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Introduction: Root hairs increase the surface area of a plant’s root system that is 
in contact with the soil, thus facilitating plant water and nutrient uptake. However, 
little is known about the characteristics of the root hairs of herbaceous and woody 
plants and their specific response patterns to biotic and abiotic variables from the 
perspective of resource acquisition strategies in the context of global change.

Methods: Here, we analyzed 74 published case studies with 1074 observations of 
root hair traits to identify patterns of root hair length, density and diameter in relation 
to soil (e.g., soil pH, nutrient levels), growing environments (e.g., greenhouse, field) 
and climatic factors (e.g., air temperature), as well as genome size and plant age.

Results: Root hairs were longer, denser and thicker in woody plants compared 
with herbaceous plants, and the length and diameter of root hairs in herbaceous 
plants increased with genome size. With increasing plant age, woody plants had 
significantly longer and thicker root hairs, while root hair density and diameter 
declined significantly for herbaceous plants. Soil-cultured plants had longer root 
hairs than solution-cultured plants. The length and density of root hairs were 
greater in greenhouse-cultured plants than in field-grown plants, and the latter had 
thicker root hairs than the former. As soil pH increased, root hair length increased 
but diameter decreased in woody plants, while root hair density increased in 
herbaceous plants. Increased soil total nitrogen (N) and potassium (K) significantly 
increased root hair length, density and diameter in herbaceous plants, while soil 
total N significantly decreased root hair density in woody plants. Root hair length 
increased significantly, while root hair density decreased significantly, with higher 
mean annual temperature and greater precipitation seasonality, while the opposite 
pattern was true for a wider annual temperature range.

Discussion: Our findings emphasize the life-form-specific responses of root hairs 
to soil and climatic variables. These findings will help deepen our understanding 
of resource acquisition strategies and their mechanisms in different plant forms 
under global climate change.
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1 Introduction

Root hairs are the outward protrusions of epidermal cells in the mature zone with polar 
growth characteristics (Bibikova and Gilroy, 2002; Libault et al., 2010; Zhang et al., 2023b). 
As short-lived organs for absorbing water and nutrients, root hairs can increase exploration 
of the soil by increasing the root surface area in contact with the soil (Gilroy and Jones, 2000; 
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Foreman and Dolan, 2001; Lippold et al., 2022). Moreover, root hairs 
improve soil resource uptake efficiency with very low carbon 
construction and maintenance costs relative to other root 
morphological features (Fohse et al., 1991; Bates and Lynch, 2001; 
Waddell et al., 2016). Thus, the growth and development of root hairs 
are strongly dependent on soil nutrient and water availability, as well 
as soil structure and soil texture (Krasilnikoff et al., 2003; Duddek 
et al., 2023b). Root hair traits are often associated with the uptake and 
accumulation of soil mineral elements by roots, especially for the less 
mobile nutrients, such as inorganic phosphate (Brown et al., 2012; 
Duddek et al., 2023a). Therefore, the growth status and vigor of root 
hairs directly affect the nutritional status and biomass of aboveground 
parts, playing an important role in plant growth and yield formation.

Root hair traits vary among plant species and are strongly 
controlled by intrinsic genetic factors and genotype (Burak et al., 2021; 
Marin et al., 2021; Cai et al., 2022). The length, diameter and density 
of root hairs are important functional traits, indicating the degree of 
root hair development (Zygalakis et al., 2011). The length of root hairs 
can generally range from a few to several millimeters, depending on 
the plant species, its growth stages, and the reproductive environment 
(Caradus, 1980; Ruiz et al., 2020). Recent studies have highlighted the 
species specificity of the water uptake capacity of root hairs (Keyes 
et al., 2017; Cai et al., 2021; Adu et al., 2023). Moreover, root hair 
density is a phosphorus-regulated and phosphorus-responsive trait 
(Nestler et al., 2016; Cui et al., 2018; Bichara et al., 2021), showing 
greater variability among genotypes than root hair length (Vandamme 
et  al., 2013). A significant negative correlation between root hair 
density and length has been observed in several plant species, such as 
Zea mays and Glycine max (Wang et  al., 2004; Adu et  al., 2017), 
suggesting that a limited exploration ability of shorter root hairs may 
be compensated by higher root hair density (Stetter et al., 2015; Adu 
et al., 2023). Accordingly, the morphological characteristics of root 
hairs are determined by the interactions between the plant’s genetic 
potential and its response to environmental factors (Jungk, 2001; 
Datta et al., 2011; Pang et al., 2017).

