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Forests provide multiple ecosystem services, some of which are competitive, 
while others are complementary. Pareto frontier approaches are often used 
to assess the trade-offs among these ecosystem services. However, when 
dealing with spatial optimization problems, one is faced with problems that are 
computationally complex. In this paper, we study the sources of this complexity 
and propose an approach to address adjacency conflicts while analyzing trade-
offs among wood production, cork, carbon stock, erosion, fire resistance 
and biodiversity. This approach starts by sub-dividing a large landscape-level 
problem into four smaller sub-problems that do not share border stands. 
Then, it uses a Pareto frontier method to get a solution to each. A fifth sub-
problem included all remaining stands. The solution of the latter by the Pareto 
frontier method is constrained by the solutions of the four sub-problems. This 
approach is applied to a large forested landscape in Northwestern Portugal. The 
results obtained show the effectiveness of using Pareto frontier approaches to 
analyze the trade-offs between ecosystem services in large spatial optimization 
problems. They highlight the existence of important trade-offs, notably between 
carbon stock and wood production, alongside erosion, biodiversity and wildfire 
resistance. These trade-offs were particularly clear at higher levels of these 
optimized services, while spatial constraints primarily affected the magnitude 
of the services rather than the underlying trade-off patterns. Moreover, in this 
paper, we study the impact of the size and complexity of the spatial optimization 
problem on the accuracy of the Pareto frontiers. Results suggest that the number 
of stands, and the number of adjacency conflicts do not affect accuracy. They 
show that accuracy decreases in the case of spatial optimization problems but 
it is within an acceptable range of discrepancy, thus showing that our approach 
can effectively support the analysis of trade-offs between ecosystem services.
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1 Introduction

Worldwide demographic, socio-economic and environmental 
changes over the last three decades have led to a shift in forestry from a 
purely timber production focus toward the consideration of a broader 
range of ecosystem services. Simultaneous provision of multiple services 
in forest management is a complex problem where many trade-offs need 
to be considered. Some objectives are competitive, while others are 
complementary (Tóth et al., 2006). As a result, harmonizing ecological, 
economic, and sociocultural values of forest ecosystems and 
simultaneously managing multiple services poses a considerable 
challenge to forest managers (Baskent et al., 2020).

The complexity of this problem prompted the development of 
decision support tools to examine trade-offs among objectives. In the 
literature, one can find examples of the application of several multiple-
criteria decision analysis (MCDA) approaches to help solve multiple 
objective forest management planning problems (e.g., Mendoza and 
Martins, 2006; Ananda and Herath, 2009; Borges et al., 2014, 2017). 
Moreover, several MCDA-based decision support tools are available that 
can help users and scientific researchers both to learn and understand 
the impacts of management plans on the provision of forest ecosystem 
services (Baskent and Jordan, 2002; Baskent et al., 2014).

A Pareto frontier approach does not require the definition of 
ecosystem service targets a priori, i.e., does not information about 
potential supply values or trade-offs among those services. The 
approach provides the decision-maker with information about (i) the 
production possibilities (i.e., the potential of the landscape to provide 
ecosystem services) and (ii) the extent to which increasing the supply 
of an ecosystem service requires accepting reduction in the provision 
of others (Borges et al., 2017). This method thus provides decision-
makers with the information needed to assess the trade-offs between 
ecosystem services and to set supply targets aligned with their 
preferences. The approach integrates the functionality of both 
mathematical programming and interactive decision-maps techniques 
to compute and display the Pareto frontier when considering two or 
more ecosystem services (Borges et al., 2014). In particular, the Pareto 
frontier approach discussed in Tóth and McDill, (2009), Borges et al. 
(2014) is a linear programming-based technique that can consider 
both continuous and integer variables. Nevertheless, the generation of 
Pareto frontiers of integer or mixed integer optimization problems 
requires a substantial computation effort (Marques S, et al., 2021). 
Most applications of Pareto frontier techniques in forest management 
consider continuous variables (e.g., Tóth and McDill, 2009; Borges 
et al., 2014, 2017; Marques et al., 2017, 2020; Abate et al., 2022). There 
are very few applications to forest management problems with integer 
variables (e.g., Tóth et al., 2006; Marques S, et al., 2021). Furthermore, 
addressing forest management questions related to a wider range of 
ecosystem services requires spatial optimization models (Borges and 
Hoganson, 2000). The latter considers both integer variables as well as 
spatial constraints (e.g., adjacency constraints) but the end result is a 
computationally complex optimization problem (e.g., McDill et al., 
2002; Murray and Weintraub, 2002; Constantino et al., 2008; Könnyu 
and Tóth, 2013; Constantino and Martins, 2018).

Computational complexity of spatial optimization problems is the 
limiting factor for the use of Pareto frontier methods that are based on 
solving of integer or mixed integer programs (Tóth et  al., 2006; 
Marques S, et  al., 2021). When addressing large and complex 
problems, decomposition methods are commonly employed to 

circumvent this problem. Existing techniques such as the Branch and 
Price decomposition (Barnhart et  al., 1998) and the more recent 
method by Meselhi et  al. (2022) known as the Decomposition of 
Overlapping Functions (DOV) method have been exploited to solve 
such problems. However, these have only been applied to single-
objective optimization rather than to the generation of the Pareto 
frontier in scenarios involving multiple objectives. Recent work by 
Marques S, et al. (2021) showcased an approach for constructing the 
Pareto frontiers of large integer problems derived from the Pareto 
frontier of smaller sub-problems. Riffo (2020) emphasized the 
challenge in creating Pareto frontiers for integer problems that 
incorporate adjacency constraints. While he suggested decomposing 
large problems into smaller, more manageable components, his 
approach produces infeasible optimization problems when applied to 
the construction of the Pareto frontier for large landscape problems 
bound by adjacency constraints. Hence, the challenge remains, 
namely, how to address the adjacencies between stands bordering the 
sub-problems. Our study aims at addressing this challenge. It proposes 
an approach that builds from information about trade-offs of 
ecosystem services in smaller spatial optimization sub-problems that 
may be solved independently. The emphasis is thus on building the 
frontier from smaller sub-problems that are designed so that there are 
no violations of adjacency constraints. A case study in the Northwest 
of Portugal is used for testing and demonstration purposes.

