fir (0.928), and

FIGURE 3

Suitability in altitudinal bands for the Western Alps section. In gray,

historical (1981–2020); light blue, future RCP 4.5 (2021–2050);

orange, future RCP 8.5 (2021-2050). (A) Chestnut (B) European larch

(C) Norway spruce.
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TABLE 3 Results for Section 2—Central and Eastern Alps.

Species 1991–2020 STD 2021–2050
4.5

STD 2021–2050
8.5

STD An 4.5 (%) An8.5 (%)

Silver fir 0.40 0.32 0.22 0.23 0.28 0.26 −43.28 −30.07

Field maple 0.28 0.29 0.22 0.22 0.31 0.29 −20.18 11.40

European
hornbeam

0.37 0.32 0.33 0.31 0.45 0.36 −9.37 2.32

Chestnut 0.37 0.31 0.34 0.28 0.33 0.27 −8.59 −10.67

Common hazel 0.55 0.30 0.29 0.26 0.23 0.18 −46.18 −57.14

European beech 0.36 0.26 0.27 0.25 0.34 0.27 −24.46 −4.97

Manna ash 0.41 0.29 0.36 0.29 0.52 0.33 −12.17 27.68

European larch 0.55 0.27 0.76 0.34 0.77 0.35 38.61 40.19

Hop hornbeam 0.42 0.31 0.37 0.27 0.59 0.33 −12.10 41.56

Norway spruce 0.60 0.29 0.73 0.34 0.64 0.34 21.21 6.69

Swiss stone pine 0.27 0.31 0.27 0.31 0.24 0.29 0.00 −12.73

Aleppo pine 0.03 0.09 0.02 0.06 0.04 0.11 −4.48 33.23

Maritime pine 0.02 0.05 0.01 0.02 0.02 0.03 −60.15 4.29

Scots pine 0.53 0.32 0.56 0.34 0.49 0.32 6.22 −7.54

Turkey oak 0.09 0.13 0.07 0.09 0.13 0.15 −29.78 40.41

Holm oak 0.04 0.11 0.02 0.11 0.04 0.08 −38.63 −1.80

Sessile oak 0.47 0.34 0.37 0.32 0.32 0.27 −22.50 −31.21

Downy oak 0.37 0.27 0.25 0.21 0.39 0.30 −33.65 0.52

Pedunculate oak 0.23 0.33 0.23 0.33 0.27 0.33 −1.07 15.90

Cork oak 0.00 0.02 0.00 0.02 0.00 0.01 −32.87 −25.07

The values shown represent the average suitability and the standard deviation referred to the species, obtained within the mountain section. The historical and future periods, the two RCPs,

and the anomaly (%) between the future and historical periods are reported.

Maritime pine (0.922), lower values for Downy oak (0.771), Manna
ash (0.804) and Aleppo pine (0.810). The TSS results can be found
in Supplementary Table 2.

3.2. Elevation analyses

The generated suitability maps for the historical (4.5 and
8.5 scenarios) and future periods have a spatial resolution of
approximately 2.2 km. Figure 2 displays as an example the
predicted suitability specifically for the European beech under RCP
8.5 scenario.

3.2.1. Western Alps
This section encompasses a total area of 1,794,031 hectares and

is bordered by the Maritime Alps to the South−West and Lake
Maggiore to the Eastern boundary. The altitude within this section
ranges from 26 to 4,790 meters. Notable changes in suitability
are observed for various species within this area as shown in
Table 2. The Silver fir is projected to experience a significant loss
in suitability, ranging from −44% under the RCP 4.5 scenario to
−20% under the RCP 8.5 scenario. Similarly, the Common hazel,

European beech, and Sessile oak are also expected to undergo
substantial suitability losses (−27% to −42% for Common hazel,
−27% to −9% for European beech, and −12% to −17% for Sessile
oak). A moderate loss in suitability is anticipated for the Chestnut
(−8% to −7%). On the other hand, the Field maple, European
larch, and Turkey oak are expected to experience significant gains
in suitability (+26% to +32% for Field maple, +33% to +37% for
European larch, and +15% to +38% for Turkey oak). A moderate
gain in suitability is projected for the Pedunculate oak (+6% to
+10%), Norway spruce (+18% to +7%), and European hornbeam
(+3% to +17%). Divergent projections are observed between the
two scenarios for the Manna ash (−6% to +29%), Hop hornbeam
(−4% to +53%), Swiss stone pine (+1% to −18%), Maritime pine
(−29% to+5%), and Downy oak (−24% to+19%).

