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Introduction: This study aims to achieve early and reliable monitoring of wood-

boring pests, which are often highly concealed, have long lag times, and cause

significant damage to forests. Specifically, the research focuses on the larval

feeding vibration signal of the emerald ash borer as a representative pest. Given

the crucial importance of such pest monitoring for the protection of forestry

resources, developing a method that can accurately identify and interpret their

vibration signals is paramount.

Methods: We introduceMelSPPNET, a self-explainingmodel designed to extract

prototypes from input vibration signals and obtain the most representative

audio segments as the basis for model recognition. The study collected feeding

vibration signals of emerald ash borer larvae using detectors, along with typical

outdoor noises. The design of MelSPPNET considers both model accuracy and

interpretability.

Results: Experimental results demonstrate that MelSPPNET compares favorably

in accuracy with its similar non-interpretable counterparts, while providing

interpretability that these networks lack. To evaluate the interpretability of the

case-based self-explaining model, we designed an interpretability evaluation

metric and proved that MelSPPNET exhibits good interpretability. This provides

accurate and reliable technical support for the identification of emerald ash borer

larvae.

Discussion: While the work in this study is limited to one pest type, future

experiments will focus on the applicability of this network in identifying other

vibration signals. With further research and optimization, MelSPPNET has the

potential to provide broader and deeper pest monitoring solutions for forestry

resource protection. Additionally, this study demonstrates the potential of self-

explaining models in the field of signal processing, o�ering new ideas and

methods for addressing similar problems.

KEYWORDS

convolutional neural networks, interpretable, self-explainable model, vibration signals,

emerald ash borer

1 Introduction

The protection of forestry resources hinges on the prevention and control of plant

diseases and insect pests. Among these pests, stem borers are particularly challenging to

manage due to their covert lifestyle, prolonged damage period, and delayed symptoms.

The emerald ash borer (EAB) is a prominent stem borer pest, as its larvae feed on the inner

bark of trees, causing hidden damage (MacFarlane and Meyer, 2005; Kovacs et al., 2010;

Mwangola et al., 2022). By the time visible signs of infestation appear, it is often too late

to effectively control the outbreak. This makes prevention and control measures extremely
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difficult (Poland and McCullough, 2006; Ward et al., 2021;

Davydenko et al., 2022). In China, the prevalence of single-species

tree plantations creates a simplistic forest structure, rendering

large-scale plantations vulnerable to EAB infestations.

Traditional methods of pest detection, such as manual searches

for adult insects within designated sample plots and performing

counts, as well as employing pheromone trapping techniques that

involve the use of color-attractant traps, girdled-tree semiochemical

attractant traps, and pheromone traps (Rutledge, 2020), remote

sensing (Zhou et al., 2022), and image detection, provide valuable

information for pest control. However, these methods may not

be effective for early detection of pests such as the EAB, whose

larvae’s feeding stage causes significant damage to the host without

noticeable symptoms (Murfitt et al., 2016). The lagging response

characteristics of EAB damage and the difficulty of early detection

with naked eyes can cause irreparable losses (McCullough and

Katovich, 2004). Therefore, the development of sound recognition

technology has opened up new possibilities for pest identification.

For example, scholars have used the AED-2000 to record the

activity sounds of the Red Palm Weevil and the AED-2010

equipment with SP-1L probe to monitor the Grape Root Moth

(Inyang et al., 2019;Wang B. et al., 2021; Shi et al., 2022). Nowadays,

a convenient and fast detection method involves using the AED

instrument to collect vibrations from trees, inputting these into a

deep learning model, and then using a neural network model to

identify if a tree has been infested by insects. Thismethod can detect

pests in the larval stage and save a lot of manual judgment (Wang

B. et al., 2021). In addition, the development of neural networks has

led to the emergence of pest monitoring and identification based

on speech recognition technology. Compared to early methods of

recording feeding sounds in the air using fixed sensors on tree

trunks, piezoelectric vibration sounds generated by pest activity are

more sensitive and less noisy. The vibration signal of the wood

borer can be recorded by a sensor and saved in audio format, and

feature points can be identified and classified using deep learning

technology (Kahl et al., 2018; Liu et al., 2022).

The current development of neural networks is very rapid

and has applications in many fields, but in many key areas that

require high performance, there are also high requirements for

the transparency and interpretability of the model. In various

fields such as healthcare (DeGrave et al., 2021; Gautam et al.,

2022b), driverless driving (Omeiza et al., 2021), and law (Rudin,

2019), high reliability of algorithms is crucial. However, the lack

of transparency and interpretability of models often hinders their

practical application, especially when it comes to understanding

the reasons for wrong decisions. For these reasons, this also

leads to the emergence of explainable artificial intelligence (XAI),

which is divided into two lines in the field of explainable artificial

intelligence. On the one hand, it is the posteriori interpretation

of existing black-box models, that is, the ex post facto explainable

method ; on the other hand, some specialized models are being

developed to provide predictions and explanations, also known as

self-explainable models (SEMs) (Gautam et al., 2022a). And the

model we proposed is a self-explanatory model.