2 Methods

2.1 Case study area

A forested landscape located in Paiva County in northwest 
Portugal (Figure 1) was used for testing our approach. Its area extends 
over 7,487 ha and was partitioned into 686 homogeneous units, each 
of which is a forest stand with the same cover type (e.g., forest species), 
age and productivity. The stands are mainly pure eucalypt (Eucalyptus 
globulus L.) covering 6,428 ha, with some stands being a mixture of 
eucalypt and maritime pine (Pinus pinaster Ait.). The latter extends 
over 611 ha. The landscape includes too pure chestnut (Castanea sativa 
Mill.) and cork oak (Quercus suber L.) stands extending over 23 ha. 
Moreover, some of the land (347 ha) is currently bare and available for 
new plantations. A recent wildfire has burned about 46% of the area. 
The landscape has the potential to provide several ecosystem services. 
In the work described in this paper, we leverage the information on 
the preferences of stakeholders reported in Marques M, et al. (2021) 
and consider wood as well as cork production, biodiversity 
conservation, erosion protection, carbon storage, and wildfire 
prevention as objectives to be taken into consideration. We also rely 
on the work developed by Marques M, et al. (2021) to simulate species 
conversions and changes in the area occupied by each species that 
might reflect the preferences of stakeholders outlined by these authors.

2.2 Forest management prescriptions, 
simulations, and ecosystem services 
estimation

The 686 homogeneous land units were assigned to different 
management prescriptions based on a forest inventory coordinated by 
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the authors and conducted by the Forest Owner Association [Associação 
Florestal de Vale do Sousa (AFVS)], an association responsible for the 
development of a joint management plan for the forested landscape. The 
definition of the silvicultural options to be considered when simulating 
prescriptions that can be used to manage each homogeneous unit was 
made in cooperation with AFVS. This involved the definition of rotation 
ages, thinning regimes, shrub cleaning periodicity, and cork oak 
extraction schedules (only for cork oak). Specifically, according to 
AFVS, eucalypt stands are to be  managed through coppicing, 
encompassing three cutting cycles, each cycle spanning over 10 to 
12 years. Rotations of pine and chestnut stands extend from 40 to 
55 years and from 35 to 50 years, respectively, and include different levels 
of thinning intensity. Pedunculate oak (Quercus robur L.) management 
includes clear-cut ages from 40 to 60 years, along with different thinning 
ages and intensities. Cork oak silviculture involves thinning at different 
ages, without harvesting options. In the case of homogeneous units with 
eucalypt and pine, the prescriptions also include species conversion 
options, e.g., conversion to maritime pine (from eucalypt), chestnut, 
cork oak, or pedunculate oak. Bare land units may be converted into 
pure maritime pine stands, pure pedunculate oak stands, pure chestnut 
stands and pure cork oak stands. The landscape includes riparian buffers 
along water streams. All possible management prescriptions, including 
harvesting ages and species conversion options, have been identified 
through collaborative discussions sponsored by AFVS with relevant 
stakeholders. The combination of management alternatives and land 
units resulted in a total of 47,448 prescriptions.

The study focuses on six ecosystem services or indicators thereof: 
wood, cork, carbon, biodiversity, fire resistance and soil erosion. 
Wood and cork are examples of provisioning services. Carbon stock 
is considered as an indicator for the climate regulation service, while 
fire resistance and soil erosion are among the indicators of regulatory 

services. Furthermore, biodiversity stands as the foundational element 
underpinning all these services.

Several approaches were employed for estimating these ecosystem 
services. Specifically, growth models and simulation tools were used 
to estimate wood and cork production and carbon stocks (Marques S, 
et  al., 2021). Other ecosystem services were estimated using the 
approaches by Ferreira et al. (2015; fire resistance), Rodrigues et al. 
(2021; soil erosion), and Botequim et  al. (2015; biodiversity). In 
summary, a wildfire resistance indicator, crafted by Ferreira et  al. 
(2015), was used to gauge the vulnerability of forest stands to wildfires. 
This indicator integrates wildfire occurrence and damage models 
developed for the most important forest species in Portugal (Ferreira 
et  al., 2015). It considers further spatial information such as the 
configuration of the stand as well as stand adjacency relations (Ferreira 
et al., 2015). The values of this indicator range from 1 (low resistance) 
to 5 (highest resistance). For soil erosion assessment, the methodology 
(Rodrigues et al., 2021) considers the yearly fluctuations in the cover-
management factor (C) within the Revised Universal Soil Loss 
Equation (RUSLE) to estimate the annual soil loss. The C factor is a 
function of average crown diameter and other biometric characteristics 
of the stand. The biodiversity indicator considers the tree species 
composition (e.g., maritime pine, eucalypt, chestnut, pedunculate oak, 
cork oak, and riparian trees), stand age, and understory coverage 
(Botequim et  al., 2015). The biodiversity score ranges from 0 
(indicating minimal biodiversity or barren land) to 8 (representing the 
highest level of biodiversity). The reader is referred to Ferreira et al. 
(2015), Rodrigues et al. (2021), and Botequim et al. (2015) for further 
detail about these indicators.

The stand and landscape level values of the aforementioned 
ecosystem services indicators were estimated for a 50-year planning 
horizon, subdivided into five planning periods of 10 years each.