Regarding altitudinal shifts, noteworthy observations include

the upward shifting of the maximum suitability range for the
European hornbeam and Turkey oak, with an increase from 2

bands (300 m) under the RCP 4.5 scenario to 3 bands (450 m)
under the RCP 8.5 scenario. The Chestnut (Figure 3A) is expected

to experience a reduction in suitability at lower altitudes in both

scenarios, with an upward shift of 2 bands (300 m) under RCP 8.5.

Similar projections apply to the European beech, but only under
the RCP 8.5 scenario, where a gain in suitability at higher altitudes
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FIGURE 4

Suitability in altitudinal bands for the Central and Eastern Alps

section. In gray, historical (1981-2020); light blue, future RCP 4.5

(2021–2050); orange, future RCP 8.5 (2021–2050). (A) Silver fir (B)

European beech (C) Scots pine.

with an upward shift of 3 bands (450 m) is expected. The Manna
ash exhibits no changes in suitability under the RCP 4.5 scenario,
but a substantial gain is projected above 600 meters above sea level
(a.s.l.) under the RCP 8.5 scenario. The European larch (Figure 3B)
and Hop hornbeam display similar patterns with a strong gain in
suitability across all higher altitude bands. For the Norway spruce
(Figure 3C), a gain in suitability is expected at altitudes above 1200
m, whereas no changes are anticipated below this threshold. The
optimal range for the Swiss stone pine appears to shift upwards by
approximately 450 m (3 bands). Unclear or divergent signals are
observed for the other species. Supplementary Figure S1 contains
all graphs not included in the main text.

3.2.2. Central and Eastern Alps
This section covers a total area of 3,656,143 hectares and

extends from the Eastern shore of LakeMaggiore to the Julian Alps.
The altitude within this section ranges from 25 to 3,950 meters
above sea level. Noteworthy findings (Table 3) include a significant
reduction in suitability for the Silver fir (-43% to -30%), Common
hazel (-46% to -57%), and Sessile oak (-23% to -31%). A moderate
reduction in suitability is projected for the Chestnut (-9% to -
11%), European beech (-24% to -5%), and Swiss stone pine (0 to
-13%), whereas gains are expected for the European larch (+39% to
+40%) and Norway spruce (+21% to +7%). Divergent projections
are observed between the two scenarios for the Field maple (-20%
to +11%), European hornbeam (-9% to +23%), Scots pine (+6% to
-8%), Manna ash (-12% to +42%), and Pedunculate oak (-34% to
+5%).

Regarding altitudinal shifts, significant reductions in suitability
are predicted across the entire altitudinal range for the Silver fir
(Figure 4A), Common hazel, and Sessile oak. Minor reductions
in suitability are expected for the Chestnut, particularly at
altitudes below 1,000 meters. For the Field maple, a shift of 2
bands (300 meters) upwards is anticipated, particularly under
the RCP 8.5 scenario. Similar shifts, but under both scenarios,
are projected for the two Hornbeams and the Manna ash.
The European beech (Figure 4B) shows an upward shift of 1
band (150 meters). Strong gains in suitability, even above the
current tree line, are expected for the European larch and
Norway spruce, particularly above the 1,350–1,500 meter band.
Projections for the Stone and Scots pines (Figure 4C) indicate no
major changes, whereas the Downy oak shows divergent results.
Supplementary Figure S2 contains all graphs not included in the
main text.