In existing XAI research, a study has focused on understanding

how traditional convolutional networks recognize vibrational

signals by utilizing layer-wise relevance propagation(LRP). They

aim to provide pixel-level representations of which values in the

input signal contribute the most to the diagnostic outcomes, thus

offering post-hoc explanations of how CNNs differentiate between

fault types (Grezmak et al., 2019). Another line of research involves

designing new network layers using various algorithms, which are

applied to convolutional networks for image recognition. These

layers are designed to extract different categories of case examples.

Based on the similarity between input data and these case examples,

they aim to achieve case-based interpretability (Chen et al., 2019;

Kim et al., 2021; Liu et al., 2021; Wang J. et al., 2021; Donnelly

et al., 2022; Cai et al., 2023). Furthermore, a study employs

Variational Autoencoder (VAE) techniques in the field of image

recognition. It trains VAEs to generate the average case example

images and incorporates these generated cases into the decision-

making process. This approach assesses the similarity between

input images and cases to achieve interpretability (Gautam et al.,

2022a). Additionally, a study introduces a novel interpretation

algorithm that assesses the significance of different audio segments

in making accurate predictions. This approach offers a scalable and

unbiased method to enhance model interpretability in vibration

signal recognition (Shah et al., 2022). In summary, there is currently

a lack of self-explanatory models for vibration signal recognition,

based on the existing research. Therefore, building upon prior

studies, we proposeMelSPPNET, a case-based Explainable Artificial

Intelligence model for the recognition of EAB based on vibrational

signals.

2 Related work

The recognition of vibration signals generated by pests can

be divided into two stages. In the first stage, human auditory

recognition and judgment of the vibration signals generated

by pests during feeding are performed in the time-frequency

domain. However, this process requires the professional skills of

inspectors and may result in misjudgment when environmental

noise is very loud. The second stage involves collecting sound

or vibration signals and identifying pests through the Internet

of Things (Jiang et al., 2022) or algorithms (Du, 2019). Machine

learning is an important automatic identification method that

uses large amounts of data to find patterns from the original

data, classify and predict new input data through these patterns.

For instance, Sutin et al. (2019) designed an algorithm for the

automatic detection of pulses from Anoplophora glabripennis

and Agrilus planipennis larvae, whose parameters were typical

signals evoked by larvae. When the detected pulse signal exceeds

a certain threshold, it can be concluded that the tree is infected.

Neural network algorithms are the most widely used in machine

learning, and recent advancements in neural network technology

have shown that artificial intelligence can solve various complex

tasks and even complete some professional tasks (Luo et al.,

2022).

Zhu and Zhang (2012) used existing sound parameterization

techniques for speech recognition to identify pests. In their

research, Mel-scale Frequency Cepstral Coefficients (MFCCs) were

extracted from the preprocessed audio data and then classified

using a trained Gaussian mixture model (GMM). Sun et al. (2020)
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proposed a lightweight convolutional neural network containing

only four convolutional layers and used keyword discovery

technology to recognize the vibrations of Semanotus bifasciatus and

Eucryptorrhynchus brandti larvae. All of the models and methods

mentioned above are black-box models that can be used for pest

identification.

Existing research on the interpretability of neural networks

focuses on post-hoc interpretability methods that have evolved

from machine learning, such as CAM (Class Activation

Maps) (Zhou et al., 2016), LRP (Grezmak et al., 2019),

SHAP (SHapley Additive exPlanations) (Lundberg and Lee,

2017), and LIME (Interpretable Model-agnostic Explanations)

(Ribeiro et al., 2016). These techniques are applied to pre-

trained models to explain how the model classifies input

samples into output classes. The post-hoc interpretable methods

mentioned above can, to some extent, provide explanations

for pre-trained models by interpreting the results and the

reasons leading to those results. However, they are not

designed for recognition based on patterns similar to human

recognition.

Existing SEM models are mostly applied to image recognition,

and case-based models such as ProtoPNet (Chen et al., 2019),

TesNet (Wang J. et al., 2021), and XProtoNet (Kim et al., 2021)

demonstrate excellent performance in bird and medical X-ray

prototype recognition. These methods extract prototypes as image

patches, using these patches as cases for recognition. However,

applying these models to audio recognition does not preserve

the original spatial positional information of the prototypes.