Life forms are key to understanding changes in species 
composition and vegetation types and their functional traits (Matsuo 
et  al., 2023). Different life forms, such as woody and herbaceous 
plants, vary in woodiness, longevity, size, form and physiology, leading 
to distinct responses to the environment changes (Grytnes and Felde, 
2014; Pérez-Harguindeguy et al., 2016). Generally, woody plants have 
higher water-carbon exchange rates than herbaceous plants because 
of the greater resource availability in the deeper soil where their roots 
are located and their greater tolerance to environment stress 
(Chandrasekaran et  al., 2014; Wang et  al., 2020c). By contrast, 
herbaceous roots possess greater plasticity, enhancing their 
environmental adaptability (Damian et al., 2020; Pu et al., 2023; Zu 
et al., 2023). Therefore, herbaceous and woody plants may employ 
different root foraging strategies (e.g., contrasting root hair densities) 
to cope with changing water and nutrient patterns (Graves et al., 2006; 
Wang et al., 2019; Xing et al., 2024). In addition, woody plants tend to 
be  more climate sensitive than herbaceous plants (Golivets et  al., 
2024). Trees, for instance, are often more sensitive to climate warming 
than herbaceous plants (Graves et al., 2006; Hassan et al., 2023) and 
changes in light (Xu et al., 2023), due to long-term environmental 
selection (Beidler et al., 2015; Ma and Chen, 2018; Hassan et al., 2023).

Collectively, the effects of soil conditions and climate changes on 
root hairs may depend on differences in root hair development 

between herbaceous and woody plants (Tawaraya, 2003; Ohri, 2005; 
Yu et al., 2014; Hwang et al., 2017). Heterogeneity in soil structure 
leads to spatial variation in soil oxygen, water and nutrient 
concentrations and in soil biological activity (Michael, 2001; Lippold 
et al., 2021). Root hair growth has been shown to increase under 
limited soil moisture conditions (Schnall and Quatrano, 1992), with 
root hairs of soil-cultivated plants being longer and denser than those 
of solution-cultivated plants (Datta et al., 2011). However, root hairs 
tend to be shorter and more globular in response to drought (Zou 
et al., 2017). Nutrient availability is one of the most important factors 
affecting root hair development (Barrow, 1977; Cui et  al., 2018). 
Modification of root hair architecture is an effective strategy for plants 
to obtain nutrients from nutrient-poor soils. For example (Schmidt 
and Gaudin, 2017) found that environmental nutrient deficiencies 
triggered plants to build a “compensatory” mechanism for facilitating 
resource acquisition by increasing root hair length or density (Haling 
et al., 2010; Vissenberg et al., 2020). Additionally, uptake of sparingly 
soluble nutrients, such as phosphorus, at the root surface may exceed 
the diffusion rates of these nutrients in soil, resulting in depletion 
zones surrounding the roots (Segal et al., 2008; Zhang et al., 2023a). 
Root hairs extend the root uptake surface beyond the existing 
concentration loss zone and increase the nutrient mass flow around 
the roots, thus minimizing the ionic diffusivity limitation of uptake 
rates (Robinson and Rorison, 1987; Segal et  al., 2008; Zhang 
et al., 2023a).

