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Global wildfires have increased in frequency and intensity, especially in temperate 
regions, in the context of global warming. However, the spatiotemporal 
characteristics of wildfire frequency and intensity are still not well understood. 
Using Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 
(C6) wildfire products during 2003–2022, here, we analyzed the spatiotemporal 
patterns and evolutionary characteristics of the frequency and intensity of 
wildfires in China. The main conclusions are: (1) Over the past 20  years, the 
wildfire frequency and fire radiative power (FRP) have declined at rates of 
–1920/year (p  <  0.001) and –76492  MW/year (p  <  0.001), respectively, showing 
a highly significant downward trend, with declines of up to 63 and 81%. (2) 
Wildfires in China show a single peak pattern of high incidence in winter and 
spring, with the most frequent in March, followed by February and April. (3) The 
overall spatial distribution of wildfires in China is characterized by a bimodal 
distribution, with more in the south and less in the north. Wildfires are most 
abundant but less intense in the southern region(SR), fewer but most intense 
in the northeastern region(NER), and significantly influenced by El Niño in the 
southwestern region(SWR), with significant regional differences in wildfires in 
China. (4) The average FRP of wildfire spots presented a decreasing trend from 
47  MW/spot in 2003 to only 25  MW/spot in 2022. This may be  due to more 
dispersed wildfires, rather than concentrated wildfires. (5) The frequency and 
FRP of wildfires showed an overall negative correlation with the Standardized 
Precipitation Evapotranspiration Index (SPEI). Drought events (negative SPEI) 
have a significant effect on wildfires, especially in SR. This study demonstrates 
the effectiveness of current fire suppression policies in China in terms of disaster 
prevention and mitigation, and further provides data to further explore and 
analyze the impact of wildfires on the regional environment.

KEYWORDS

wildfires, MODIS collection 6, occurrence frequency, fire radiative power (FRP), 
spatiotemporal evolution, China

1 Introduction

Wildfires are an important component of the Earth system (Abatzoglou et al., 2018). They 
have important impacts on climate change (Turetsky et al., 2014; Jolly et al., 2015; van der Werf 
et al., 2017a), atmospheric environment (Huang et al., 2021; Xiao et al., 2022), biodiversity 
(Bowman et al., 2009), public health (Lelieveld et al., 2015), and the safety of human life and 
property (Bowman et al., 2009), and are also profoundly influenced by human activities and 
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climate change (Zong et al., 2016). In the context of global warming, 
the frequency and intensity of global wildfires have increased (Fang 
et al., 2021; Bo Zheng et al., 2023), especially in temperate regions (Yi 
et al., 2017). For example, wildfires in Australia burned more than 10 
million hectares in 2019 (Fang et al., 2021), causing an economic loss 
of about $110 billion, or 7.9% of the country’s total GDP in 2019 (Tang 
et  al., 2022). In particular, the United Nations Environment 
Programme’s Frontiers 2022 report (23–40; United Nations 
Environment Programme, 2022) singled out the wildfires as one of the 
most prominent emerging environmental issues, with far-reaching 
social, economic and ecological impacts. Understanding spatial and 
temporal patterns and evolutionary characteristics of their frequency 
and intensity by monitoring wildfires at different scales, such as 
regional and national scales, is of great practical importance for policy 
formulation in disaster prevention and mitigation, improving the 
atmospheric environment, and mitigating climate change.

The main part of China is an important and fire-prone transition 
zone between the tropics and the boreal regions, yet the development 
of wildfires in monsoon climates is not well understood (Fang et al., 
2021). China is one of the most wildfire-prone countries in the world 
(Guo et al., 2023), and it occurs mainly in the subtropical tropical 
monsoon climate zone in southwestern and southeastern China (Tian 
et al., 2013; Qin et al., 2014; Wei et al., 2020). China has the largest 
subtropical forest in the world (Wang et al., 2013), which combined 
with the prevalence of Asian summer winds, makes China a typical 
region for subtropical fire activity in a clarified monsoon climate. 
Since the 1987 extreme wildfires, China has implemented strict fire 
prevention and suppression policies, but major wildfire incidents are 
still frequently reported (Chen et al., 2017; Yi et al., 2017; Fang et al., 
2021; Jin et al., 2022; Tian et al., 2022). For example, in 2003, the 
Heilongjiang forest fire was the second-largest forest fire since the 
founding of the country after 1987 (Zhang et al., 2012). In retrospect, 
many scholars have done some research on the wildfires in China. 
However, most studies have focused on the distribution of fires over 
shorter periods and at specific regional or interprovincial scales(Wang 
et al., 2023), and have only considered the frequency of fire data, 
neglecting fire radiative power (FRP) as an important indicator of fire 
intensity(Giglio et al., 2006), leaving important spatial and temporal 
characteristics of wildfires underdetermined.