For audio, the prototypes obtained from these models do not

retain the true physical meaning, especially when dealing with

spectrograms—images sensitive to spatial positions (i.e., frequency

ranges). The patches they obtain lack genuine physical significance

for spectrograms. ProtoPNet generates prototypes using training

data, and experiments show instances where the same prototype

is generated for identical training data (Gautam et al., 2022a).

On the other hand, ProtoVAE, based on VAE (Gautam et al.,

2022a), generates class-averaged images, addressing the issue of

duplicate class prototypes seen in ProtoPNet. This enhances the

model’s recognition accuracy and robustness in image recognition

SEM models. However, when applied to the audio recognition

domain with spectrograms as model input, it is constrained by

the features of VAE. While it can generate spectrograms with the

same frequency range and duration as the original input training

data, due to variations in the timing and amplitude of vibration

signals in the training samples, the images produced by VAE are

merely blurry, averaged representations of the training samples.

They cannot serve as interpretable class representatives for humans

and lack genuine physical significance.

Currently, there is a lack of SEMs that are suitable for analyzing

pest vibration signals. Although traditional black box models can

achieve recognition results, they cannot guarantee the reliability

and credibility of the model. SEMs that are tailored for pest

vibration signals can not only reliably identify trees containing pests

but also play a significant role in pest control. However, researchers

have not yet applied SEMs to vibration identification of pests. In

our study, we focused on the feeding cavity vibration signal of EAB

and designed a case-based SEM to achieve reliable identification of

the EAB vibration signal.

3 Materials and methods

3.1 Dataset and processing

3.1.1 EAB vibration signal collection
As the vibration signal used to identify EAB is primarily

the weak vibration caused by EAB larvae gnawing on the

phloem of trees, it is necessary to embed the probe into

the tree during the acquisition of EAB larval signal. Voltage

transducers are used to collect vibration signals, which are then

stored as single-channel audio. Embedding the collection probe

into the tree trunk not only reduces the complexity of data

collection, but also reduces the interference of environmental

noise to a certain extent and improves the purity of the EAB

larval vibration. To mitigate training complexity and enhance

the representativeness of the prototypes, this study utilized

four distinct datasets. The first dataset comprised EAB larval

vibrational signals collected in the field, amidst environmental

noise. The second dataset consisted solely of environmental noise

collected at the same field locations. The third dataset involved

vibrational signals from tree sections containing EAB larvae,

gathered in a soundproof indoor environment. The fourth dataset

encompassed tree noise from soundproof indoor environments,

where EAB larvae were absent. The environmental noise collected

at field locations and the tree noise in soundproof indoor

environments were collectively categorized as environmental

noise, with a 2:1 ratio between the two signal types. The

first two signal types were collected from the same tree, at

varying heights and different positions on trees of the same

height in the field, ensuring diversity within the vibration signal

categories.

The data collection for the experiments was conducted in

a forest area affected by EAB larvae in Tongzhou District,

Beijing, from July 18, 2021. The average temperature during

the 5-day period was around 33 degrees Celsius. In the North

China region, EAB becomes active in mid to late April during

the period of sap flow. Pupation begins in late April, and

adults emerge in mid-May, with peak emergence occurring from

late May to early June. After emergence, adults remain in the

pupal chamber for 5–15 days before breaking through the “D”-

shaped emergence hole. Newly emerged adults rely on feeding

on leaves for about a week to supplement nutrients, causing

irregular notches in the foliage. From mid-June to mid-July,

adults mate and lay eggs, with an egg incubation period of 7–

9 days. Initially, we examined trees exhibiting significant growth

disparities compared to others and searched for “D”-shaped

emergence holes to identify high-probability ash trees parasitized

by EAB larvae. Subsequently, we employed piezoelectric vibration

sensors to probe the tree trunk sections. Prior to recording,

manual monitoring was conducted to detect larval activity by using

headphones.

Recordings were made for approximately one and a half

hours daily if larvae activity was observed within each tree trunk.

After outdoor collection, the trees were felled and transported

to a soundproofed indoor environment where the temperature

was ∼28 degrees Celsius. Six segments of trees containing EAB

larval vibrational signals were collected. Each section was ∼30

centimeters in length, and the probe was inserted at the midpoint
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FIGURE 1

EAB larvae feeding on the phloem.

of the tree trunk. The computer, probe, and tree trunk were

positioned on a regular table. Prior to recording, headphones were

used to monitor larval activity to confirm their activity. Once

the recording commenced, all personnel vacated the room. For

live trees where larvae activity was present, vibrational data was

recorded daily for an hour and a half. Multiple audio segments

were recorded at various times from distinct sections of the tree

trunks. As a control measure, the dataset also contained two

segments without EAB larvae. These portions primarily contained

background noise from the instrument, as there was no larval

activity. Recordings began on July 23, 2021, and lasted for

five days.