In general, woody plants have a deeper and wider rooting range 
than herbaceous plants, and the rooting range is deeper in dry and 
nutrient-poor environments than in moist and nutrient-rich ones 
(Tumber-Dávila et al., 2022). Little is known about how root hairs vary 
with plant life form (e.g., woody versus herbaceous plants) and how 
they respond to changes in growth conditions. We  therefore 
investigated the patterns of root hair traits in woody and herbaceous 
plants and their associations with soil water and nutrient availability, 
to better understand the response characteristics of root hairs of 
different plant life forms to resource variations. We hypothesized that: 
(1) the morphological structure of root hairs would differ between 
herbaceous and woody plants, with root hairs of herbaceous plants 
being shorter and finer but denser than those of woody plants, and (2) 
the responses of root hairs to soil and climate factors would vary 
between herbaceous and woody plants, due to their contrasting 
resource uptake strategies.

2 Materials and methods

2.1 Data collection

We collected papers published between 1937 and December 2022 
from the Web of Science and the China National Knowledge 
Infrastructure (CNKI). We used the keywords: “root hair,” “life form,” 
“soil” and “climate change” to find 74 papers that contained complete 
attributes of plant root hairs. The root hair traits we selected were: root 
hair length (μm), root hair density (number of root hairs per cm of 
root length), and root hair diameter (average diameter of root hair 
cross-section, μm). In all the original studies, morphometric 
measurements of root hairs at randomly distributed points within the 
apical zone on root samples were performed with the help of 
microscopes (Caradus, 1980; Adu et al., 2017). Based on the species 
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information provided by the authors of the original studies, 
we categorized the dataset into woody communities consisting only 
of woody species (shrubs and trees) and herbaceous communities 
consisting only of herbaceous species. We also extracted the plant ages 
from the original studies. Based on the latitude and longitude 
information of each field-grown plant species provided in the original 
literature, we extracted the corresponding soil and climate data using 
the extract function in the raster package (Hijmans, 2018) in R version 
4.2.3 (R Core Team, 2021, http://www.R-project.org). For soil factors, 
we extracted total soil N and total soil K contents and soil pH from the 
global soil dataset (http://globalchange.bnu.edu.cn/research/soilw) at 
a spatial resolution of 1 km. For climate factors, we extracted mean 
annual temperature, mean annual precipitation, seasonal variation in 
precipitation, and temperature annual range at a spatial resolution of 
30-s from the WorldClim database (https://worldclim.org/data/
worldclim21.html). As a biodiversity trait, genome size varies greatly 
across plant species (Hwang et al., 2017). We defined the 1C-value of 
DNA content as a measurement of genome size, which we obtained 
from the latest version of the Kew Plant DNA C-values Database 
(https://cvalues.science.kew.org/search; Greilhuber, 2005; Shao 
et al., 2021).

2.2 Statistical analysis

We grouped plant species according to life form (woody versus 
herbaceous), culture medium (soil versus solution), and culture 
environment (greenhouse versus field). We  performed a 
non-parametric Kruskal-Wallis test of the stats package (R Core Team, 
2021) to determine the effects of life form, culture medium and culture 
environment on root hair traits. We generated box plots and scatter 
plots of root hair length, density and diameter using the ‘boxplot’ and 
‘scatter’ functions of the ggplot2 package in R, respectively (Wickham, 
2011). We  used a general linear model to assess the relationships 
between root hair morphological traits and climate (R Core Team, 
2021) and soil-related factors, as well as plant age, using the ‘lmer’ 
function in the lme4 package in R (Bates et al., 2015). All statistical 
analyses in this paper were completed in R version 4.2.3. http://
www.R-project.org.