Satellites with open access to products play an important role 
in obtaining wildfire information by its many advantages such as 
wide monitoring range, fast information acquisition, short 
detection period, low economic cost, and few restrictions. Wildfire 
products from remote sensing satellites, including burned area 
products (Flannigan et al., 2009), fire point products (Chuvieco 
et al., 2008), and various derived wildfire emission products (van 
der Werf et al., 2017b), show great potential for monitoring wildfire 
development activities (Schroeder et al., 2014; Yin, 2020). More 
than 20 years of MODIS Collection 6 (C6) wildfire products (Giglio 
et al., 2016, 2018), have been widely used to study global wildfire 
events (Giglio et al., 2003; Hantson et al., 2013), and in fire risk 
prediction, economic loss assessment (Yaduvanshi et al., 2015), air 
pollution evaluation (Voulgarakis and Field, 2015; Vadrevu and 
Lasko, 2018), climate change (Forsythe et  al., 2012), carbon 
emissions (Earl and Simmonds, 2018). MODIS wildfire data 
products are the newest wildfire products with the longest time 
scale global coverage to date (Xiao et al., 2022), and offer significant 
advantages over other satellites in fire research, making them the 

best choice for current research on long-time series wildfires and 
related topics.

Here, with MODIS Collection 6 wildfire products (2003–2022), 
we  analyzed the spatial and temporal patterns and evolutionary 
characteristics of wildfires and their intensity at the provincial, 
regional, national, and grid (0.25° × 0.25°) levels and at the monthly 
and annual scales using the frequency of occurrence and FRP 
indicators. In addition, we also discussed the influence of climate and 
policy on wildfires. This study will provide data support and a 
scientific basis for exploring the causes and driving mechanisms of 
wildfires in China, as well as policy formulation such as 
wildfire prevention.

2 Datasets and methods

2.1 MODIS active fire datasets

The National Aeronautics and Space Administration (NASA) Fire 
Information for Resource Management System (FIRMS) provides 
MODIS Collection 6 (C6) wildfire data. The data have a spatial 
resolution of 1 km (Davies et al., 2009) and contain a variety of metrics 
such as fire radiative power (FRP), latitude and longitude, acquisition 
date, and time. MODIS C6 wildfire products have a history of over 
20 years and are well suited for long-time series fire observation 
studies at the global and national levels (Lian et al., 2023). Since 2003, 
the wildfire products of Terra and Aqua satellites can be provided to 
users at the same time. Therefore, we use Terra and Aqua wildfire 
products during 2003–2022 to explore the frequency and FRP of 
wildfires in China. In addition, a 0.25° × 0.25° grid was created in this 
study to analyze the spatial characteristics of wildfires and their 
differences in China.

2.2 China’s land-use/cover datasets

China’s Land-Use/Cover Datasets (CLCDs) is the first annual land 
cover product in China derived from 30-m Landsat imagery and 
includes nine land classes including cropland, forest, shrub, grassland, 
water, snow/ice, barren, impervious, and wetland (Yang and Huang, 
2022). In this study, forest, shrub, and grassland, were selected for 
extracting wildfire fire points. Among them, forest fire points 
accounted for the highest percentage, up to over 90%. Meanwhile, this 
paper adopts the four major forest regions in China as the criteria for 
the division of regional scope, namely, the southern region (SR), 
northeastern region (NER), southwestern region (SWR), and northern 
region (NR; Figure 1).

2.3 Climate data

The Standardized Precipitation Evapotranspiration Index (SPEI) 
was used to understand the relationship between climate and wildfire. 
SPEI is an index characterizing wet and dry conditions calculated 
using multi-indicator data such as precipitation, temperature, and 
evapotranspiration, and can be calculated for a variety of time scales 
(1, 3, 12, 24 months, etc.). Larger SPEI values are wetter and smaller 
values are drier and are widely used in climate-related studies, 
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especially on long time scales (Vicente-Serrano et al., 2010). The global 
gridded dataset (SPEIbase) used in this study was obtained from the 
University of East Anglia,1 spanning the period from January 2003 to 
December 2020, with a drought timescale of 3 months and a spatial 
resolution of 0.5°. To match our wildfire data, we produced a year-by-
year SPEI dataset (0.25° × 0.25°) over the mainland area of China.

2.4 Time series trend analysis

The Theil-Sen slope (TS) is a robust trend analysis method, which 
was proposed by Theil in 1950 and further refined by Sen in 1968 as a 
non-parametric method. Since the TS method is calculated mainly 
based on the median of the data, and it has less impact from data 

1 https://spei.csic.es/database.html

outliers (Vanem and Walker, 2013). The TS method is well suited for 
time series analysis of large interannual variations. However, the TS 
method cannot complete the significance test of the trend, so this 
paper introduces the Mann-Kendall (MK) method to test the 
significance of the trend of wildfire in time series. The MK method is 
a nonparametric statistical method that does not require the sample 
to satisfy a certain distribution. The method for determining the 
significance of the trend by combining TS and MK for the frequency 
and FRP of wildfires from 2003 to 2022 is shown in Table 1.