3.2.3. Northern and Northwestern Apennines
This section covers an area of 3,880,014 hectares and

extends from the Ligurian Apennines in the North to the
Tuscan−Romagna Apennines in the South, including the hills
known as the “Colline Metallifere”. The altitude within this section
ranges from 10 to 2,142 meters above sea level. Our projections
(Table 4) indicate a reduction in suitability for all species, except
for the Pedunculate and Sessile oaks, under the RCP 4.5 scenario.
Specifically, there is a strong reduction in suitability for the Silver
fir (−43% to −33%), Common hazel (−5% to −42%), European
hornbeam (−26% to −56%), Hop hornbeam (−38% to −14%),
Chestnut (−23% to −26%), European beech (−32% to −22%),
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TABLE 4 Results for Section 3—Northern and Northwestern Apennines.

Species 1991–2020 STD 2021–2050
4.5

STD 2021–2050
8.5

STD An 4.5 (%) An8.5 (%)

Silver fir 0.16 0.23 0.09 0.16 0.11 0.19 −42.53 −32.90

Field maple 0.59 0.20 0.49 0.22 0.51 0.28 −17.86 −14.85

European
hornbeam

0.57 0.22 0.43 0.44 0.25 0.28 −25.53 −55.91

Chestnut 0.48 0.27 0.37 0.31 0.36 0.30 −22.92 −25.87

Common hazel 0.48 0.22 0.46 0.26 0.28 0.21 −4.56 −41.94

European beech 0.22 0.29 0.15 0.24 0.17 0.25 −32.48 −22.09

Manna ash 0.60 0.17 0.48 0.18 0.43 0.28 −20.99 −27.96

European larch 0.03 0.07 0.03 0.06 0.03 0.06 −19.31 −17.69

Hop hornbeam 0.59 0.22 0.36 0.24 0.50 0.29 −38.41 −14.34

Norway spruce 0.12 0.17 0.09 0.15 0.07 0.12 −20.85 −3.82

Swiss stone pine 0.01 0.01 0.01 0.01 0.00 0.00 0.00 −69.08

Aleppo pine 0.28 0.16 0.11 0.09 0.24 0.14 −59.08 −12.69

Maritime pine 0.41 0.27 0.22 0.27 0.29 0.30 −47.71 −31.02

Scots pine 0.24 0.26 0.19 0.25 0.13 0.18 −1.83 −47.34

Turkey oak 0.64 0.19 0.57 0.29 0.56 0.26 −11.18 −11.82

Holm oak 0.37 0.27 0.15 0.21 0.26 0.17 −58.87 −29.43

Sessile oak 0.54 0.18 0.56 0.22 0.47 0.22 4.72 −13.21

Downy oak 0.62 0.15 0.46 0.15 0.48 0.26 −25.59 −22.03

Pedunculate oak 0.40 0.17 0.51 0.31 0.38 0.24 27.13 −4.27

Cork oak 0.07 0.11 0.04 0.06 0.08 0.10 −48.41 10.59

The values shown represent the average suitability and the standard deviation referred to the species, obtained within the mountain section. The historical and future periods, the two RCPs,

and the anomaly (%) between the future and historical periods are reported.

Manna ash (−21% to −28%), Norway spruce (−21% to −38%),
Aleppo pine (−59% to −13%), Maritime pine (−48% to −31%),
and Downy oak (−26% to −22%), as well as a moderate reduction
for the Field maple (−18% to −15%) and Turkey oak (−11% to
−12%). Divergent results are observed for the Sessile oak (+5% to
−13%) and Pedunculate oak (+5% to−13%).

Regarding altitudinal shifts, a reduction in suitability for the
Silver fir is expected at lower altitudes (below 1,500 m a.s.l.).
The Field maple, European beech (Figure 5A), and Maritime
pine (Figure 5B) are projected to shift upward by one band
(150 meters), whereas the European hornbeam, Scots pine, and
Sessile oak are anticipated to shift up by two bands (300 meters).
Similar projections are expected for the Chestnut and Turkey oak
(Figure 5C), with a reduction in suitability up to 800 m a.s.l. and
a gain in suitability above. There is a significant reduction in
suitability for the Holm oak (across the entire altitudinal range)
and Downy oak (up to 600 m a.s.l.), whereas divergent results
are observed for the Hop hornbeam. Supplementary Figure S3
contains all graphs not included in the main text.