3 Results

There were significant differences in the length, density and 
diameter of root hairs between woody and herbaceous plants. 
Specifically, woody plants had longer root hair lengths (884 ± 313 μm 
for woody plants versus 572 ± 103 μm for herbaceous plants, 
mean ± SE), higher root hair densities (463 ± 55 hairs cm−1 for woody 
plants versus 269 ± 24 hairs cm−1 for herbaceous plants), and larger 
root hair diameters compared with herbaceous plants (12.5 ± 0.34 μm 
for woody plants versus 9.2 ± 0.41 μm for herbaceous plants; 
Figures 1A,D,G). Plants in soil cultures had longer root hair lengths 
(655 ± 194 μm) than those in solution cultures (607 ± 109 μm; 
Figure 1B). No difference was found for root hair density or diameter 
between culture types (Figures  1E,H). Moreover, root hair length 
(682 ± 116 μm) and density (335 ± 25 number cm−1) of plants cultured 
in the greenhouse were greater than the corresponding metrics of 
field-grown plants (257 ± 18.6 μm for root hair length and 69 ± 21 hairs 

cm−1 for root hair density; Figures 1C,F). By contrast, field-grown 
plants had root hair diameters (11.2 ± 0.51 μm) similar to those of 
plants cultured in greenhouses (10.9 ± 0.32 μm, Figure 1I).

Root hair length and diameter increased significantly with 
increasing root hair density (Figures 2A,B). By contrast, there was a 
negative correlation between root hair length and root hair diameter 
(Figure 2C). The root hair length of woody plants and the root hair 
density of herbaceous plants were both positively correlated with pH 
(Figures 3A,D). By contrast, the root hair diameter of woody plants 
decreased significantly with increasing soil pH (Figure  3G). For 
herbaceous plants, root hair length (Figures  3B,C), density 
(Figures 3E,F) and diameter (Figures 3H,I) all increased significantly 
with increasing soil total N and K contents. For woody plants, root 
hair length was positively correlated with soil total K content, while 
root hair density was negatively correlated with soil total N content 
(Figures 3C,E). Moreover, the root hair length and diameter of woody 
plants increased significantly but the root hair density and diameter 
of herbaceous plants decreased significantly with increasing plant age 
(Supplementary Figure S1).

The root hair length and diameter of herbaceous plants and the 
root hair diameter of woody plants increased considerably with 
increasing genome size (Table  1). Root hair length increased 
significantly but root hair density decreased significantly with 
increasing mean annual temperature, while the opposite was true for 
annual temperature range (except for root hair diameter; Table 2). 
Root hair density was significantly negatively related to mean annual 
precipitation and precipitation seasonality, while root hair length and 
diameter were significantly related to precipitation seasonality, with a 
positive correlation for root hair length and a negative correlation for 
root hair diameter (Table 2).

4 Discussion

We found that herbaceous plants had shorter, thinner and sparser 
root hairs than woody plants, which is partly consistent with our first 
hypothesis. This discrepancy in the morphological characteristics of 
root hairs between the two life forms may indicate their contrasting 
soil resource uptake mechanisms and capacities to adapt to their 
habitats (Camacho-B et al., 1974; Yang et al., 2017; Golivets et al., 
2024). Some studies on roots have shown that herbaceous species 
generally have thinner root systems compared with those of woody 
species, which have thicker roots with a highly lignified columnar 
organization and higher root tissue density (Zangaro et  al., 2005; 
Wang et al., 2020a). In addition, most herbaceous plants have a short 
life cycle and fast root growth over a short period to complete their life 
cycle, whereas most woody plants are long-lived and have conservative 
root phenotypes and rooting strategies (Van der Waal et al., 2009; 
Wang et al., 2020a; Xing et al., 2024).

In addition, we observed plasticity of root hair patterning in 
response to plant age for herbaceous and woody plants. Specifically, 
the root hair density and diameter of herbaceous plants decreased 
significantly with greater plant age, while the root hair length and 
diameter of woody plants increased significantly. This divergence in 
root hair patterning with age for different plant life forms may 
be associated with their contrasting nutritional requirements in the 
different stages of plant development. Roots of most herbaceous 
plants are located near the soil surface, making them vulnerable to 
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damage from unfavorable conditions such as drought and freeze–
thaw cycles (Gulden and Vessey, 2000; Stetter et  al., 2015). In 
contrast, the roots of most woody plants are located deeper in the 
soil profile, allowing plants to obtain water and nutrients from 
deeper soils (Gilroy and Jones, 2000; Bengough et al., 2016; Wang 
et al., 2020c; Xu et al., 2021). Root hair growth may be the most 
directly favorable morphological responses of the root system to 
nutrient stress, and the morphological structure of the root hair 

system in different life forms is related to differences in the strategies 
for obtaining nutrients from the soils.