FIGURE 1

Location of the case study area.
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2.3 The optimization model

This research considered a Model I (Johnson and Scheurman, 
1977) integer problem formulation, with an integer decision variable 
Xjkp (which takes the value 1 if prescription p (1, 2, …, P) is assigned 
to species k (1, 2, …, K) in stand j (1,2, …, J) and 0 otherwise). The 
equations that characterize the optimization problem:
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Where,
J: Set of stands (j = 1,2,3, …, 686 stands).
K: Set of species (k = 1,2, …, 6 tree species).
T: Set of periods in the planning horizon (t = 1, 2, …, 5).
P: Set of management schedules (prescriptions).
Xjkp: binary decision variable which takes the value 1 if prescription 

p (1, 2, …, P) is assigned to species k (1, 2, …, K) in stand j (1,2, …, J) 
and 0 otherwise.

TWOOD: the total wood production over the planning horizon.
VTHINkt: Volume of wood from thinning of species k in period t.
VHARVkt: Volume of wood from harvesting (clearcutting) of 

species k in period t.
Thinjkpt: Volume of thinning of species k in stand j in period t 

where prescription p is applied.
Hjkpt: Volume of wood from harvesting species k in stand j in 

period t where prescription p is applied.
CARB: Average carbon stock over the planning horizon.
Ckt: Carbon stock of each species k in period t.
Cjkpt: Carbon stock in period t that results from applying 

prescription p on species k in stand j.
CORK: Total amount of cork produced over the planning horizon.
Corkt: Cork produced in period t.
Zjkpt: Cork produced in period t that results from applying 

prescription p on species k (in this case Cork species) in stand j.
EROSION: Total soil erosion (in ton) over the planning horizon.
erosionkt: total soil loss in period t from stands covered by 

species k.
Fjkpt: soil loss in period t that results from applying prescription p 

on species k in stand j.
FIRE: The average fire resistance indicator in the 

planning horizon.
Raitkt: The total fire resistance indicator from species k in period t.
Rjkpt: Fire resistance indicator in period t that results from 

assigning prescription p to species k in stand j. Values range from 1 
(less resistance) to 5 (highest resistance).

BIOD: The average biodiversity score in the planning horizon.
Biokt: The total biodiversity score from species k in period t.
Bjkpt: Biodiversity indicator in period t that results from assigning 

prescription p to species k in stand j. Values range from 0 (bare land 
or no biodiversity) to 8 (highest level of biodiversity).

ajk: area (in ha) covered by each species k in stand j.
A: Total area of the landscape (ha).

Equation 1 represents the total wood production from all species over 
the planning horizon. This is computed by adding Equation 2 (volume 
from thinning) and Equation 3 (volume from clear-cuts). The last 
equation (Equation 14) is used to ensure that a stand (and any species in 
a stand) is assigned only to one prescription over the planning horizon. 
The remaining equations represent the provision of other ecosystem 
services: carbon (Equations 4, 5), cork (Equations 6, 7), erosion 
(Equations 8, 9), fire resistance (Equations 10, 11), and biodiversity 
(Equations 12, 13).

The equations above define the integer program resource 
capability model used to generate the Pareto frontier of the forested 
landscape. The latter depicts trade-offs among ecosystem services such 

https://doi.org/10.3389/ffgc.2024.1368608
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Abate et al. 10.3389/ffgc.2024.1368608

Frontiers in Forests and Global Change 05 frontiersin.org

as wood (TWOOD), cork (CORK), biodiversity (BIOD), carbon stock 
(CARB), fire resistance (FIRE), and erosion (EROSION). The 
provision of the first five is to be  maximized while erosion is to 
be minimized.

2.3.1 Wood flow constraints
The total wood production across consecutive periods was 

regulated by constraining the model

 TWOOD TWOODt t+ ≤ +( )1 1 σ  (15)

 TWOOD TWOODt t+ ≥ −( )1 1 σ  (16)

where TWOODt is the total wood production in period t, and σ  
is the allowable fluctuation in percentage (20–25% was considered for 
the current case study).

2.3.2 Formulation of the adjacency constraints
The adjacency constraint limits the size of clear-cut areas 

resulting from the harvesting of contiguous (adjacent) stands. 
We  limit the maximum clear-cut area to not exceed 50 ha (as 
declared by the Portuguese law for the Integrated Management 
System for Rural Lands). The path algorithm proposed by McDill 
et  al. (2002) was used to generate the corresponding Area 
Restriction Model (Murray, 1999). The algorithm starts by defining 
a binary variable Yjt, for each stand which takes a value 1 if it is to 
be harvested in period t and a value 0 if not. In order to apply the 
algorithm to our problem, this binary variable was created as a 
function of the original decision variable Xjkp using Equation 
(Equation 17) for pure stands and Equations (Equations 18, 19) for 
mixed stands:

 
Y h X j tjt
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jpt jkp= ∗ = … = …

∈
∑ , , , ; , , .1 686 1 5
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where hjpt is a parameter that takes the value one if the assignment 
of prescription p to stand j involves a clear-cut in period t. 
Equations 18, 19 stipulate that clear-cutting is considered only to stand 
j if all its species are subject to clear-cutting in the same period.

Afterwards, the path algorithm proceeds with the enumeration of 
minimal infeasible clusters C ∈ A+ (A+ is a set of all minimal infeasible 
clusters, i.e., infeasible clusters that would become feasible if one stand 
is excluded from it) and prohibits cutting of contiguous stands 
exceeding the harvest limit, i.e., 50 ha:

 j C
jtY C C A t

∈

+∑ ≤ − ∀ ∈ ∀ = …1 1, , ,T

 
(20)

Where|C| is the number of stands in the cluster.
Python code (Python version 3.11) was developed to enumerate 

minimally infeasible clusters (Appendix I). Respective equations 
(constraints) were generated for the whole case study area.