3.2.4. Central Apennines
This particular section covers an area of 2,639,776 hectares

and extends from the Umbria-Marche Apennines in the North to
the Mainarde and Maiella mountains in the South. The altitude

within this section ranges from 0 to 2,850 meters above sea
level. As reported in Table 5, we expect a strong reduction in
suitability for the Silver fir (−30% to −24%), Aleppo Pine (−60%
to −18%), and the Holm (−49% to −25%) and Downy (−40%
to −16%) oaks. There is a moderate reduction for the Chestnut
(−6% to −4%), European beech (−14% to −8%), Manna ash
(−14% to −16%), European (−15%) and Hop (−20% to 0%)
hornbeam, Field maple (−6% to−12%), andMaritime pine (−13%
to 0%), whereas a gain in suitability is expected for the Turkey
oak (+8% to +1%) and Pedunculate oak (+26% to +17%).
Divergent projections are observed between the two scenarios for
the Common hazel (+16% to −19%) and Sessile oak (+15% to
−13%).

Regarding altitudinal shifts, a reduction in suitability is
projected across the entire altitudinal range for the Silver fir
(particularly under the RCP 4.5 scenario), Aleppo pine, and Holm
and Downy oaks (Figure 6A). Our projections indicate an upward
shift (two bands or 300 meters) for the Maritime pine. Similar
patterns are observed for several species, with a reduction in
suitability up to specific altitudes and a gain in suitability above.
For example, the Field maple shows a reduction up to 600 m a.s.l.
and a gain above, the Chestnut (Figure 6B) shows a reduction up
to 900 m a.s.l. and a gain above the tree line, the European beech
shows a reduction up to 1,500 m a.s.l. and a gain up to the tree
line, and the Turkey oak (Figure 6C) shows a reduction up to
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FIGURE 5

Suitability in altitudinal bands for the Northern and Northwestern

Apennines section. In gray, historical (1981-2020); light blue, future

RCP 4.5 (2021–2050); orange, future RCP 8.5 (2021–2050). (A)

European beech (B) Maritime pine (C) Turkey oak.

600 m a.s.l. and a gain up to the tree line. We also anticipate an
increase in suitability for the Pedunculate oak in the 500–1,000
m a.s.l. range. In conclusion, projections for the Manna ash, Hop
hornbeam, Common hazel, and Sessile oak show divergent results.
Supplementary Figure S4 contains all graphs not included in the
main text.

3.2.5. Southern Apennines
Encompassing a total area of 1,943,464 hectares, the Southern

Apennines section stretches from the Matese massif in the North
to Pollino in the South. Altitude ranges from 32 to 2,250 meters
above sea level. Projections (Table 6) indicate a significant decrease
in suitability for the Silver fir (−39% to −39%), Aleppo pine
(−56% to −26%), and Holm (−11% to −31%) and Downy (−26%
to −20%) oaks. The Chestnut (−3% to −12%), European beech
(−3% to −12%), Manna ash (−12% to −8%), and European
(−13% to −20%) and Hop (−12% to −8%) hornbeams are
expected to experience a moderate reduction in suitability. On
the other hand, the Turkey (+13% to +5%) and Pedunculate
(+35% to +36%) oaks, as well as the Maritime pine (+46% to
+15%), are projected to gain suitability. Divergent outcomes are
observed between the two scenarios for the Common hazel (0%
to −32%), Field maple (+5% to −1%), and Sessile oak (+34%
to −23%). Regarding altitudinal shifts, reductions in suitability
are expected across the entire altitudinal range for the Silver
fir (Figure 7A), European hornbeam, Common hazel (especially
under the RCP 8.5 scenario), Manna ash, Aleppo pine (under RCP
4.5), and Downy oak. The results indicate minor reductions in
suitability for the European beech up to an altitude of 1,400 meters,
followed by an increase above this altitude, primarily around
the current tree line. Strong gains in suitability, accompanied by
an upward shift, are expected for the Maritime pine (especially
from 750 meters to the current tree line—Figure 7B) and Turkey
oak (from 600 meters above sea level to the current tree
line—Figure 7C). Additionally, an increase in suitability for the
Pedunculate oak is projected within the 450–1,050-meter bands,
similar to the previous section. Divergent results were obtained for
the Hop hornbeam. Supplementary Figure S5 contains all graphs
not included in the main text.