Moreover, we  found that root hair length and/or diameter 
increased significantly with genome size. In fact, earlier cell-based 
studies demonstrated that genome size was positively correlated with 
the size of different plant tissues (Schweiger et al., 1995; Ohri, 2005; 
Beaulieu et al., 2008; Stetter et al., 2015). Longer or more abundant 
root hairs can increase exploration of the soils by increasing the root 

FIGURE 1

Root hair length, density and diameter among plant life forms (A,D,G), culture media (B,E,H) and cultivation types (C,F,I). The number above each 
boxplot in each panel is the number of observations. The boxplots summarize the distribution of data points for each group: median (bold horizontal 
line in the box); interquartile range (box); 10th and 90th percentiles (lower and upper error bars), and outliers (individual points outside the box). 
Significant differences are indicated with *** (p  <  0.001); ns, not significant.

https://doi.org/10.3389/ffgc.2024.1324405
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Zhou et al. 10.3389/ffgc.2024.1324405

Frontiers in Forests and Global Change 05 frontiersin.org

surface area in contact with the soils (Lopez-Bucio et al., 2003; Zhu 
et  al., 2020). Additionally, longer root hairs are more efficient at 
extracting water and nutrients from mineral soils by expanding the 
zone of depletion, and exhibit higher soil and water holding capacity 
than short root hairs (Gahoonia and Nielsen, 2004; Sandral et al., 
2019). Plant species with longer root hairs also tend to have a greater 
specific root length and nutrient foraging potential, maintaining a 
larger biomass (Fort et al., 2015; Zhang et al., 2023b). Therefore, the 
structure of root hairs in herbaceous and woody plants is influenced 
by genetic factors that help the plants adapt to their specific growing 
conditions and develop their specific absorption mechanisms.

Soil factors (e.g., soil texture, pH and nutrient contents) have 
strong influences on root hair traits, such as length and diameter 
(Schenk, 2006; Karlova et al., 2021). In this study, we found that the 
root hair length of plants cultured in soil was greater than that of 
plants cultured in solution. This result supports findings from previous 
experiments, in which root hairs were observed on roots cultured in 
sandy soil but not on roots cultured in solution (Gahoonia et al., 1997; 
Nestler et al., 2016; Zhang et al., 2023b). Given the unidirectional 
growth of root hairs, the high penetration resistance represented by 
sand and other hard particles, as well as soil compactness and the 
resulting mechanical resistance, stimulate the development of root 
hairs under natural conditions (Genc et al., 2007; Lippold et al., 2022). 
This could explain the result in our study that soil-grown plants had 
longer root hairs than solution-grown plants. Furthermore, it has been 
observed previously that the higher sand content of the soil, the 
greater length and density of root hairs (Bailey and Scholes, 1997). The 
occurrence of root hairs is an indirect response not only to different 
soil textures, but also to different water and nutrient availabilities in 
the soils (Bates and Lynch, 2001; Kiswara et al., 2009; Pacheco et al., 
2023). Soils with different textures have different chemical and 
physical properties, providing contrasting habitats for plants (Meisner 
and Karnok, 1991; Duddek et al., 2023b). Longer root hairs can help 
plant root systems to explore a larger volume of soils, promoting better 
plant growth compared with shorter root hairs (Lazarević et al., 2018). 
In this study, we also found that plants cultured in soils had larger root 
hair diameters than those cultured in solution. Thick root hairs may 
confer the great advantage to plant root penetration and growth in 
high-compacted soil zones (Kidd et  al., 2016). Thus, our findings 
indicate that, as an adaptation to soil resistance, long and thick root 

hairs can provide plants with sufficient tensile strength for anchoring 
root tips, to aid in root penetration into high-compacted layers.