2.4 Decomposition approach and the 
generation of Pareto frontier

The large number of adjacency constraints (176,955) 
complicates the process of generating the Pareto frontier. Initial 
attempts aimed at solving a single objective problem (e.g., wood) 
did not produce an optimal solution even after 24 h. To address 
computational complexity issues, a strategy was implemented that 
involved subdividing the problem. A first try involving just two 
sub-problems had negligible impact on the computational 
complexity. Hence, the problem was partitioned into four sub-areas 
(Figure 2), named East Paiva_1, East Paiva_2, West Paiva_1 and 
West Paiva_2.

The sub-areas were created using ArcGIS, ensuring that the 
number of stands in each sub-area was roughly equal. Besides, 
efforts were made to minimize the number of stands bordering 
the sub-areas. This was done by selecting a boundary line that 
touched as few stands as possible. Nevertheless, to prevent the 
violation of the adjacency constraint along the border between 
the sub-areas, stands adjacent to this border were first removed 
from the sub-area problem and included in the set of border 
stands (Figure 2).

Two different models were used for generating the Pareto 
frontier for each sub-problem. The first only considered 
Equations 1–16 while the second added the adjacency constraints, 
Equations 17–20. The frontier was generated using the approach 
outlined in Borges et al. (2017) and Marques S, et al. (2021). Each 
Pareto frontier provided information about the trade-offs between 
the criteria, which corresponds to the levels of provision of 
ecosystem services, e.g., wood, cork, carbon stock, biodiversity, fire 
resistance, and soil erosion, in the corresponding sub-problem. 
Afterward, we  proceeded with the selection of points in each 
frontier, i.e., the selection of ecosystem service values to 
be  provided by each sub-problem that included adjacency 
constraints. Points representing the Pareto frontier for each 
sub-problem were selected purposively to maintain consistency 
among sub-problems. These points aimed to approximate the 
average between the maximum and minimum values of the 
ecosystem services indicators. Achieving this consistency involved 
leveraging the tool used to generate the Pareto frontier, which 
provided minimum and maximum achievement levels for the 
optimized criteria. For each sub-problem, the tool retrieved these 
minimum and maximum values of the optimized criteria. From 
this range, a point positioned at (Max – Min) /2 was selected. The 
corresponding management plans were then used to constrain the 
models representing the border sub-problem. Specifically, 
we eliminated from the latter the stand-level prescriptions that had 
an adjacency conflict with the prescriptions in those management 
plans. We  then developed a Pareto frontier for the border 
sub-problem (Equations 1–20). Within all four sub-problems, the 
wood flow constraint allowed a 20% variation between consecutive 
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periods (refer to Equations 15, 16). However, to maintain the 
feasibility specifically for the border sub-problem, adjustments 
were made to the wood flow constraint.

2.5 The Edgeworth–Pareto hull (EPH) and 
its approximation

The approach we followed to generate the Pareto frontier involved 
approximating the actual Edgeworth–Pareto hull (EPH). The EPH is 
the envelope or boundary formed by the set of solutions that are not 
outperformed by other solutions. In integer optimization problems, it 
is important to note that the non-dominated points forming the EPH 
may not necessarily form a convex hull (Marques S, et al., 2021). As a 
result, there is a need to approximate the EPH with a surrogate 
Edgeworth–Pareto hull (cEPH; see the visual illustration in Figure 3). 
The cEPH serves as an approximation of the non-convex EPH, 
allowing for a more tractable representation. In our research, 
we conducted an assessment of the accuracy of this approximation 
technique, evaluating how well the cEPH represents the original 
EPH. For this purpose, the retrieval and comparison of the values was 
done for six randomly selected points (just for the sake of illustration) 
representing different levels of the optimized criteria. Moreover, 
we also analyzed the impact of problem size (e.g., number of stands 
and decision variables) and complexity (e.g., with and without 
adjacency constraints) on the accuracy of the generation of the 
Pareto frontier.

The computations were performed on a personal computer 
with an Intel® Core™ i7-4790 processor with a 3.6 GHz frequency 

and 20 GB memory, using the CPLEX(R) Interactive Optimizer 
12.6.3.0.

3 Results

3.1 Pareto frontier for sub-problems

By dividing the larger problem into sub-problems, it was possible 
to generate the Pareto frontier of each of the four sub-problems even 
for the case where they included adjacency constraints (i.e., the 
maximum harvest patch size). The frontiers depicted trade-offs among 
the optimized objectives: Total wood (TWOOD), Cork (CORK) 
carbon stock (CARB), erosion (EROSION), fire resistance (FIRE) and 
biodiversity (BIOD). The mean generation time for sub problems with 
adjacency constraints extended over 1,271 s, while the mean 
generation time was about 340 s if no adjacency constraints were 
considered (Table 1). This is a significant improvement given that it 
was not even possible to generate Pareto frontier for the whole 
landscape without subdivision. The effect of constraints on generation 
time was more pronounced for problems with more decision variables 
(Table 1).

The tool we have used to build the Pareto frontier is capable of 
generating a variety of decision maps, depending on the number of 
criteria (ecosystem services indicators) under optimization. The 
challenge arises when trying to effectively convey these maps to 
readers, especially when dealing with more than three criteria. In our 
current study, we created a six-dimensional set of decision maps for a 
specific sub-problem, illustrating trade-offs among all six criteria (i.e., 

FIGURE 2

The four sub-areas and the border stands (stands bordering the sub-areas).
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levels of provision of the ecosystem services; Figure 4). Within the 
six-dimensional map, each segment or section reflects varying values 
of the fire resistance indicator (displayed horizontally) and biodiversity 
score (displayed vertically). A specific segment or set of decision maps, 
based on a combination of fire and biodiversity values, highlights the 
trade-offs between carbon and timber at different levels of soil erosion 
(represented by different colors, each associated with a decision map). 
These decision maps show that an increase in timber production is 
associated with a reduction in carbon stock, particularly at higher 
levels, illustrating the trade-offs involved.