4. Discussion

The findings of this study provide insights into the potential
future dynamics of climate suitability for key native forest species
in Italy.

Despite exhibiting strong performance values during the
training phase, the modeling results revealed variations in
performance among species. These discrepancies can be attributed
to the ecological characteristics of the species. The performance
values align well with the findings of Tsoar et al. (2007) and
more notably, with McPherson and Jetz (2007), who observed
that predictions tend to be more accurate for species with
smaller range sizes and higher habitat specificity (as exemplified
by the Swiss stone pine in our study) compared to more
generalist species with broader ranges (such as the Downy oak or
Manna ash).
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TABLE 5 Results for Section 4—Central Apennines.

Species 1991–2020 STD 2021–2050
4.5

STD 2021–2050
8.5

STD An 4.5 (%) An8.5 (%)

Silver fir 0.24 0.28 0.17 0.24 0.18 0.26 −29.77 −0.24

Field maple 0.68 0.19 0.63 0.24 0.60 0.29 −0.76 −11.57

European
hornbeam

0.53 0.27 0.45 0.26 0.45 0.29 −1.46 −14.98

Chestnut 0.39 0.23 0.37 0.26 0.37 0.27 −5.58 −4.32

Common hazel 0.45 0.23 0.52 0.30 0.36 0.28 15.67 −19.46

European beech 0.31 0.30 0.27 0.29 0.29 0.29 −13.55 −7.73

Manna ash 0.64 0.19 0.55 0.19 0.54 0.26 −14.26 −1.61

European larch 0.09 0.14 0.05 0.11 0.06 0.13 −44.85 −2.94

Hop hornbeam 0.58 0.24 0.46 0.26 0.59 0.28 −21.32 0.00

Norway spruce 0.17 0.21 0.13 0.20 0.11 0.16 −22.31 −37.57

Swiss stone pine 0.01 0.02 0.01 0.02 0.00 0.01 2.54 −66.28

Aleppo pine 0.37 0.22 0.15 0.11 0.31 0.18 −59.75 −17.72

Maritime pine 0.23 0.20 0.20 0.23 0.23 0.25 −12.77 0.00

Scots pine 0.22 0.21 0.14 0.17 0.14 0.18 −38.58 −35.74

Turkey oak 0.59 0.26 0.63 0.32 0.59 0.31 7.87 1.44

Holm oak 0.33 0.20 0.17 0.17 0.25 0.19 −49.20 −25.31

Sessile oak 0.39 0.17 0.45 0.21 0.34 0.21 15.48 −12.98

Downy oak 0.64 0.20 0.42 0.20 0.54 0.26 −33.99 −16.07

Pedunculate oak 0.37 0.21 0.47 0.34 0.43 0.31 26.44 16.91

Cork oak 0.02 0.04 0.02 0.03 0.03 0.05 −21.81 49.80

The values shown represent the average suitability and the standard deviation referred to the species, obtained within the mountain section. The historical and future periods, the two RCPs,

and the anomaly (%) between the future and historical periods are reported.