Our results showed that root hair length in woody plants and root 
hair density in herbaceous plants were positively correlated with soil 
pH. Root hairs require precise control of the interaction between 
surface pH and the extracellular reactive oxygen species balance to 
achieve normal morphogenesis by increasing cell wall acidification in 
specific zones, such as the apical and elongation zones (Tatiana et al., 
1998; Stéger and Palmgren, 2022; Pacheco et al., 2023). Low soil pH 
may directly affect plasma membrane proteins, such as pH-sensitive 
K channels, thereby disrupting the development of root hairs and 
inhibiting water uptake and transport by root hairs (Konno et al., 
2006; Yuan et al., 2009). Several studies have demonstrated that all 
growing root hairs and their tips break off within 10 min when the pH 
of the medium is below 4.5 (Schnall and Quatrano, 1992; Monshausen 
et al., 2007; Stéger and Palmgren, 2022). Bailey and Scholes (1997) 
applied lime to neutralize the acidity in acidic soils, to eliminate the 
toxic effects of H+ and Al3+ on plants, and they reported improved 
development of root hairs and root sheaths (Bailey and Scholes, 1997). 
Furthermore, the growth of root hairs has also been found to 
be inhibited when the pH of the medium is alkalized to 8 or higher 
(Monshausen et al., 2007; Haling et al., 2010; Pacheco et al., 2023), 
which explains our results that the diameter of root hairs in woody 
plants decreased significantly with increasing soil pH. Accordingly, 
our findings indicate that the growth pattern of root hairs is closely 
related to the physical contact of the medium and the changes in pH 
of the root hair surface.

It is well established that root hair development is regulated by the 
availability of soil nutrients such as N, K, and phosphorus (P) 
(Krasilnikoff et al., 2003; Haling et al., 2013). In our study, the root 
hair length and diameter of herbaceous plants tended to increase with 
increasing soil N and K. Our finding of longer root hairs in nutrient-
rich soils is supported by the results from several previous studies 
(Vatter et  al., 2015; Canales et  al., 2017; Cui et  al., 2018). Plant 
absorption of mobile nutrients is directly proportional to root hair 
length because soil nutrients more easily reach the roots with greater 
root hair lengths (Bates and Lynch, 2001; Evans, 2012). For woody 
plants, by contrast, we  only observed that root hair length was 
positively related to soil K. These results indicate that morphological 
traits of the root hairs of herbaceous plants were more closely related 

FIGURE 2

Relationships of root hair density with length (A) and diameter (B), as well as the relationship between root hair length and diameter (C).
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FIGURE 3

Relationships of root hair length (A), density (D) and diameter (G) with soil pH, relationships of root hair length (B), density (E) and diameter (H) with soil 
total nitrogen content (TN), and relationships of root hair length (C), density (F) and diameter (I) with soil total potassium content (TK) for herbaceous 
(he) and woody plants (wo).

TABLE 1 Results of a general linear model of the relationships of root hair length, density and diameter with genome size across plant life forms.