Following data collection, supervised by forestry experts, the

bark of all tree sections was removed, revealing the EAB larvae

inside and quantifying their count. In two tree segments, there were

∼5 to 10 larvae, while the other four segments contained about

10–20 larvae. The larvae were ∼3 cm in length, as depicted in

Figures 1, 2.

For EAB larval vibration signals containing environmental

noise from the collection site, we manually screened and selected

audio segments with clear EAB larval vibration signals. All collected

data was cut into 5-s audio segments, and a portion of the training

data was randomly selected and set as the training and validation

sets for model training using a 5:1 ratio.The data was presented

in Table 1. The label “0” represents vibration signals containing

EAB larvae, while “1” represents vibration signals without

EAB larvae.

FIGURE 2

EAB larvae feeding on the phloem visible after removing the bark.

We use a voltage sensor probe with a sampling frequency of

44.1 kHz and a sampling accuracy of 16bit for signal acquisition.

The probe is inserted into the tree trunk to capture the vibration

signal directly.

3.1.2 Preprocessing of EAB vibration signal
Similar to many commonly used methods, we utilized Mel

spectrogram to simulate the perception of sound by the human

ear and extract features from the audio segment. As the EAB

larval vibration signal is a non-periodic signal that changes over

time, it is necessary to perform a fast Fourier transform, i.e.,

short-time Fourier transform (STFT), to obtain the spectrogram

on several window segments of the new signal. It has been

found that humans do not perceive frequency on a linear scale;

rather, they are better at detecting differences in lower frequencies

rather than higher frequencies. The Mel scale, which is derived

from mathematical operations on frequency, better matches the

human ear’s perception of frequency differences. Therefore, we

chose Mel spectrogram as one of the objectives of this study

is to learn how the human ear captures EAB larval vibration

signals.

Firstly, the sampling rate was set to 16 kHz, and the vibration

signal was randomly cropped into audio segments of≤3 s in length

for training purposes. If the audio segment was <3 s, it was padded

with zeros to 3 s, and the vibration signal was pre-enhanced. Then,

the input signal was processed into frames with a frame length
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TABLE 1 Dataset composition.

Categories Representation Duration (min) Sample rate (kHz) Sample depth (bit)

EAB vibration signals

environmental noise

0 250 44.1 16

1 298 44.1 16

FIGURE 3

Transformation of vibration signals with random cropping to 301 × 80 Mel feature maps.

of 512 and a step size of 160. The frames were then separated

using the Hanning window to ensure that the frequency spectrum

was not lost. The short-time Fourier transform was performed on

each frame signal, and the absolute value squared was obtained.

Finally, the signal was filtered through 80 groups of Mel filters and

subjected to discrete cosine transform to obtain the final features.

As shown in Figure 3, the feature size was 80 × 301, with the

transformed time frames of 301 serving as the length of the feature,

and 80 groups of Mel filters serving as the number of channels.

This allowed for the transformation of the features from two-

dimensional to one-dimensional, making full use of the temporal

and spectral information contained within the Mel filter groups. To

facilitate human understanding, the feature map was output as a

spectrogram, but this did not affect the original features’ temporal

and spectral information.

3.2 MelSPPNET architecture

Our work is closely related to the case-based classification

technique using prototypes, similar to the “visual bag of words”

model in image recognition. Our MelSPPNET learns a set of

prototypes and compares them with unseen audio segments during

the recognition process. Our network uses a specialized neural

network architecture for feature extraction and prototype learning,

trained in an end-to-end manner. Due to the characteristics of

EAB vibration signals, the collected EAB vibration signals are

irregular and have uncertain energy. The feature positions of

each audio segment are different, and our prototype extraction

does not extract the entire training sample of audio that best

represents the class, but selects slices of audio samples for finer-

grained comparison.

Our network structure consists of two components, one is the

traditional convolutional layer, and the other is the prototype layer

that extracts prototypes from the training samples, which is used

for recognizing vibration signals in a traditional way.

The architectue of the MelSPPNET is shown in the Figure 4.

The first part of our network is a conventional convolutional

neural network f , whose parameters are collectively denoted as

wconv, followed by a prototype layer gp and a fully connected

layer h with weight matrix wh but no bias. For the conventional

convolutional network f , VGG-16, VGG-19, ResNet-18 or ResNet-

34 models can be used as convolutional layers, and two additional

1 × 1 convolutional layers are added in our experiments. Except

for the last layer using sigmoid as the activation function, ReLU

(rectified linear unit) is used as the activation function for all other

convolutional layers.