2.5 Kernel density analysis

In this study, we consider the spatial and temporal distribution of 
wildfires in China in terms of spatial and temporal clustering 
characteristics and use kernel density analysis to characterize their 
spatial variation. Kernel density analysis is often used to estimate the 
unit density of element measurements within a certain neighborhood 

FIGURE 1

Land cover types and regional divisions distribution in China.

TABLE 1 Trend categories.

Slope Z Trend features

Slope > 0

2.58 < Z

1.96 < Z ≤ 2.58

1.65 < Z ≤ 1.96

Z ≤ 1.65

Highly Significant Increase (HSI)

Significant Increase (SI)

Slightly Significant Increase (SSI)

No Significant Increase (NSI)

Slope < 0

2.58 < Z

1.96 < Z ≤ 2.58

1.65 < Z ≤ 1.96

Z ≤ 1.65

Highly Significant Decrease (HSD)

Significant Decrease (SD)

Slightly Significant Decrease (SSD)

No Significant Decrease (NSD)
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to visualize their spatial clustering in a continuous area (Tian et al., 
2022). In this study, the frequency and FRP of wildfires were analyzed 
using the kernel density method to reflect the spatial aggregation 
characteristics and intensity differences. The kernel density is 
calculated as follows:

 
f x
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k x x

hi

i( ) = −







=
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1
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Where: f x( ) is the wildfire kernel density, his the search radius, 
k is the kernel density function, is the number of wildfire samples, 
x xi−  is the estimated distance between the two fire points. In this 
paper, the 20 years were divided into five subperiods on average, and 
kernel density analysis was performed for each subperiod as well as 
for four seasons. Based on the wildfire distribution combined with the 
natural breakpoint method, the frequency and FRP of wildfires were 
classified into kernel density class categories as shown in Table 2.

3 Results and discussion

3.1 Wildfires in China have been on the 
decline for the past 20  years

From 2003 to 2022, the frequency of wildfires in China declined 
from 51.7 × 103 to 19.1 × 103, a decline of more than 63% (Figure 2A). 
During the same period, its intensity plummets from 241.7 × 104 WM 
in 2003 to 45.9 × 104 WM in 2022, a decline of 81% (Figure 2B). The 
peak of wildfire frequency and FRP were 60.7 × 103 in 2008 and 
241.6 × 104 WM in 2003, respectively. Related studies showed that 
China, especially the southern region, experienced a prolonged and 
severe cold wave extreme in 2008, which led to a decrease in 
humidity within the forest and facilitated the occurrence of wildfires 
(Qin et al., 2014). In 2003, a global El Niño event caused frequent 
droughts and decreased precipitation, exacerbating the incidence 
and spread of wildfires(Tansey et al., 2008). Overall, the frequency 
and intensity of wildfires in China showed a significant downward 
trend over the past two decades. Our statistics showed that the 
frequency and FRP of wildfires in China decreased at the rates of 
−1920/year (p < 0.001) and − 76,492 MW/year (p < 0.001), 
respectively. Wildfire frequency decreased at the rates of −1,238/year 
(p < 0.001), −322/year (p < 0.01), and − 179/year (p < 0.01) in SR, 
SWR, and NER, respectively, and wildfire FRP decreased at the rates 
of −34,955 MW/year (p < 0.001), −11,810 MW/year (p < 0.01), and 
−10317 MW/year (p < 0.01), respectively. Correspondingly, wildfire 
frequency and FRP in NR increased at the rates of 119/year (p < 0.05) 
and 502 MW/year (p > 0.1), respectively, which need to be noticed 
and taken into account.

The frequency and FRP of wildfires have been decreasing in more 
than 90% of China since 2003 (Figure 3). Specifically, the areas with a 
highly significant decrease and a significant decrease in wildfire 
frequency accounted for 35.8 and 20.4% (Figure 3A); correspondingly, 
the FRP accounted for 32.5 and 20.2% (Figure 3B). Spatially, the areas 
with decreasing wildfire frequency and FRP in China were mainly 
located in southern Yunnan in SWR, most of Guangxi and western 
and northern Guangdong in SR, and parts of northern Heilongjiang 
in NER; the areas with increasing trends were sporadically distributed 
in southern Sichuan and southeastern Yunnan in SWR and eastern 
Guangxi in SR.