Woody plants Herbaceous plants

R2 Estimate ± SE N R2 Estimate ± SE N

Hair length 0.00 −0.03 ± 0.09 153 0.10 0.28 ± 0.02*** 910

Hair density 0.01 0.10 ± 0.10 63 0.01 −0.08 ± 0.06 442

Hair diameter 0.06 0.07 ± 0.03** 120 0.16 0.19 ± 0.04*** 97

N, number of observations. *p < 0.05; ***p < 0.001.
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to soil nutrients than those of woody plants, suggesting that 
herbaceous plants undergo more active morphological adjustments 
than woody plants in this respect (Bibikova and Gilroy, 2002; Matsuo 
et al., 2023). Specifically, herbaceous plants depend primarily on root 
proliferation for resource foraging, while woody plants depend mainly 
on mycorrhizal foraging (Michael, 2001; Tawaraya, 2003; Golivets 
et  al., 2024). The strong adaptation and active adjustment of 
herbaceous plants to soil nutrient availability are directly manifested 
by root hair traits, i.e., plant uptake of mobile nutrients is proportional 
to root hair length, density and diameter (Bates and Lynch, 2001; Pu 
et al., 2023). Accordingly, our results suggest that herbaceous plants in 
fertile habitats produced root systems with the longer and thicker root 
hairs to occupy more soil space, providing sufficient nutrients and 
water for plant growth and development.

In this study, we found that the root hair density of herbaceous 
plants increased significantly with soil N and K contents, but the 
root hair density of woody plants decreased with soil N content, 
supporting our second hypothesis of different responses of root 
hairs between herbaceous and woody plants to soil factors. It is well 
known that the root growth of herbaceous plants differs from that 
of woody plants. Specifically, herbaceous plants have a higher 
capacity to absorb resources per unit of biomass, due to their finer 
root hairs (Beidler et al., 2015; Ma et al., 2018; Bergmann et al., 
2020). A higher density of root hairs in herbaceous plants may allow 
them to directly explore large amounts of soil to rapidly occupy 
more resource patches (Zangaro et al., 2005; Liu et al., 2019; Wang 
et al., 2023). On the other hand, herbaceous plants have shallower 
root systems compared with woody plants (Van der Waal et al., 
2009; Wang et  al., 2023; Golivets et  al., 2024). The vertical 
distribution of the root system is directly related to their efficiency 
in absorbing soil resources (Matsuo et al., 2023). Consequently, 
woody plants are subjected to more nutrient stress than herbaceous 
plants (Wang et al., 2020a). Woody root systems produce a greater 
number of root hairs to accommodate the decrease in nutrient 
availability. However, over-dense root hairs may in turn limit 
nutrient assimilation by roots (Jungk, 2001; Zygalakis et al., 2011). 
The decreasing root hair density in woody plants with increasing 
soil nutrient contents may be a “compensatory” mechanism for the 
excessive overlap of nutrient-poor zones around root hairs (Morris 
and Myerscough, 1991; Schenk, 2006; Karlova et al., 2021).

We found that root hair length was positively correlated with 
mean annual temperature and negatively correlated with annual 
temperature range, which was completely opposite to the trends for 
root hair density. Increases in the transpiration rate of plants under 
higher temperature conditions promote the metabolic rate and 
stimulate the differentiation of a more developed root hair system, 
causing the root hairs to develop in the direction of sturdiness 
(Hoffmann and Jungk, 1995; Michael, 2001; Kemp et  al., 2003; 

Zhang et  al., 2020a; Karlova et  al., 2021). Previous studies have 
indicated that the acclimation of maize from tropical to temperate 
regions is accompanied by a characteristic reduction in root hair 
growth (Saengwilai et al., 2021). Moreover, it has been proposed 
that root hair density may be more sensitive to the magnitude of 
annual temperature change (Fan et al., 2022; Ding et al., 2023). In 
addition, we  found that the root hair length and density of 
greenhouse-cultured plants were higher than the corresponding 
values for field-grown plants. Greenhouse cultivations are 
characterized by good thermal insulation and light transmission 
(Hwang et al., 2011), which create an optimal environment for plant 
growth and development (Ceasar et al., 2020). Therefore, the root 
hair trait characteristic of greenhouse-cultured plants tends to 
be longer and denser. Accordingly, we can speculate that multiple 
environmental factors (e.g., background climate, light intensity and 
experimental duration) influence the responses of root hair 
morphological characteristics to temperature changes (Hoffmann 
and Jungk, 1995; Karlova et al., 2021; Zhang et al., 2023b).