For a given input vibration signal x, the convolutional layer of

our model extracts useful features f (x) for classification. LetH×W

denote the shape of the Mel spectrogram of x after preprocessing,

where H (mainly containing frequency domain information) is

regarded as the number of channels, and the converted time frames

W are regarded as the length. Thus, let C × L denote the shape of

the output f (x), where the number of output channels C satisfies

C ≥ W. After training to a certain extent, the network learns m

prototypes P =
{

Pj
}m

j=1
, with shape C × L1, where L1 ≤ L. In

our experiment, we use L1 = 1. Since the number of channels

of each prototype is the same as the number of output channels,

but the length of each prototype is less than the length of the

entire convolutional output, the prototypes essentially represent

subsegments of the convolutional output. These prototypes can be

seen as small segments of time in terms of Mel values. Therefore,

each prototype will be used to represent some prototype audio

patchs in the convolutional output block. Therefore, in this case

study, each prototype pj can be understood as a potential audio

patch of the vibration signal.

The process of network training and recognition is illustrated

in the Figure 5. Given a convolutional output z = f (x), the j-th
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FIGURE 4

MelSPPNET architecture.

FIGURE 5

Flowchart of training and testing process.

prototype unit gpj in the prototype layer gp computes the squared L2

distance between all audio sub-segments with the same length as pj
in z and pj, and inverts the distance to a similarity score. The result

is an activation matrix of similarity scores, where the value of each

element represents the strength of the corresponding prototype

part in the audio. The activation matrix preserves the position

information of the convolutional output, and can be upsampled to

the size of the input matrix to represent the key time frames used

for classification and their importance. Using global max pooling

reduces the activation matrix generated by each prototype unit gpj
to a single similarity score, which can be understood as the presence

of the prototype part in a certain patch of the input audio. The

prototype unit gpj computes the prototype z that is closest to the

potential patch pj by continuously optimizing the parameters. If the
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output of the j-th prototype unit gpj is large, there is a patch in the

convolutional output that is very similar to the j-th prototype in

the latent space, indicating that there is an audio segment in the

input audio that is similar to the concept represented by the j-th

prototype.

In our network, we assigned m prototypes for each of the two

categories: vibration signals with and without EAB presence (in our

experiment, each category has five prototypes). These prototypes

are intended to capture the most relevant parts for recognizing

these two types of vibration signals.

Finally, the prototype layer gp generates m similarity scores,

which are multiplied by the weight matrix wh in the fully

connected layer h to produce output logits. These logits are then

normalized using softmax to generate prediction probabilities for

different classes of the given audio. The formula is expressed as

follows:softmax(whgp(z)).

3.3 Training model

During the training of ourMelSPPNET, we first apply stochastic

gradient descent (SGD) to the convolutional layers before the

final layer, followed by prototype projection, and finally convex

optimization for the last layer.

The SGD optimization in the convolutional layers before the

final layer aims to learn a meaningful latent space in which the

most important signal patches for vibration signal classification

are clustered around prototypes with L2 distance in the semantic

vicinity of the vibration signal’s true class, and clusters with

prototypes centered on different classes are well separated. To

achieve this effect, we jointly optimize the convolutional layer

parameters wconv and the prototypes in the prototype layer gp with

SGD, while keeping the weights wh in the last layer fixed. In this

process, our objective is to solve the optimization problem, as

shown in Equation (1):

min
P,wconv

1

n

n
∑

i=1

CrsEnt(h ◦ gp ◦ f (xi), yi)+ λ1Clst + λ2Sep (1)

Clst and Sep are defined as shown in Equation (2) and Equation (3)

Clst =
1

n

n
∑

i=1

min
j : pj∈Pyi

min
z∈patchs(f (xi))

‖ z − pj ‖
2
2 (2)

Sep = −
1

n

n
∑

i=1

min
j : pj /∈Pyi

min
z∈patchs(f (xi))

‖ z − pj ‖
2
2 (3)

Like other networks, the cross-entropy loss (CrsEnt) is used

to penalize misclassification of the training data. Minimizing the

clustering cost (Clst) encourages each training vibration signal to

have some potential patches that are close to at least one prototype

of its own class, while minimizing the classification cost (Sep)

encourages each potential patch of the training vibration signal

not to belong to prototypes of its own class. These losses form a

semantically meaningful clustering structure in the latent space,

making it easier for the network to classify based on the L2 distance.

During this training stage, we also fixed the last layer h whose

weight matrix is denoted as wh. Let w
(k,j)

h
represent the weight

linking the output of the j-th prototype unit gpj to the logit of class k.

For a given class k, we initialized these weights at the first iteration

as follows Equation (4):

{

w
(k,j)

h
= 1, pj ∈ Pk

w
(k,j)

h
= −0.5, pj /∈ Pk

(4)

where Pk denotes the set of prototypes belonging to class k.