To enhance readability and comprehension, subsequent 
interpretation and discussion of results for each sub-problem were 
conducted using three-dimensional decision maps, focusing on three 
ecosystem services (Figures 5A–D). The Pareto frontier, along with the 
associated decision maps for the four sub-problems, highlight the 
trade-offs between ecosystem services in each sub-problem 
(Figures 5A–D). The optimized criteria present a range of minimum 
and maximum values that vary across these sub-problems, likely 
attributable to differences in the total land area. Despite an overall 
similarity in trade-off patterns among the sub-problems, some 
disparities are noticeable between the East and West Paiva 
sub-problems (Figures 5A–D). Notably, the Eastern sub-problems (5A 

and 5B) exhibit a relatively steeper slope in the trade-off compared to 
their Western counterparts (5C and 5D), particularly at a higher level 
of the optimized criteria.

3.2 Pareto frontier for the border problem: 
addressing the adjacency conflicts 
between sub-problems

Selection of a single point from the Pareto front of each 
sub-problem was undertaken, with these points indicated by a ‘+’ sign 
in Figures  5A–D. These points represent approximate average (of 
maximum and minimum) values of each optimized criterion 
(Table 2). From these points, solutions, i.e., management plans were 
derived and used to generate the Pareto frontier for the border 
problem. The latter encompasses all stands in the landscape and yet 
considers only decisions to be made in the stands along the border 
(Figure  6). All other stands are to be  managed according to the 
solutions to the four earlier sub problems.

Using this process, the decisions to be made in the stands along 
the border are constrained by the management plans selected for each 
sub-problem. As a result, out of the 4,665 alternatives available for 

FIGURE 3

Visual illustration of the actual Pareto frontier (EPH), indicated in solid line, and the approximated surrogate frontier (cEPH), indicated in dashed line 
when two objectives are being optimized. The points (Z1–Z5) represent Pareto optimal integer solutions (Modified from Marques S, et al., 2021).

TABLE 1 Problem size and Pareto frontier generation time for the four sub-areas and border problem.

Sub-areas* #Stands #Decision variables Generation time in seconds

Without adjacency 
constraints

With adjacency 
constraints

West Paiva_1 137 7,452 197 (293) 510 (399)

East Paiva_1 119 9,552 276 (157) 671 (255)

West Paiva_2 168 8,472 410 (195) 2,143 (269)

East Paiva_2 200 17,307 476 (456) 1780 (464)

Border areas 62 4,665 140 (37) 174 (40)

*Sub-areas: see Figure 2 for description of sub-areas. Values in parenthesis indicate how many times the problem was solved to generate the Pareto frontier.
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these stands (Table 1), 883 were eliminated. The border Pareto frontier 
highlights thus the trade-offs among ecosystem services that result 
from the integration of the four management plans with the decisions 
to be made in the stands over the border (Figure 6).

3.3 Approximation of the EPH and its 
accuracy

Results show that a relatively larger discrepancy (larger 
difference-in the values of the optimized criteria-between the 
actual EPH and the surrogate cEPH) was observed when 
constraints were added to the larger sub-problem (East Paiva_2) 
compared to the no-constraint counterpart (Table 3). In the latter, 
the minimum and maximum percentages of discrepancy were 0 
and 0.03 in the case of the EROSION criteria in point 1 and the case 
of the CARBON criteria in point four, respectively. On the other 
hand, when adjacency constraints were added to the problem, the 
minimum and maximum discrepancy percentages were 0.001 and 
0.19, respectively, in the case of the value of the EROSION criteria 
in point one and the value of the CARBON criteria in point six. In 
both constrained and unconstrained problems, a higher 
discrepancy was observed in the case of the CARBON criteria, 
indicating the higher sensitive of carbon stock to changes in the 
number of decision variables or in the number of constraints as 
compared to other criteria such as wood production.

To examine how sensitive the approximation is with respect 
to problem size, the discrepancy was also evaluated for the 
smallest sub-problem, East Paiva_1 (Table  4). It can 
be  hypothesized that as the number of decision variables 
increases, the optimization problem becomes more complex, and 
it may be more difficult for the optimization solver to find the 
optimal solutions. With a higher number of decision variables, 
the number of possible combinations of the decision variables 
increases exponentially, making it more difficult to accurately 
generate the Pareto frontier curve. However, in this study, we did 
not find a significant difference in the discrepancies among 
solutions to the small and large problems.

This was also observed when we  evaluated the discrepancy 
between the EPH and the cEPH solution for the border sub-problem, 
whose Pareto frontier was generated by retrieving solutions from the 
sub-problems. The result shows that the discrepancy between the 
actual feasible solution (EPH) and the one approximated by the Pareto 
frontier tool was very low (Table 5).

3.4 Impact of spatial constraint on 
ecosystem service trade-offs

In order to assess the potential influence of spatial constraints on 
trade-off curves and patterns, an in-depth analysis was conducted to 
scrutinize variations. This was done by taking the East Paiva_2 

FIGURE 4

Six dimensional set of decision maps, Pareto frontier, showing trade-off among ecosystem services, for the West Paiva_2 sub-area. TWOOD: total 
amount of wood harvested and thinned (106  m3); CARB: carbon stock (104 ton); EROSION: the total soil erosion (106 ton); FIRE: the average fires 
resistance indicator (value range from 1 to 5); BIOD: the average biodiversity score; CORK: the total cork production (106 arrobas. Arroba  =  14.7  kg).
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sub-area as an example and fixing the values of the fire resistance and 
biodiversity score at 3.6 and 2.6, respectively (basically the median 
values shown in the decision map) for both scenarios, i.e., with and 
without the adjacency constraints. Upon examining the resulting 
trade-off maps (depicted in Figure  7), a noteworthy observation 
emerged: the spatial constraint showed limited influence on trade-offs. 
Across both representations, the trade-off between carbon and wood 
quantity remained prominent, especially evident at higher levels of 
annual soil loss. This persistent trade-off signifies that the impact of 

the spatial constraint appeared to be  minimal in altering 
this relationship.