Moreover, as important structures for water absorption, root 
hairs are very sensitive to changes in precipitation (Graves, 1991; 
Ruiz et al., 2020; Xing et al., 2024). In this study, although the length 
of root hairs was not associated with mean annual precipitation, it 
was positively correlated with seasonal variations in precipitation. 
Drought conditions affect the genes responsible for root hair 
formation (Cheng et al., 2016; Zhang et al., 2023b), which negatively 
regulate root hair growth in response to osmotic stress (Wang et al., 
2020b). Thus, the change in root hair length is a key factor in plant 
drought tolerance (Zhang et al., 2020b). Moreover, root hair density 
was negatively correlated with mean annual precipitation and 
seasonal variations in precipitation in our study, suggesting that 
higher root hair densities largely compensate for shorter root hairs 
in drought-exposed soils. These results indicate the ability of plant 
root systems to buffer a certain range of precipitation (Siddique 
et al., 2015; Zhou et al., 2019; Xing et al., 2024). This ability ensures 
that the plant root system has access to resources in the face of 
variable soil resources, thereby stabilizing the growth and 
development of plants in the field to withstand changes in 
precipitation (Wang et  al., 2020a; Xing et  al., 2024). Therefore, 
different strategies of plant root hair systems to cope with changing 
temperature and water patterns are very important for our 
understanding of the effects of environmental changes on root 
growth and plant communities.

5 Conclusion and limitations

Plant root hairs are key structures for acquiring soil resources. 
Findings from the present study confirm that herbaceous and woody 

TABLE 2 Results of a general linear model of the relationships of root hair length, density and diameter with climatic factors. ***p  <  0.001.

MAT (°C) ATR (°C) MAP (mm) PS (mm)

R2 Estimate ± SE N R2 Estimate ± SE N R2 Estimate ± SE N R2 Estimate ± SE N

Hair length 0.07 0.73 ± 0.21*** 157 0.08 −0.93 ± 0.25*** 157 0.01 −0.09 ± 0.10 157 0.31 0.95 ± 0.11*** 157

Hair density 0.52 −2.30 ± 0.25*** 76 0.60 2.88 ± 0.27*** 76 0.28 −0.84 ± 0.15*** 76 0.15 −1.45 ± 0.40*** 76

Hair diameter 0.00 −0.16 ± 0.36 105 0.33 2.11 ± 0.29*** 105 0.01 0.11 ± 0.15 105 0.45 −0.86 ± 0.09*** 105

MAT, mean annual temperature; MAP, mean annual precipitation; ATR, annual temperature range; PS, precipitation seasonality; N, number of observations.
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plants have different root hair morphologies in terms of length, 
diameter and density, and that the responses of root hairs to changes 
in soil and climatic factors depend on plant life form (herbaceous 
versus woody plants). The age-dependent patterns of root hair traits 
may permit a better understanding of the changing dynamics of root 
hairs as they age in herbaceous and woody plants. Our findings 
further indicate differences in soil resource acquisition strategies 
between woody and herbaceous plants, which implies that plant life 
forms coexisting in a community/ecosystem will differ in their ability 
to compete for soil resources in the face of future environmental change.

We acknowledge that several potential factors potentially limit the 
generality of our conclusions on the patterns of root hairs. For 
instance, most of the data used in this synthesis originated from 
experiments of herbaceous plants in greenhouses (Figure 1), with 
rather contrasting growth conditions compared with natural ones in 
the field. Additionally, our results may be biased by the inconsistency 
in experiment methodology used for root hair investigations across 
large space and time scales, given that root hairs are strongly 
influenced by small-scale soil heterogeneity (e.g., rhizosphere 
environmental conditions) and root growth seasonality. Thus, 
increasing the number of field studies within a unified research 
framework, especially to include more data from woody plants in 
forests, would greatly enhance our comprehensive understanding of 
the underlying variations in root hair traits and their potential 
responses to changing environments.
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