Intuitively, the positive connection between the k-class

prototype and the k-class logit means that the similarity with

the k-class prototype should increase the predicted probability of

the image belonging to the k-class, while the negative connection

between the non-k-class prototype and the k-class logit means

that the similarity with non-k-class prototype should decrease the

predicted probability of the image being classified as the k-class.

Fixing the last layer h forces the network to learn a meaningful

latent space, as if a latent audio segment of a k-class vibration signal

is too close to a non-k-class prototype, it reduces the predicted

probability of the segment belonging to the k-class, thus increasing

the cross-entropy loss in the training objective. Both the separation

cost between the non-k-class prototypes and the k-class logit and

the negative connections encourage k-class prototypes to represent

semantic concepts that have k-class features rather than other

features: if k-class prototypes also represent semantic concepts

in non-k-class vibration signals, then the non-k-class vibration

signals will highly activate the k-class prototype and be penalized

by increasing the separation cost and cross-entropy loss.

3.3.1 Prototype projection
In order to visualize the prototypes as patches of training audio

segments, we project (“push”) each prototype pj onto the nearest

latent training patch that belongs to the same class as pj. This allows

us to conceptually equate each prototype with a slice of a training

audio segment. Mathematically, for a prototype pj belonging to

class k, i.e., pj ∈ Pk, we perform the following update, as shown

in Equation (5):

pj ← argmin
z∈Zj
‖ z − pj ‖2 (5)

where Zj is defined as Equation (6)

Zj =
{

z̃ : z̃ ∈ patchs(f (xi))∀i s.t.yi = k
}

(6)

If the prototype projection does not move the prototypes too

far (which is ensured by optimizing the clustering cost Clst), the

predictions for the samples that the model correctly predicted with

a certain confidence before projection will not change.

Due to the reuse of training samples multiple times as a dataset

in training loops, the same patch may be extracted for different

batches in different loops, which requires orthogonalization of

prototype vectors to achieve intra-class diversity. Without further

regularization, prototypes may collapse to the center of the class,

excluding the possibility of additional prototypes. To prevent this
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and promote intra-class diversity, we enforce orthogonality among

prototypes within each class, as shown in Equation (7):

Lorth =

K
∑

k=1

‖ 8̄T
k 8̄k − IM ‖

2
F (7)

where IM is the M × M identity matrix, and the column vectors

of matrix 8̄k are obtained by subtracting the mean of the

prototypes assigned to class k from each prototype, i.e., 8̄k =

φkj− φ̄k, j = 1..M, where φ̄k =
∑

i = 1Mφki. In addition to the

traditional regularization using the Frobenius norm ‖ · ‖F on

the prototypes, this approach promotes separation of the concepts

captured within each class, which is one way to achieve intra-class

diversity.

Figure 6A shows the prototype obtained by training without

adding orthogonal loss, in which two prototypes can be

seen to be duplicated, and Figure 6B shows the prototype

obtained by training with orthogonal loss added, without

duplicated prototypes.

3.4 Audioization of prototypes

Given a prototype pj and a training vibration signal x, in

the process of prototype projection, we use its latent patch as pj
and use the patch of x’s vibration signal highly activated by pj
as the audio representation of pj. The reason is that the patch

of x corresponding to pj should be the patch with the strongest

activation by pj. We can transform x using a trained MelSPPNET

and upsample the activation matrix generated by the prototype

unit gpj before maxpooling to the size of the vibration signal

x, in order to find the patch of x that is most highly activated

by pj. The most highly activated patch of x is represented by

the high-activation region in the upsampled activation matrix.

Then, we audio-ize pj using the smallest matrix patch of x that

surrounds the time interval corresponding to the activation values

in the upsampled activation matrix corresponding to gpj that are

at least as high as the 95th percentile of all activation values in

that matrix.

3.5 Reasoning process of our network

The Figure 7 shows the inference process of our MelSPPNET

when classifying vibration signals containing EAB. Given a test

vibration signal x, our model compares its latent feature f (x)

with the learned prototypes. Specifically, for each class k, our

network attempts to find evidence that x belongs to class k

by comparing its latent patch representation with each learned

prototype pj of that class. For example, in the Figure 7, our

network tries to find evidence of a vibration signal containing

EAB by comparing the latent patch of the vibration signal with

each prototype of that class. This comparison produces a matrix

of similarity scores for each prototype, which is upsampled and

overlaid on the original audio to see which parts of the given

vibration signal are activated by each prototype. As shown in the

activation matrix column in the Figure 7, the vibration signal to

be recognized corresponds to each audio segment of its respective

class and is marked on the original audio segment - this is the

vibration signal patch that the network considers to sound like

the corresponding prototype. In this case, our network found high

similarity with different prototypes in the given vibration signal

at different time periods. These similarity scores are weighted and

added together to give the final score for belonging to that class.