Our focus was on five mountainous sections, including two
in the Alps and three in the Apennines. Although with many
overlapping points, future trajectories reveal diversified impacts
among species and scenarios, with the RCP 4.5 scenario showing
slightly worse overall outcomes. Most species are expected to
experience a contraction in their altitudinal range of suitability, but
some show a propensity to extend beyond the current tree line, as
observed in previous studies (Cudlin et al., 2017; Beniston et al.,
2018). Among the mountain sections considered, the Northern and
North-Eastern Apennines exhibit the greatest andmost widespread
impacts on all species. Overall, it is difficult to unambiguously
define successful or unsuccessful species, except for the Silver fir,
which is projected to be highly vulnerable across all altitudinal
bands and mountainous sections. Two species worth noting are the
larch in the Alpine region and the Turkey oak in the Apennines,
as they show potential gains and could play significant roles in
maintaining wooded populations. However, our results regarding
the European larch differ from previous studies, which found
negative variations (Dyderski et al., 2018; Mamet et al., 2019;
Pecchi et al., 2020), whereas our findings suggest the opposite. If
confirmed, this species could become crucial for future planning
activities, particularly at higher altitudes (1,300–1,500 m). Our
results for the Turkey oak contradict some studies (Vitale et al.,
2012; Pecchi et al., 2020) but align with others (Noce et al., 2017).

The expected increase in suitability at very high altitudes for some
major species, both in the Alps and, particularly, the Southern
Apennines, implies a potential upward shift of the tree line,
consistent with previous research (Harsch et al., 2009; Greenwood
and Jump, 2014).

This may result in various consequences. Firstly, it could lead to
a loss of diversity as specialized species with limited niche tolerance
might disappear due to competition from more widely distributed
species (Jump et al., 2012). Additionally, it may lead to a reduction
in the number and available area of high mountain ecosystems,
such as nival vegetation or alpine grasslands (Moiseev and Shiyatov,
2003; García-Romero et al., 2010), thereby altering the balance
between various ecosystem services provided (Peng et al., 2009).
For a comprehensive examination of the consequences of treeline
shifts, please refer to the valuable work by Greenwood and Jump
(2014).

The European beech, a keystone species in the Italian mountain
environment, shows evident impacts as reported in Buonincontri
et al. (2023). We observe an upward shift in its distribution within
the Alpine arc and Northern Apennines, whereas good future
suitability is expected at higher altitudes (above 1500 meters) in the
Central and Southern Apennines. The Maritime pine emerges as
a promising candidate for the future of the Southern Apennines,
potentially expanding its presence and altitudinal distribution in
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FIGURE 6

Suitability in altitudinal bands for the Central Apennines section. In

gray, historical (1981-2020); light blue, future RCP 4.5 (2021-2050);

orange, future RCP 8.5 (2021-2050). (A) Downy oak (B) Chestnut (C)

Turkey oak.

association with other broad-leaved species. These findings align
with a study in Spain (Barrio-Anta et al., 2020). However, the
increased flammability of theMaritime pine (Núñez-Regueira et al.,
1996) raises concerns, particularly considering the expected rise in
fire risk in the region (Spano et al., 2020).

Regarding the predicted tree line upward shifting, it is plausible

to attribute this phenomenon to the expected temperature increase
in mountainous areas, which is known to impact the thermal
limitations on the altitudinal distribution of species, including

freezing tolerance and growth requirements (Körner, 2021).
However, it is crucial to emphasize that our study focused solely
onmodeling climatic suitability, without considering other relevant

factors that regulate the establishment of stable forest populations,
such as soil availability and the potential intensification of high-

altitude winds, including extreme wind events, which are expected
to increase in frequency for Southern Europe (Outten and
Sobolowski, 2021).