3.2 Wildfires in China are less in the north 
and more in the south as well as a high 
incidence in winter and spring

According to MODIS active fire product statistics, the cumulative 
frequency and FRP of wildfires in China since 2003 were 734.8 × 103 
and 2083.7 × 104 WM. Among them, the cumulative frequency shares 
of the four major regions, namely, SR, SWR, NER, and NR, were 
39.3 × 104 (53.5%), 16.1 × 104 (21.9%), 11.3 × 104 (15.4%) and 6.8 × 104 
(9.2%), respectively; and the cumulative FRP weights were 44.7% 
(931.8 × 104 WM), 23.7% (494.3 × 104 WM), 23.9% (497.8 × 104 WM) 
and 7.7% (159.7 × 104 WM), respectively. Wildfires in China are 
bimodal from north to south, less in the north and more in the south, 
weaker in the south, and stronger in the north (Figure 4). The forest 
types in SR and SWR are mainly evergreen broadleaf forests, where 
wildfire intensity is usually low. Forests in NER are part of the Eurasian 
boreal forest biome, and forest types are predominantly temperate 
coniferous, broadleaf, and mixed forests, including larch, pine, spruce, 
and related boreal forest species (Hayes, 2020), and are therefore prone 
to high-intensity forest wildfires. Spatially, wildfires in China were 
mainly distributed in (1) the junction of the Xinganling Mountains, 
i.e., the western and northern parts of Heilongjiang Province; (2) the 
Hengduan Mountains, roughly located in the northwestern part of 
Yunnan and the southwestern part of Sichuan; (3) the southeastern 
hills, especially in Guangdong Province, the eastern part of Guangxi 
Province and the southern part of Hunan; and (4) the Yunnan-
Guizhou Plateau, mainly located in the southern part of Yunnan. The 
analysis found that more than 90% of the wildfires were located in the 
eastern monsoon region, and the correlation between wildfire 
occurrence and development and monsoon climate needs 
further study.

Temporally, wildfires in China have generally had a higher 
incidence during winter and spring over the past 20 years 
(Figures  2C,D). MODIS wildfire data showed that the average 
monthly frequency and FRP of wildfires in China from 2003 to 
2022 were 3.1 × 103 and 8.7 × 104 WM, respectively. The peak of both 

TABLE 2 Kernel density class categories.

Low Medium High

Sub-period wildfire frequency <300 300–1,000 >1,000

Sub-period Wildfire FRP (WM) <10,000 10,000–40,000 >40,000

Seasonal wildfire frequency <500 500–2000 >2000

Seasonal Wildfire FRP (WM) <10,000 10,000–50,000 >50,000
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frequency and FRP occurs in March (7.3 × 103, 20.5 × 104 WM), 
followed by February (5.7 × 103, 15.1 × 104 WM) and April (4.8× 103, 
14.5 × 104 WM). At the seasonal scale, the frequency of wildfires 
was 39%, 5%, 18%, and 37% for spring, summer, autumn, and 
winter, respectively. The corresponding FRP was 45%, 4%, 18%, and 
34% in spring, summer, autumn, and winter, respectively. This 

showed that wildfires were frequent and severe in winter and 
spring, with a cumulative frequency and FRP ratio of more than 
3/4. This is highly consistent with studies showing that China has a 
significant monsoon climate, with relatively dry winter and spring, 
and a large amount of dry biomass, which makes it more prone to 
wildfires (Yi et al., 2017).

FIGURE 2

Average number (A,C) of wildfires and their FRP (B,D) during 2003–2022.

FIGURE 3

The trend of number (A) and FRP (B) of wildfires in China during 2003–2022.
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3.3 Significant geographic variation in 
wildfires in China since 2003

Regional variations in wildfires across China’s four major regions 
from 2003 to 2022 are significant. In terms of the average frequency 
of occurrence, SR accounted for as much as 50% or more (19.66 × 103) 
in the past 20 years, 2.2 times, 3.1 times, and 4.6 times more than 
SWR, NER, and NR; the difference between the average frequency of 
wildfires in SR and NR was as high as 16.27 × 103. In terms of the 
corresponding FRP, SR accounted for about 43.17% (46.6 × 104 WM), 
which is 21.9 × 104 WM, 21.7 × 104 WM, and 38.6 × 104 WM more than 
SWR, NER, and NR, respectively. In terms of the average FRP of 
wildfires, 23.7 WM/point, 30.7 WM/point, 44.0 WM/point, and 23.6 
WM /point were found in SWR, SR, NER, and NR, respectively, with 
the strongest in NER. It is easy to find that the fires in SR are more but 
weaker in intensity, while the fires in NER are less but stronger. In 
addition, the seasonal characteristics of wildfires in SR and SWR are 
consistent with those of the nation, i.e., the high incidence in winter 
and spring, concentrated in November through April (Figures 2C,D). 
Accordingly, wildfires in NER and NR occurred mainly in the spring 
and autumn and were concentrated from March to May and October 
(Figures 2C,D).