The inference process for classes of vibration signals without EAB

is also similar.

3.6 Interpretation score

In order to better evaluate the interpretability of our model,

we conducted an evaluation process shown in Figure 8. We

used an Interpretation-Score (IS) to measure the interpretability

performance of the model. After feeding test data into the trained

interpretable recognition model, the model outputs a significance

score s for each time frame. By setting a significance threshold

ŝ, we count the time frames with significance scores higher than

the threshold as key frames, and calculate the sum of significance

scores of all key frames as the model’s significance score. In

addition to significance, we erase the key frames filtered by the

threshold from the test data, and feed the remaining data into

the model for classification. We then calculate the difference 1CS

between the classification score before and after erasing the key

frames. The correlation coefficient between the significance score

and the difference in classification scores is used as the model’s

IS. The significance score reflects the degree of significance of the

erased region, while the difference in classification scores reflects

the contribution of the erased region to the model’s recognition.

Therefore, the correlation coefficient between the two can reflect

the interpretability of the model. The larger the correlation

coefficient, the stronger the interpretability of the model. The

formula for calculating IS is shown in Equation (8):

IS =

Cov

(

∫

s(f )>ŝ

sdf ,1CS

)

σ

(

∫

s(f )>ŝ

sdf

)

σ (1CS)

(8)

4 Experimental results and analysis

4.1 Experimental environment

This institute utilized environment equipment such as Intel(R)

Xeon(R) Platinum 8255C 12 vCPU (43GB memory) and GeForce

GTX 3080 (10GB VRAM), and was implemented using the

PyTorch deep learning framework. The hyperparameters were set

through manual tuning and automatic tuning methods. Based on

the related experiments in audio recognition and the workload of

this study, we manually adjusted the hyperparameters. After a large

number of experiments, we found the best-performing parameter

sizes and used them. The batch size was set to 512, and the model

training ended after 12 epochs.
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FIGURE 6

Comparison of prototypes obtained with or without adding orthogonal loss training. (A) Prototype of EAB-containing vibration signal obtained

without orthogonal loss training. (B) Prototype of EAB-containing vibration signal obtained with orthogonal loss training.

4.2 Experimental results

4.2.1 Accuracy of recognition
The identification of EAB is performed on a single audio basis,

and the accuracy of audio recognition is used as the final evaluation

metric for the models. To compare the recognition performance of

various networks, pre-processing of the test audio is required before

inputting it into the network model, as described in Section 3.1.2,

where the log Mel-spectrogram features are converted to one-

dimensional data for input. This process is a fundamental step in

audio recognition and is independent of the choice of recognition

method.

To verify the recognition accuracy of MelSPPNET, we

conducted comparative experiments with several established
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FIGURE 7

Reasoning process.

network structures. In convolutional neural networks, as the

number of layers increases, their ability to adapt to more complex

functions also increases. However, for vibration signal recognition,

a relatively simple network structure can achieve high accuracy

(Grezmak et al., 2019). Therefore, in our experiments, we used

traditional CNN networks as the basic convolutional layers of

MelSPPNET and modified them to be suitable for one-dimensional

data, training them with the same hyperparameters. We used

ResNet-18, ResNet-34, VGG-16, and VGG-19 with a few layers

as the basic convolutional layers for MelSPPNET and ResNet-18,

ResNet-34, VGG-16, and VGG-19 without the prototype layer as

the baseline models for comparison of accuracy. We chose ResNet

network because its structure includes residual blocks, which can

avoid the problems of vanishing or exploding gradients and has

fewer parameters, resulting in faster training speed. We chose VGG

network because it has a simple structure, is easy to understand and

implement, and has high accuracy.

As shown in Table 2, the experimental results indicate that

the introduction of the prototype layer did not have a negative

impact on the accuracy of MelSPPNET. Moreover, the influence on

recognition accuracy is correlated with the recognition accuracy of

the backbone network.

4.2.2 Reliability of the interpretation
We applied the interpretability evaluation metric we designed

to evaluate the interpretability of MelSPPNET (with ResNet-

18 as the backbone network) by inputting saliency threshold

values ranging from 0.3 to 0.99 in steps of 0.01, and calculated

the Interpretation score IS using the method described in

Section 3.6. We listed the IS of the top 10 test data in

Table 3.

From the table, we can see that an IS > 0.8 indicates a high

correlation between the significance score and classification score

difference, indicating a high interpretability of our MelSPPNET.