However, it is important to acknowledge certain limitations

associated with the approach we have adopted and therefore the
results obtained. The SDM approach is known to be subject to
various assumptions and uncertainties (Guisan and Thuiller, 2005;

Watling et al., 2014; Santini et al., 2021). Moreover, the assumption
that the relationships between environmental variables and species
presence observed in the historical period will remain consistent

in the future introduces a considerable degree of uncertainty
(Gavin et al., 2014). Furthermore, the accuracy and quality of the
occurrence dataset represent a crucial factor that can influence
the reliability of the results (Bloom et al., 2018). Although the
INFC dataset is robust and based on a systematic sampling scheme
across Italy, the privacy restrictions associated with providing
only the coordinates of the southwestern corner of the 1 km
grid introduce a certain level of uncertainty. However, given the
coarser resolution of the climate data (2.2 km), this uncertainty
is considered negligible, as demonstrated by Marchi and Ducci
(2018). Another source of uncertainty stems from the temporal
mismatch between the INFC 2005 survey, which took place over
a couple of years starting in 2003, and the historical climatic
data used to calibrate the model, which refers to the period
1991–2020. Despite this temporal discrepancy, it is important to
consider that changes in forest species composition occur over
longer timescales. The reliability of the results is also linked to the
quality of the environmental variables used . In this regard, the
VHR datasets employed in our study allow us to provide useful
information at different scales, from local to regional and national.
This highlights the importance of considering different emission
scenarios to capture the range of possible outcomes and effectively
plan for future conservation and management strategies. Lastly,
it should be noted that the results obtained are highly dependent
on the parameterization or configuration of the applied models
(Hallgren et al., 2019). Adhering to the best practices defined by
the ODMAP scheme has allowed us to address this aspect with
a logical, transparent, and reproducible methodology (Fitzpatrick
et al., 2021). The aforementioned aspects, among others (Jarnevich
et al., 2015), highlight the significance of uncertainty in these types
of studies. Consequently, all our results are presented as anomalies
between the different simulations (historical and future).
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TABLE 6 Results for Section 5—Southern Apennines.

Species 1991–2020 STD 2021–2050
4.5

STD 2021–2050
8.5

STD An 4.5 (%) An8.5 (%)

Silver fir 0.19 0.24 0.11 0.19 0.11 0.19 −39.48 −38.87

Field maple 0.61 0.18 0.65 0.22 0.61 0.25 5.06 −1.05

European
hornbeam

0.51 0.22 0.44 0.21 0.40 0.22 −12.68 −20.38

Chestnut 0.45 0.21 0.43 0.24 0.39 0.23 −3.09 −12.15

Common hazel 0.40 0.19 0.40 0.21 0.27 0.18 0.00 −32.34

European beech 0.26 0.29 0.25 0.28 0.23 0.26 −3.16 −11.49

Manna ash 0.67 0.20 0.59 0.19 0.57 0.23 −12.68 −14.67

European larch 0.02 0.03 0.01 0.02 0.01 0.02 −57.23 −48.11

Hop hornbeam 0.57 0.20 0.50 0.22 0.52 0.25 −12.09 −8.05

Norway spruce 0.08 0.11 0.05 0.08 0.04 0.06 −40.78 −54.30

Swiss stone pine 0.01 0.01 0.01 0.01 0.00 0.00 2.95 −74.65

Aleppo pine 0.53 0.19 0.23 0.12 0.39 0.16 −56.32 −26.28

Maritime pine 0.28 0.22 0.40 0.28 0.32 0.26 46.02 14.70

Scots pine 0.13 0.13 0.09 0.12 0.06 0.10 −28.58 −50.13

Turkey oak 0.68 0.17 0.77 0.21 0.72 0.22 13.12 5.26

Holm oak 0.48 0.16 0.42 0.21 0.33 0.16 −11.26 −31.13

Sessile oak 0.38 0.15 0.51 0.19 0.30 0.15 34.03 −22.89

Downy oak 0.69 0.17 0.51 0.17 0.55 0.21 −25.84 −20.10

Pedunculate oak 0.49 0.18 0.66 0.27 0.66 0.26 35.69 36.35

Cork oak 0.05 0.08 0.06 0.08 0.10 0.13 23.68 117.39

The values shown represent the average suitability and the standard deviation referred to the species, obtained within the mountain section. The historical and future periods, the two RCPs,

and the anomaly (%) between the future and historical periods are reported.