However, a clear consequence of the spatial constraint was 
identified: it impacted the ecosystem services provision possibilities. 
As expected, the constraint visibly restricted the range of attainable 
wood quantities. While the spatial constraint impacted negatively the 
wood production, it did not influence the broader trade-off pattern 
between carbon and wood quantity at any level of soil loss. 
Consequently, this analysis suggests that decision-makers retain the 
flexibility to set specific targets for ecosystem service achievements 
while remaining coherent with harvesting area constraints imposed 
by the spatial considerations.

4 Discussion

Decomposing large problems into some sub-problems has been a 
common approach for dealing with the computational difficulties of 
solving large optimization problems (e.g., Hoganson and Rose, 1984; 
Borges et  al., 1999). The application of this approach to generate 
Pareto frontiers is, however, limited to a few studies; e.g., see Riffo 
(2020) and Marques S, et  al. (2021). By following the approach 
proposed in Lotov (2015), the study of Marques S, et al. (2021) has 

FIGURE 5

Pareto frontier showing trade-offs between three ecosystem services in the case of East Paiva_1 (A), East Paiva_2 (B), West Paiva_1 (C) and West 
Paiva_2 (D). TWOOD: total amount of wood harvested and thinned (106  m3); CARB: carbon stock (104 ton); EROSION: the total soil erosion (106 ton). 
NOTE: the levels of other ecosystem services (e.g., BIOD, FIRE) are fixed.

TABLE 2 Values of the optimized criteria in each of the solutions selected 
from the four sub-problems.

Criteria East 
Paiva_1

East 
Paiva_2

West 
Paiva_1

West 
Paiva_2

TWOOD (106 m3) 0.1783 0.5001 0.2546 0.2852

CARB (104 ton) 6.61 14.41 11.73 13.96

EROSION (106 ton) 5.1061 4.4791 6.4355 9.9631

CORK (106 arrobas*) 0.2516 0.1712 0.2110 0.2991

FIRE 3.9386 3.3779 3.8723 3.5648

BIOD 2.8585 2.7011 2.7054 2.7349

*one arroba is equivalent to 14.7 kg.
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shown the potential application of the decomposition approach for 
generating Pareto frontiers of multiple ecosystem services of a forest 
landscape. Our study extends these findings. It proposes an approach 
to address the fact that it is not computationally feasible to build the 
Pareto frontier of large landscape-level problems with adjacency 
constraints and that the decomposition approach proposed by 
Marques S, et al. (2021) is not capable of addressing adjacency across 
sub problems. The main success of this research is the demonstration 
that it is feasible to generate Pareto frontiers displaying the trade-offs 

between ecosystem services in the case of very large forest 
management problems that include adjacency constraints.

We opt for a comprehensive subdivision of the landscape-level 
problem, followed by a systematic workflow to generate the Pareto 
frontier for the entire landscape. This is achieved by incorporating the 
plans selected for each sub-problem and considering a restricted decision 
space for border stands. Specifically, this restriction entails the removal 
of management alternatives for border stands that are in conflict with the 
plans selected for the sub-areas. Though this approach may result in 

FIGURE 6

Pareto frontier showing trade-offs between ecosystem services in the case of the East Paiva_2 sub-area, without (left) and with (right) adjacency 
constraint. TWOOD-total amount of wood harvested and thinned (106  m3); CARB-carbon stock (104 ton); EROSION-the total soil erosion (106 ton). The 
values of fire resistance and biodiversity score were fixed at 3.6 and 2.6 in both decision maps.

FIGURE 7

Pareto frontier showing trade-offs between ecosystem services in the case of the border sub-problem. TWOOD-total amount of wood harvested and 
thinned (106  m3); CARB-carbon stock (104 ton); EROSION-the total soil erosion (106 ton).
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sub-optimal solutions, it effectively integrates spatial constraints into a 
Pareto frontier method. Despite sub-optimality (“sub-optimality” in our 
context refers to the compromise made in achieving the global optimal 
solution; given that our approach hinges on solving sub-problems 
individually, the final solution represents a compromise based on these 
sub-problem solutions), the study has illustrated how one can incorporate 
spatial constraints into a Pareto frontier method. Our approach may thus 
provide useful information on the trade-offs among different 
management objectives when adjacency conflicts are a concern. This in 
turn can be  used to inform forest management decisions. By 
understanding the different trade-off patterns that emerge based on 
different management decisions, forest managers can make more 

informed choices about managing forest resources while complying with 
harvest regulations.

Previously, to the best of our knowledge, there are no results on the 
generation of Pareto frontiers when spatial constraints are included. 
Adjacency constraints pose a computational challenge to the analysis of 
trade-offs between ecosystem services. The approach implemented in the 
current study suggests that while ecosystem service supply possibilities 
may decrease as a consequence of the adjacency constraints, the trade-
offs pattern themselves remain largely unaffected. This insight by our 
innovative approach underscores the importance of understanding how 
spatial considerations may impact those supply possibilities, while 
affirming the underlying trade-off patterns in multi-objective 
optimization scenarios. This insight may be useful to forest managers. It 
suggests that they might combine information provided by Pareto 
frontier approaches that ignore spatial constraints with information 
about the impact of the latter on supply possibilities provided by standard 
spatial optimization approaches (e.g., exact and heuristic (genetic 
algorithms, simulated annealing approaches) Baskent et al., 2020).