3.3.1 Low number of wildfires in NER with 
high-intensity

Our study showed that the average annual frequency of wildfires 
in NER from 2003–2022 accounted for less than 1/6 of the national 
rate, but the corresponding FRP exceeded the 1/5 level. In particular, 
the average FRP of wildfires over the past 20 years was 44.0 WM/point 
(24.2 WM/point-89.8 WM/point), accounting for more than 1/3 of 
the total, and was firmly in the top four regions. In other words, the 
overall fires in NER are less intense but strong. It was worth noting 
that the frequency and peak FRP of wildfires in NER was the same 
year as the national one (i.e., 2003), where the peak FRP was nearly 
60% of the national level. In addition, the FRP of wildfires in NER was 
generally consistent with the national interannual trend until 2007. 
Thus, it can be seen that the FRP of NER was dominant at the national 
level and determined the general trend of national wildfire intensity. 

Previous research has indicated that the 2003 forest fire in Heilongjiang 
was the second largest on record after the one in 1987 since the 
founding of the country, resulting in significant damage to the local 
ecological environment and economic development.

Temporally, the average monthly frequency of wildfires in NER 
was highest in October (27.1%), followed by April (22.56%), March 
(18.1%), and May (11.3%), with a cumulative share of nearly 80%. 
Correspondingly, FRP was highest in May (28.3%), followed by 
October (27.4%), April (16.6%), and March (14.1%), with a cumulative 
share of nearly 90%. It is easy to see that wildfires in NER occur mainly 
in the spring and autumn, especially in May and October. NER has a 
moderately cold temperate monsoon climate with long, cold winters 
and dry spring and autumn seasons, combined with extensive boreal 
forests and deciduous broadleaf forests (Hayes, 2020), which facilitate 
the development of wildfires, resulting in a high incidence of wildfires 
in NER in spring and autumn. Our results are consistent with previous 
studies (Qin et al., 2014; Chen et al., 2017; Fang et al., 2021).

3.3.2 High number but low intensity of wildfires 
in SR

Over the past 20 years, wildfires in SR have been the most frequent 
among the four major regions, with an average annual frequency of 
53.5% (39.3 × 103), dominating the country. Meanwhile, its 
corresponding FRP was about 44.7% (931.8 × 104 WM). In particular, 
the average FRP level for wildfires in SR from 2003 to 2022 was low at 
23.7 WM/point (18.4 WM/point-26.8 WM/point) compared to NER 
(44.0 WM/point). It can be seen that the fires in SR are more frequent 
but less intense. The peak frequency and FRP of wildfires in SR were 
both in 2008, and the interannual trend of their FRP afterward was 
synchronized with that of the whole country. Existing research 
suggested that the rise in global temperatures was causing more 
frequent extreme weather events, and the rare weather anomalies that 
occurred in SR in 2008 created favorable conditions for the increased 
incidence of wildfires.

The seasonal distribution of wildfires in SR was different from that 
in NER, mainly in winter and spring. Statistics showed that the 
average monthly frequency and FRP of wildfires in SR were highest in 
February (3.7 × 103, 9.1 × 104 WM), followed by 3.5 × 103 (17.7%) and 

FIGURE 4

Spatial distribution of the annual average (A) number and (B) FRP of wildfires in China during 2003–2022.

https://doi.org/10.3389/ffgc.2023.1252587
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Lian et al. 10.3389/ffgc.2023.1252587

Frontiers in Forests and Global Change 07 frontiersin.org

8.1 × 104 WM (17.4%) in March, 3.2 × 103 (16.2%), 8.0 × 104 WM 
(17.1%) in January, 3.1 × 103 (15.8%) in December 103 (15.8%), and 
7.8 × 104 WM (16.7%). On the one hand, SR is the most densely 
populated area of China’s subtropical forests, which is extremely rich 
in combustible and combustion-assisting materials. On the other 
hand, due to the influence of the winter monsoon climate, SR has a 
dry climate with little rain in winter and spring (Fang et al., 2021). The 
combination of these factors exacerbated the occurrence and spread 
of wildfires in SR.

3.3.3 Wildfires in SWR are significantly affected by 
El Niño

From 2003 to 2022, the average annual frequency and FRP of 
wildfires in SWR were 8.0 × 103 and 24.7 × 104 WM, respectively, which 
were 9.2 and 7.7% of the national level. In particular, its multi-year 
average wildfire FRP of 30.7 WM/point (21.6 WM/point-39.4 WM/
point) was comparable to the national average of 28.4 WM/point. 
Notably, the peak annual average frequency (15.0 × 103) and FRP 
(46.0 × 104 WM) of wildfires in SWR both occurred in 2010, with 
secondary peaks of 11.4 × 103 and 35.6 × 104 WM in 2014. Research 
showed that 2010 and 2014 were strong El Niño years globally. It can 
be  seen that the development of wildfires in SWR is significantly 
affected by the El Niño phenomenon.