The divergent projections observed between scenarios suggest
varying impacts of climate change on suitability for the species
under consideration, which can be seen as both a limitation and
a strength of our study. These differences can be interpreted as
the upper and lower bounds of the projected outcomes. Our
results highlight the complex and dynamic nature of possible
climate change impacts, emphasizing the need to consider multiple
factors and scenarios when assessing species vulnerability and
planning conservation actions. In conclusion, we expect significant
and far-reaching impacts on mountain biodiversity, particularly
in terms of forest population composition. The rapid pace of
climate change in mountainous regions appears incompatible
with the adaptive capacities and dynamics of arboreal plant
organisms. This work also emphasizes the importance of using
very high-resolution climate data, which is essential for formulating
hypotheses about future forest dynamics and providing valuable
information across different scales. Our findings have implications
at the local, regional, and national levels and provide information
that can improve future woodland management strategies. In
further detail, this study can be useful in identifying priority
locations for conservation, offering valuable guidance for multiple
aspects of forest management and restoration. Firstly, providing
insights that can assist in the selection of suitable species for future

reforestation policies, considering their potential success in specific
areas. Moreover, our results can aid in promoting certain species
over others in silvicultural choices, which is crucial for optimizing
ecosystem benefits and promoting biodiversity and resilience in
managed forest stands (Testolin et al., 2023). Accelerating the
onset of new species compositions can be particularly important
in the context of ongoing environmental changes and the need to
enhance forest ecosystem adaptability. Furthermore, our study has
practical applications in guiding silvicultural decisions, including
the number, frequency, and intensity of treatments. This aspect
is essential for sustainable forest management, as it ensures
proper stand development and growth dynamics. Our research
also sheds light on areas where certain species are currently
uncommon, offering options for potential successful species
introductions and diversification. Conversely, we identify species
that are already highly present in certain areas, suggesting the
need to exclude them to avoid ecological imbalances and support
biodiversity conservation efforts. Moreover, our findings suggest
that processes aimed at making conditions more favorable for
upward migration and tree line elevation on mountain ranges
should be undertaken accompanied by soil protection actions
and recurring stand health surveys and monitoring as described
in Tomback et al. (2022). Simultaneously, it is essential to
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FIGURE 7

Suitability in altitudinal bands for the Southern Apennines section. In

gray, historical (1981–2020); light blue, future RCP 4.5 (2021–2050);

orange, future RCP 8.5 (2021–2050). (A) Silver fir (B) Maritime pine

(C) Turkey oak.

minimize anthropic disturbances, including the expansion of
ski facilities or the construction of new slopes, particularly in
proximity to the current upper limit of forest stands across
all the mountain sections under consideration (Maliniemi and
Virtanen, 2021). As demonstrated in previous studies (Jactel
et al., 2017; González de Andrés, 2019), our findings support the
transition toward silvicultural practices that favor mixed stands.
This approach has been shown to promote ecosystem stability,
increase resistance to disturbances, and improve overall forest
health. In summary, our research has wide-ranging implications
for conservation and forest management strategies. It provides
valuable information to guide decisions related to species selection,
silvicultural practices, and compositional arrangements in forest
stands. By prioritizing these considerations, we can foster more
resilient and diverse forests, enhancing their ecological value
and ensuring their ability to adapt to changing environmental
conditions.

Furthermore, they highlight once again the importance of
considering different emission scenarios to encompass the full
range of potential outcomes and effectively plan for future
conservation and management strategies. It is important to
acknowledge that this type of study is characterized by considerable
uncertainty, and continued efforts are required to produce
increasingly reliable datasets and forecasts. Understanding the
climatic vulnerability of different species can assist in prioritizing
conservation efforts and implementing targeted management
strategies.

In the near future, our goal is to update our analyses
using data from the latest national forest inventory, enlarging
the set of species considered. Additionally, the inclusion of
human-introduced, allochthonous, and invasive species could be
a further step in enhancing our understanding of future forest
dynamics.
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