An important aspect that merits discussion is what are the 
advantages and disadvantages associated with our approach. On the one 
hand, our approach offers distinct advantages in cases where solving the 
entire landscape problem as a whole is computationally infeasible. For 
instance, even in the context of single-objective optimization, obtaining 
a solution for the entire landscape was often beyond the computational 
limits, requiring extensive computation times that exceeded 24 h. A vast 
body of literature has highlighted the large computational burden 
required to solve the resulting combinatorial optimization problems (e.g., 
Weintraub and Murray, 2006). Our study reaffirms this, shedding light 
on the computational complexity of the resulting mixed-integer 
problems, especially when one has multiple objectives.

To address this computational bottleneck, we proposed to break 
down the master problem into more manageable sub-problems. 
However, grappling with spatial constraints complicates this 
straightforward decomposition. Merely segmenting the problem and 
solving them independently poses challenges, primarily because these 
sub-problems share units or variables, potentially intertwining their 

TABLE 3 Solution of EPH and cEPH retrieved from six random points for East Paiva_2.

Criteria 1 2 3 4 5 6

Without adjacency constraint

TWOOD (106 m3)
EPH 0.1883 0.508 0.5624 0.6664 0.7933 0.8569

cEPH 0.1878 0.5079 0.5725 0.6743 0.7922 0.8568

CARB (104 ton)
EPH 17.9458 16.1403 15.437 13.6005 11.681 10.4482

cEPH 17.7712 16.4079 15.6989 13.1233 11.4295 10.7358

EROSION (106 ton)
EPH 4.0302 4.6115 4.7632 4.8635 4.9762 6.1602

cEPH 4.0305 4.6299 4.7726 4.8313 5.1514 6.1579

With adjacency constraint

TWOOD (106 m3)
EPH 0.53 0.2011 0.6578 0.65286 0.6354 0.4812

cEPH 0.52 0.2208 0.6877 0.66273 0.5393 0.4713

CARB (104 ton)
EPH 13.899 17.88151 13.8471 12.8305 10.4413 11.6218

cEPH 13.0971 17.4945 12.8466 11.7353 8.61628 9.312

EROSION (106 ton)
EPH 4.4768 4.4319 4.9924 4.95132 5.3235 4.3124

cEPH 4.4692 4.9062 5.2562 5.25625 5.5187 4.1125

cEPH: the surrogate (approximated) solution, EPH: solution of the nearest feasible point.

TABLE 4 Solution of EPH and cEPH retrieved from six random points for 
East Paiva_1.

Criteria 1 2 3 4 5 6

Without adjacency constraint

TWOOD 

(106 m3)

EPH 0.0676 0.31161 0.2169 0.3681 0.1454 0.4394

cEPH 0.0671 0.31157 0.2167 0.3681 0.1454 0.4394

CARB (104 

ton)

EPH 7.7070 4.8149 6.2091 4.1943 7.2244 3.1767

cEPH 7.7067 4.7920 6.2915 3.9596 7.2153 2.9853

EROSION 

(106 ton)

EPH 4.4997 5.0108 4.8519 5.9353 4.8140 6.0921

cEPH 4.5000 5.0125 5.7525 6.0375 4.9943 6.3125

With adjacency constraint

TWOOD 

(106 m3)

EPH 0.0555 0.2437 0.3165 0.3284 0.1844 0.2191

cEPH 0.0551 0.2243 0.3165 0.3283 0.1841 0.2190

CARB (104 

ton)

EPH 8.3007 6.2176 5.0739 4.9187 6.6239 6.3472

cEPH 8.3006 5.3495 4.1380 4.3865 6.5610 5.2874

EROSION 

(106 ton)

EPH 5.0124 5.2919 5.7745 5.8739 5.1044 5.3447

cEPH 5.0125 5.5495 6.2625 6.5375 6.5375 5.5062

cEPH: the surrogate (approximated) solution, EPH: solution of the nearest feasible point.
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solutions. There is no guarantee that solving one sub-problem adheres 
to the global spatial constraint, complicating the aggregation of 
solutions. Recently, Meselhi et al. (2022) delved into optimization 
strategies, proposing a decomposition approach involving overlapping 
sub-problems sharing certain variables. Their methodology tackled 
these sub-problems independently, employing three strategies-
information sharing, mean value adaptation, and random selection-for 
handling overlapping variables. However, their approach does not 
seamlessly align with multiple objective optimizations, particularly in 
scenarios encompassing spatial constraints where units are 
interconnected across adjacent stands and clusters. While this avenue 
could merit exploration in future research, our approach of removing 
stands that share borders between sub-problems has shown to be a 
practical method of adhering to spatial constraints. This approach 
aims to navigate the spatial intricacies by eliminating stands that 
straddle the borders between sub-problems, mitigating the challenges 
posed by spatial constraints in multi-objective optimizations.

However, there are inherent disadvantages and limitations that 
we need to acknowledge. First, the removal of management alternatives 
from border stands due to adjacency conflicts may inadvertently 
introduce bias and impact the optimization of the master problem 
objective function. Second, quantifying the exact impact of these 
removed alternatives can be a complex undertaking, warranting further 
research. Lastly, the approach’s sensitivity to different sub-divisions may 
lead to divergent solutions, potentially undermining its robustness in 
different scenarios. It is crucial to recognize the potential biases 
introduced by the removal of management alternatives due to adjacency 
conflicts and to further investigate the exact implications of these 
removals on the optimization process.