Next, the monthly average frequency and FRP of wildfires in SWR 
peaked at 2.07 × 103 and 7.13 × 104 WM in March, followed by 1.7 × 103 
and 5.4 × 104 WM in February, and 1.3 × 103 and 4.6 × 104 WM in 
April, with a cumulative share of over 60% from February to April. 
The climate in SWR is diverse, influenced by the Indian Ocean 
monsoon, and mostly dominated by high mountain valleys, dry and 
hot river valleys, and highland mountains; the dry season (November–
April) and the rainy season (May–October) are distinct, and the dry 
season is dry, especially from February to April, and thus wildfires are 
highly prevalent. SWR, in the non-monsoon season (winter and 
spring) experiences seasonal drought stress, relatively dry climate, 
higher temperatures, and a large amount of dry biomass, more prone 
to wildfire, so the winter and spring season is a serious fire risk season 
(Yi et al., 2017). In addition, SWR is the second-largest natural forest 
region in China, with rich forest resources and one of the richest 
concentrations of biodiversity and combustible materials in the world. 
With the increasing trend of global warming and the increase of 
extreme weather phenomena, the development of wildfires in SWR is 
complex and variable, and its development needs special attention.

3.3.4 Wildfires in NR are small and sporadic
Over the past 20 years, wildfires in NR were small and sporadic. 

From 2003 to 2022, the average annual frequency and FRP of wildfires 
in NR were 3.4 × 103 and 8.0 × 104 WM, respectively. In terms of 
average FRP for wildfire, NR was about half the level of NER (44.00 
WM/point) at only 23.6 WM/point (15.5 WM/point-48.3 WM/point). 
In particular, spring was the highest season for wildfires in NR, 
accounting for 48.6% of the total.

Temporally, there was a high concentration of wildfires in 
NR. From 2003–2022, the average monthly frequency of wildfires in 
NR was highest in March (0.7 × 103), followed by April (0.6 × 103), with 
a cumulative share of 40.4% in both months. Accordingly, the FRP was 
strongest in April (4.1 × 104 WM) and second in March (3.5 × 104 WM), 
accounting for more than 50% in both months. It is worth noting that 

although both the frequency and FRP of wildfires in NR have averaged 
less than 10% of the national level over the past 20 years, their 
frequency share has increased from 3.2% in 2003 to 12.2%, and the 
corresponding FRP share has increased from 3.1 to 16.5% in 2022. 
Undoubtedly, this increasing trend requires special attention and 
analysis of its causes.

3.4 The density of wildfires shows a 
decreasing trend with significant seasonal 
differences

Since 2003, the overall density properties of China’s wildfires have 
shown a north–south clustering and a central sparsity (Figure 5). In 
terms of frequency of occurrence and FRP for the five subperiods 
(2003–2006, 2007–2010, 2011–2014, 2015–2018, 2019–2022), kernel 
density analysis showed that the high-value area in 2003–2006 was 
mainly located in northern Heilongjiang in NER and southern 
Yunnan in SWR, and Guangxi, Guangdong, most of Fujian, and 
southern Hunan in SR. Compared to the first subperiod, the high-
value area in NER of northern Heilongjiang decreased from 2007 to 
2010, and the overall high-value area in the southern and SWR 
expanded further northward. From 2011 to 2014, the high-value areas 
in NER of northern Heilongjiang disappeared, and the high-value 
areas in SR and SWR also decreased significantly, with the high-value 
areas mainly located in parts of southern Yunnan, eastern Guangxi, 
most of Guangdong, and southern Hunan. In 2015–2022 (the fourth 
and fifth subperiods), the national high-value areas were mainly 
located in parts of Yunnan and Guangxi. Spatially, the frequency of 
wildfires in China and the kernel density of FRPs were largely 
consistent, and they were highly correlated. It is important to 
emphasize that the overall decreasing trend of the high-value areas of 
wildfire frequency and FRP in China over the past 20 years has been 
observed only in the second subperiod (2007–2010), with a 
local increase.

In terms of seasonal distribution, there are significant seasonal 
differences in wildfire frequency and FRP, with overall clustering in 
winter and spring and sparseness in summer and autumn. In regard 
to the seasonal kernel density analysis of the frequency, the high-value 
areas in spring were mainly located in the northwestern part of 
Heilongjiang in NER and the southern part of Yunnan in SWR. During 
the summer, only sporadic median areas occurred nationwide. In 
autumn, the high-value areas existed only in the northern part of 
Heilongjiang in NER, and the medium-value areas were highly 
concentrated in SR. In winter, the medium to high-value areas for 
wildfires were located in SR and SWR, mainly in Guangdong, 
Guangxi, and Yunnan. The seasonal kernel density characteristics of 
wildfire FRPs were highly consistent with the frequency of wildfires. 
Overall, the highest density of wildfire was observed in winter, 
followed by spring and fall, and the weakest in summer (Figure 6).