This suggests that our model has indeed extracted the vibration

signal segments in the EAB larval feeding sound as intended and

used them as the basis for Recognition of input data.

5 Discussion

In the process of detecting target tree trunk signals, it is

necessary to first embed a ceramic piezoelectric sensor with a probe

into the target tree trunk, then record the vibration signal and input

it into MelSPPNET. MelSPPNET compares the input vibration

signal with the existing prototype, and finally provides classification

results.

In the context of EAB vibration signal recognition,MelSPPNET

utilizes a methodology akin to human cognition. It leverages the

existing “knowledge” acquired during training to seek diverse

pieces of evidence and subsequently compares them with novel,

unseen data. This comparative analysis aims to identify the most

salient features of the input data and facilitate informed decision-

making. This paradigm is especially well-suited for structured
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FIGURE 8

Interpretation score calculation process.

vibration signals that exhibit discernible patterns and do not

necessitate substantial temporal dependencies.

In the actual execution process, the feeding vibration of EAB is

accompanied by its own displacement, and the distance range of the

feeding vibration signal that the sensor can sense is limited, which

is determined by the physical properties of signal propagation.

Therefore, in subsequent research, simultaneous detection of

different positions of the same wood segment is also crucial.

In Section 4.2, not all data achieved a high IS, andwe believe this

is due to the inevitable influence of systematic environmental noise

during data collection, such as the chirping of cicadas during field

sampling. The environmental noise introduced contains regular

patterns that affect the extraction of prototypes from the audio

segments. To achieve higher IS and more accurate prototypes, it

is necessary to perform pre-processing denoising on the collected

data and the data to be identified before inputting it into the model.

This is because the features of the burrowing vibration signals we

need to identify are fixed, but the environmental noise that may be

collected can vary significantly.

In terms of potential use, in terms of pest management, some

studies have shown that there may be multiple stem borers for

the same tree species, and different stem borers require different
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TABLE 2 Recognition accuracy comparison.

Base Baseline With MelSPPNET

ResNet-18 99.45 99.77

ResNet-34 99.62 99.68

VGG-16 99.32 99.53

VGG-19 99.43 99.39

TABLE 3 Top 10 test data with interpretation score of MelSPPNET.

Test data number IS

1 0.9993

2 0.9973

3 0.9640

4 0.9588

5 0.9511

6 0.9300

7 0.9074

8 0.9001

9 0.8625

10 0.8175

management methods. Therefore, classification of stem borers is

also an important research direction. In theory, if two different stem

borers produce different frequencies of feeding vibration signals

due to their body size, MelSPPNET can be used to distinguish

them; In terms of the prevention and control of invasive alien

species, it is worth exploring whether changes in the shape of wood

after processing into industrial products or during transportation

as wood segments will result in different vibration signals of dry

boring pests.

We attempted to use MelSPPNET for traditional sound signal

recognition on the Urbansound8k dataset, but the network’s

recognition performance was not satisfactory. The reason for

this may be that sound signals, unlike vibration signals, do not

have periodic regularity, the training data did not undergo data

augmentation and contained relatively high levels of noise, and

there were similar and easily confused classes among different

categories. As a result, MelSPPNET could not extract widely

applicable prototypes for each class, thus failing to achieve high

accuracy.

6 Conclusions

In this study, we proposed a case-based SEM MelSPPNET

for the accurate and reliable identification of EAB feeding

vibration signals collected using a piezoelectric ceramic sensor,

while generating human-understandable prototypes. We also

proposed an interpretable evaluation index IS for the case-

based SEM, which can be used to evaluate an SEM. By

strengthening the diversity and credibility of the prototypes

through the loss function, our proposed method can adapt to the

monitoring tasks of forest EAB and provide technical support

for automatic monitoring and early warning identification

of EAB in forests. Moreover, the human-understandable

prototypes extracted by our model reduce the learning

threshold for EAB recognition among forest pest monitoring

personnel.

In the process of data collection, due to the lack of certain

knowledge regarding larval stage and density of EAB, we focused

solely on using MelSPPNET to identify the vibrational signal

features of EAB larvae. We did not consider potential differences

in vibrational signals that could arise from variations in larval stage

and density within the trees. Additionally, since our measurements

were taken during the growth phase of new larvae, there might

be subtle changes in vibration signals as the larvae mature

over time. The growth of trees with changing dates might also

have some impact on vibration signals. However, we believe

that the vibrational signals used to determine the presence of

EAB larvae exhibit generally consistent features across different

larval stages. In future data collection efforts, we will verify this

assumption if we obtain EAB vibrational signals from different time

periods.

In future work, if more pest feeding vibration signals or other

regular industry vibration signals can be collected, we will improve

our model and extend it to the reliable identification of more types

of vibration signals.
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