Regardless of the problem size and whether or not there is a need to 
decompose a large problem, generating the Pareto frontier for the 
integer-type optimization problem is further complicated by the fact that 
the feasible domains (integer solutions) are disconnected, making it 
nonconvex. As a result, Pareto frontier generations are based on the 
approximation of the EPH (Lotov et al., 2004; Lotov, 2015). A study by 
Burachik et al. (2021) applied for a small problem found insignificant 
differences between the approximated and real optimal solution, and by 
Marques S, et al. (2021) applied for a larger forest management problem 
also found acceptable discrepancies. In the current study, even though 
the discrepancies were found to be relatively higher for some ecosystem 
services than the previous studies (might be related to the nature of the 
problem or of sensitivity of the criteria being optimized), the approach 
was still able to provide a reasonable approximation.

An interesting finding in this regard is the fact that the accuracy 
of the approximation varies depending on the characteristics of the 

problem, such as the presence of constraints. For larger problems with 
many decision variables, adding constraints led to a larger discrepancy 
between the surrogate solution and the Pareto frontier solution. 
We assume that adding constraints reduces the feasible region and 
could make the optimization problem more complex and may make 
it more difficult for the solver to find the optimal solution. 
Furthermore, the study also found that the level of discrepancy did not 
vary significantly between small and large problems, which suggests 
that our approach is able to handle problems of different sizes 
reasonably well (Marques S, et al., 2021). The fact that the accuracy of 
the approximation is influenced by problem characteristics, 
particularly the presence of constraints, underscores the need for 
robust optimization techniques capable of handling diverse problem 
sizes and complexities.

Our study highlights further that the impact of spatial constraint 
in forest management planning optimization problems is more 
pronounced when the latter has a larger number of decision variables. 
Nevertheless, the complexity of the solution process may vary with the 
algorithm used to formulate the spatial constraints (path algorithm 
was used in our study). Future research should explore the potential 
for using different algorithms such as the bucket algorithm, the clique 
approach, branch and cut algorithm etc. (Constantino et al., 2008; 
Könnyu and Tóth, 2013; Constantino and Martins, 2018) to enhance 
the efficiency and effectiveness of landscape-level optimization in 
forest management planning.

5 Conclusion and future research 
directions

In conclusion, our study sheds light on the critical issue of spatial 
constraints in forest management and optimization. Spatial constraints 
pose a significant challenge in effectively balancing multiple objectives 
in forest management planning, and our research tackles this 
challenge head-on. The contribution of our study lies in our approach 
to decomposing large forest management optimization problems into 
smaller, more manageable sub-problems, and depict trade-offs among 
multiple ecosystem services. The information about these trade-offs is 
important to stakeholders (e.g., Tóth et al., 2006; Borges et al., 2017; 
Marques S, et al., 2021), namely in the case of forested landscapes that 
involve several decision-makers. As highlighted by these authors, it 
supports the development of participatory negotiation processes to 
come up with consensual ecosystem services target levels.

This partitioning not only ensures the adherence to harvest patch 
size constraint but also effectively addresses the complexities of spatial 
constraints. Moreover, our research successfully approximates the 
EPH with remarkable accuracy, although it is worth noting that spatial 
constraints can slightly increase the discrepancy between 
approximated and actual Pareto optimal solutions. While 
we acknowledge the limitations and challenges associated with our 
approach, from a management perspective, our study provides 
practical solutions and valuable insights for forest planners to design 
effective strategies tailored to meet both ecological and economic 
objectives while addressing spatial harvest regulations. Moreover, the 
practicability of the use of the Pareto frontier tool by AFVS and 
relevant stakeholders has been demonstrated by several authors (e.g., 
Borges et al., 2017; Marques S, et al., 2021). This research highlights 
thus the potential for practical use of this tool to address emerging 

TABLE 5 Solution of EPH and cEPH retrieved from six randomly chosen 
points for the border sub-problem.

Criteria 1 2 3 4 5 6

TWOOD 

(106 m3)

EPH 1.128 1.121 1.125 1.119 1.121 1.119

cEPH 1.127 1.114 1.078 1.087 1.084 1.100

CARB (104 

ton)

EPH 54.697 55.076 55.426 55.842 55.658 55.669

cEPH 54.333 55.083 55.029 55.839 55.346 55.792

EROSION 

(106 ton)

EPH 29.145 29.137 28.999 29.181 29.075 29.070

cEPH 29.203 29.385 29.000 29.498 29.108 29.108

cEPH: the surrogate (approximated) solution, EPH: solution of the nearest feasible point.
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forest ecosystem management problems that include spatial 
constraints. Its effectiveness will rely on outreach strategies as outlined 
by Borges et al. (2017) and Marques S, et al. (2021). Future work will 
focus on its use to address similar problems in other contexts.

An important point for future improvement of the proposed 
approach is that the partitioning of the problem into sub-problems 
may not be straightforward, as it can be difficult to determine how to 
partition the landscape in a way that is both meaningful and effective 
for the optimization process. Moreover, as the optimal solution for the 
border stands depends on the specific solutions generated for the 
sub-problems, the final solution is not robust. Therefore, new 
approaches need to be developed that do not need partitioning or 
where the partitioning is optimal. Neural network-based technique 
and reinforcement learning approaches that have recently been 
applied to the solution of large integer problems (e.g., Tang et al., 2020; 
Huang et al., 2022) could be possible avenues for future research. 
Finally, our study, while providing valuable insights, does not consider 
climate change scenarios. When process-based models are available 
to project forest growth under climate change in the study area’s 
forested landscape, research may explore these scenarios for a more 
comprehensive understanding of their potential influence on trade-off 
patterns and the respective computational complexities. Nevertheless, 
our approach to generate Pareto frontiers can be  as useful and 
applicable in this context as it is independent of the models used to 
make projections.
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