3.5 Climate significantly affects wildfires

Climate plays an important role in influencing the intensity and 
frequency of wildfires (Yang et al., 2023). Changes in climate, such as 
increased drought, can create conditions that increase the risk of 
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wildfire (Schoennagel et  al., 2017). Understanding the impact of 
drought on wildfire dynamics is critical to assessing the potential 
impact of climate change on wildfire activity in China 

(Yang et al., 2023). SPEI, which incorporates a wide range of climate 
metrics such as precipitation, temperature, and evapotranspiration 
(Vicente-Serrano et al., 2010), can identify the role of temperature 

FIGURE 5

The kernel density of number and FRP for five subperiods of wildfires in China.
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increases in future drought conditions and can explain the possible 
impacts of temperature changes beyond the context of global 
warming. SPEI has been widely used to characterize meteorological 
droughts and has become a dominant integrated climate indicator for 
exploring the relationship between climate and wildfires and for 
revealing the effects of climate on wildfires.

Consistent with previous studies, wildfires showed an overall 
negative correlation with SPEI, indicating that the drier the climate 
is, the more likely it is to cause wildfire. Wildfires typically occur 
under persistent drought conditions (Clarke et  al., 2020), and 
pre-existing drought is an important driver because fuel loads and 
factors associated with ignition are controlled by prior climatic 

conditions (Zhao et al., 2023). Specifically, the frequency and FRP 
of wildfires showed a negative correlation with SPEI in over 70% of 
the wildfire areas. Among them, the areas with medium-strong 
negative correlation (correlation coefficient < −0.4) are mainly 
located in SR (Figure 7), especially in most parts of Fujian, south-
central Guangxi, Guangdong, Hainan, and southern Hunan. The 
sensitivity of wildfires to pre-existing drought is higher in these 
areas than in other areas. This may be due to the large geographic 
areas, limited vegetation cover, and less frequent wildfire 
occurrences in other regions (Yang et  al., 2023). In summary, 
drought events (negative SPEI) have a significant effect on wildfires, 
especially in SR.

FIGURE 6

The kernel density of the number and FRP of seasonal wildfires in China during 2003–2022.
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3.6 Wildfire prevention policies continue to 
be introduced

In the context of global warming, countries such as the 
United  States and Australia have experienced frequent and 
catastrophic wildfires in recent years (Dutta et al., 2016; Iglesias et al., 
2022). However, wildfires in China have shown a significant downward 
trend in the 21st century. Undoubtedly, this downward trend is related 
to the development and implementation of fire prevention and 
suppression policies in China (Hayes, 2020). Since the 1987 wildfires, 
China’s forest fire prevention work has been characterized by a high-
pressure situation. From the mode of “group prevention and 
protection, combining mass and professional forest protection” to the 
establishment of a sound organizational management and 
responsibility system and the development of regulations and systems 
and a system of fire control by the law. In 1988, China’s first specialized 
administrative law on forest fire prevention, the Forest Fire Prevention 
Regulations, laid the foundation for promoting fire prevention under 
the law (Zhou et al., 2022).

Since the 21st century, the Chinese government has continued to 
pay attention to wildfires, and relevant fire prevention policies have 
been introduced one after another. China has gradually established the 
policy of “prevention first and active eradication.” In 2008, the State 
Council of China amended the Forest Fire Prevention Regulations, 
which were enacted in 1998, under the Forest Law of the People’s 
Republic of China. The Regulations refined the responsibilities of the 
main bodies in preventing and fighting forest fires, as well as the 
system and measures for fighting fires and the legal responsibilities for 
violations of the law that should be punished following the law (Zhou 
et al., 2022). Following this, the relevant departments of the State 
Council of China issued a series of policies one after another. For 
example, the National Forest Fire Prevention Command and the State 
Forestry Administration issued the “Norms for the Management of 
National Forest Fire Prevention Communication Organizations (for 
Trial Implementation)” in 2011. The purpose is to standardize the 
management of the national forest fire prevention communication 
organization and improve the scientific, professional, and standardized 

level of forest fire prevention communication construction. In 2016, 
the State Forestry Administration issued the National Forest Fire 
Prevention Plan (2016–2025), which provides a detailed narrative on 
how to improve the forest fire prevention construction system. In 
2021, the Office of the State Forestry and Grassland Administration 
issued the Circular on Strengthening Forest and Grassland Fire 
Prevention Work in Fall and Winter Across the Country. China’s 
wildfire prevention entered a new period in 2022 when the Opinions 
on Comprehensively Strengthening Forest and Grassland Fire 
Prevention and Suppression in the New Situation was jointly issued 
by the General Office of the Central Committee of the Communist 
Party of China (CPC) and the General Office of the State Council on 
October 14 of the same year. The opinions pointed out that, affected 
by global warming, increased extreme weather, and other factors, 
wildfires have raged in countries around the world, causing significant 
losses and impacts, emphasizing that the implementation of 
responsibility is the fundamental guarantee for good forest and 
grassland fire prevention and suppression, clarified the responsibility 
of the local party committees and governments, and set up a 
mechanism for supervision and accountability. However, how to 
measure the impact of policies is a topic that deserves in-depth study. 
Some scholars have made some attempts to reveal the effects of 
policies on wildfires. Tian et al. (2020) used a burn probability model 
to assess the effectiveness of wildfire management in the Daxinganling 
forest area. The study modeled the acreage burned by wildfires based 
on historical fire records. The simulated data were also compared with 
data from actual wildfires to reveal the impact of fire prevention 
policies. Zhou et al. (2022) explored the changes in wildfire drivers 
that may have resulted from different periods of fire prevention 
policies in the Daxinganling forest area. These studies provide us with 
ideas and tools for assessing the effects of policies on wildfires.

Although great progress has been made in wildfire prevention and 
management policies in China, there are still some problems to 
be solved. In recent decades, a large number of trees have been planted 
in China, which has greatly increased the fuel load of forests and 
increased the potential risk of forest fires (Zhou et al., 2022). At the 
same time, frequent human activities (e.g., straw burning, wildfires, 

FIGURE 7

Correlation between the annual (A) number and (B) FRP of wildfires and SPEI.
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rituals, etc.) and extreme weather events (e.g., El Niño) will also 
facilitate the development of wildfires (Xiao et al., 2022). This makes 
the current forest fire prevention situation increasingly severe. 
Therefore, to ensure that wildfires in China are under control, more 
efforts need to be invested in research on the mechanisms of wildfire 
development, prediction, and wildfire prevention.

3.7 Limitations

To present, some studies have used active fire products (e.g., 
MODIS and VIIRS) to reveal the spatiotemporal distribution and 
variability of wildfires at global, regional, and national scales (Li et al., 
2020). However, some factors may limit our ability to develop a 
comprehensive understanding of wildfire regimes. First, wildfire 
activity is recognized as a growing problem in many parts of the 
world, but its definition remains elusive and difficult to quantify on 
large spatial scales (Resco de Dios et al., 2022). In this paper, land 
cover types such as forests, shrubs, and grassland are used to extract 
wildfire fire points from the fire point data. No further distinction is 
made between the causes of such fire points, and some errors exist. 
Second, the wildfire data we  use is MODIS data with a spatial 
resolution of 1 kilometer provided by NASA. When the scale of 
wildfire is large enough, it may be recorded as multiple fire spots in 
observation. In this study, the number of fire points was used to 
analyze the temporal and spatial evolution of wildfires. This limitation 
of data observation may bring errors to our research. Finally, the 
presence of clouds and shadows may affect wildfire detection, 
especially in tropical and/or sub-tropical regions (Li et al., 2014). This 
is a very paradoxical issue because more than 70% of wildfires in 
China occur in tropical subtropical regions, which is a challenge for 
cloud-free observations. However, due to the frequent occurrence of 
wildfires during the dry winter and spring seasons in the tropics and 
subtropics, this also facilitates effective observations using optical 
satellites. These constitute an important source of uncertainty in 
wildfire research. However, for national-level analysis, moderate 
spatial resolution is appropriate.

4 Conclusion and outlook

In this study, with MODIS C6 wildfire products (2003–2022), 
we  investigated the spatial and temporal patterns and evolution 
characteristics of wildfires in China. Over the past 20 years, the wildfire 
frequency and fire radiative power (FRP) have declined at rates of 
−1920/year (p < 0.001) and −76492 MW/year (p < 0.001), respectively, 
showing a highly significant downward trend, with declines of up to 63 
and 81%. Wildfires in China show a single peak pattern of high 
incidence in winter and spring, with the most frequent in March, 
followed by February and April. The overall spatial distribution of 
wildfires in China is characterized by a bimodal distribution, with 
more in the south and less in the north. Wildfires are most prevalent 
in SR (54%), followed by SWR (21%) and NER (15%), and least in NR 
(9%). Wildfires are most abundant but less intense in SR, fewer but 
most intense in NER, and significantly influenced by El Niño in SWR, 
with significant regional differences in wildfires in China. The average 
FRP of wildfire spots presented a decreasing trend from 47 MW/spot 
in 2003 to only 25 MW/spot in 2022. This may be  due to more 

dispersed wildfires, rather than concentrated wildfires. The frequency 
and FRP of wildfires showed an overall negative correlation with 
SPEI. Drought events (negative SPEI) have a significant effect on 
wildfires, especially in SR. This study demonstrates the effectiveness of 
current fire suppression policies in China in terms of disaster 
prevention and mitigation, and further provides data to further explore 
and analyze the impact of wildfires on the regional environment.

In the future, we will pay attention to the following aspects: the 
influencing factors, driving mechanism, and a series of environmental 
effects caused by wildfires in China, to reveal the occurrence and 
development mechanism of wildfires in China and quantify the 
potential impact of wildfires on the ecological environment and social 
economy. In addition, it is necessary to further study the relationship 
between wildfire and climate, especially the relationship between 
wildfires and extreme climate, such as the relationship between El Nino, 
La Nina, and the Indian Ocean dipole. Generally, the government and 
the scientific community need to make sustained efforts in this field.
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