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Genome mining as a
biotechnological tool for the
discovery of novel biosynthetic
genes in lichens

Garima Singh1,2,3*, Francesco Dal Grande1,2,3

and Imke Schmitt1,2,4

1Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany,
2LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany,
3Department of Biology, University of Padova, Padova, Italy, 4Institute of Ecology, Diversity and
Evolution, Goethe University, Frankfurt am Main, Germany
Natural products (NPs) and their derivatives are a major contributor to modern

medicine. Historically, microorganisms such as bacteria and fungi have been

instrumental in generating drugs and lead compounds because of the ease of

culturing and genetically manipulating them. However, the ever-increasing

demand for novel drugs highlights the need to bioprospect previously

unexplored taxa for their biosynthetic potential. Next-generation sequencing

technologies have expanded the range of organisms that can be explored for

their biosynthetic content, as these technologies can provide a glimpse of an

organism’s entire biosynthetic landscape, without the need for cultivation. The

entirety of biosynthetic genes can be compared to the genes of known

function to identify the gene clusters potentially coding for novel products.

In this study, we mine the genomes of nine lichen-forming fungal species of

the genus Umbilicaria for biosynthetic genes, and categorize the biosynthetic

gene clusters (BGCs) as “associated product structurally known” or “associated

product putatively novel”. Although lichen-forming fungi have been suggested

to be a rich source of NPs, it is not known how their biosynthetic diversity

compares to that of bacteria and non-lichenized fungi. We found that 25%–

30% of biosynthetic genes are divergent as compared to the global database of

BGCs, which comprises 1,200,000 characterized biosynthetic genes from

plants, bacteria, and fungi. Out of 217 BGCs, 43 were highly divergant

suggesting that they potentially encode structurally and functionally novel

NPs. Clusters encoding the putatively novel metabolic diversity comprise

polyketide synthases (30), non-ribosomal peptide synthetases (12), and

terpenes (1). Our study emphasizes the utility of genomic data in

bioprospecting microorganisms for their biosynthetic potential and in

advancing the industrial application of unexplored taxa. We highlight the
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untapped structural metabolic diversity encoded in the lichenized fungal

genomes. To the best of our knowledge, this is the first investigation

identifying genes coding for NPs with potentially novel properties in

lichenized fungi.
KEYWORDS

secondary metabolites, Big-FAM, natural products, drug discovery, BiG-SLiCE, medicinal
fungi, antiSMASH, MIBiG
Introduction

Natural products (NPs) are structurally diverse molecules

that are produced by nearly all organisms, including plants,

fungi, and bacteria. Historically, NPs have played a key role in

drug discovery owing to their broad range of pharmacological

effects, encompassing antimicrobial, antitumor, and anti-

inflammatory properties and protection against cardiovascular

diseases (Newman and Cragg, 2012; Newman and Cragg, 2020).

In recent decades, about 70% of new drugs have been developed

from NPs or NP analogs (Newman and Cragg, 2012; Newman

and Cragg, 2020). The demand for novel drugs, however, is ever

increasing because of the emergence of antibiotic-resistant

pathogens and new diseases, the existence of diseases for

which no efficient treatments are available yet, and the need

for current drugs to be replaced due to the toxicity or side-effects

associated with their use (Demain, 2014; Chakraborty et al.,

2021). One way to address global health threats and accelerate

NP-based drug discovery efforts is to bioprospect unexplored

taxa to assess their biosynthetic potential and to identify

potentially novel drug leads.

The genes involved in the synthesis of NPs are often grouped

together in biosynthetic gene clusters (BGCs) (Jensen, 2016;

Calcott et al., 2018; Keller, 2019). BGCs typically have a core

gene that codes for the backbone structure of the NP, and other

genes that may be involved in the modification of the backbone

or may have regulatory or transport-related functions (Aigle

et al., 2014; Rigali et al., 2018; Keller, 2019; Kim et al., 2021).

Depending on the core gene, BGCs are grouped into the

following major classes: non-ribosomal peptide synthetases

(NRPSs), polyketide synthases (PKSs), hybrid non-ribosomal

peptide synthetase–polyketide synthases (NRPS–PKSs),

terpenes, and ribosomally synthesized and post-translationally

modified peptides (RiPPs). The conserved motifs of the core

genes facilitate the bioinformatic detection of the clusters

(Medema et al., 2011; Bertrand et al., 2018; Calchera et al.,

2019; Kum and Iṅce, 2021).

Traditionally, a large proportion of NP-based drugs have

been contributed by a few organisms, as drug discovery has

mostly been restricted to culturable organisms (Newman et al.,
02
2003; Cragg and Newman, 2013; Yuan et al., 2016). In recent

decades, the bioinformatic prediction of biosynthetic genes or

BGCs (i.e., groups of two or more genes that are clustered

together and are involved in the production of a secondary

metabolite) has revolutionized NP-based drug discovery. This

process is culture independent, and enables rapid identification

of the entire biosynthetic landscape, including silent or

unexpressed genes, from so far unexplored NP resources. Two

tools have been vital to the bioinformatic approach to drug

discovery: antiSMASH (Blin et al., 2019) and Minimum

Information about a Biosynthetic Gene cluster (MIBiG)

(Kautsar et al., 2020). antiSMASH includes one of the largest

databases for BGC prediction (Blin et al., 2019), whereas MIBiG

is a data repository that allows functional interpretation of target

BGCs by comparison with BGCs with known functions (Kautsar

et al., 2020). Recently, efforts have been made to cluster

homologous BGCs into gene cluster families (GCFs) and to

simultaneously identify novel BGCs (Kautsar et al., 2021a;

Kautsar et al., 2021b). Two tools have been introduced to

cluster BGCs into GCFs. BiG-FAM clusters structurally and

functionally related BGCs into GCFs, and structurally identify

the most diverse BGCs by comparing the query BGCs with about

1,200,000 BGCs in the BiG-FAM database (Kautsar et al.,

2021a). BiG-SLiCE clusters homologous BGCs of a dataset

into GCFs, without reference to an external database, to

identify the unique BGCs in it (Kautsar et al., 2021b).

Bioinformatic prediction and clustering of BGCs allow rapid

identification of potentially novel drug leads, reducing the cost

and time associated with drug discovery by early elimination of

unpromising candidates.

Lichens are symbiotic organisms composed of fungal and

photosynthetic partners (green algae or cyanobacteria, or both).

It has been suggested that they are potentially rich sources of

biosynthetic genes and NPs (Boustie and Grube, 2005; Shukla

et al., 2010; Shrestha and St. Clair, 2013). Although the number

of identified NPs per lichen-forming fungus (LFF) is typically

fewer than five (Lumbsch, 1998), the number of BGCs in the

genomes of LFF may range from 25 to 60 (Calchera et al., 2019).

It is not known how BGCs from LFF relate in structure and

function to BGCs from bacteria and non-lichenized fungi (i.e., if
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a portion of the BGC landscape of LFF is distinct, and might

serve as a source of NPs with novel therapeutic properties).

Difficulties associated with the heterologous expression of LFF

genes have so far restricted the application of LFF-derived NPs

in the industry. Recently, two biosynthetic genes from LFF have

been successfully heterologously expressed (Kealey et al., 2021;

Kim et al., 2021). This, combined with advances in long-read

sequencing technology, high quality genomes, and the low cost

of sequencing, provides a promising way forward to discover

LFF-derived NPs with novel pharmacological potential.

Here we mine and compare the long-read sequencing

derived genomes of nine species of the lichenized fungal genus

Umbilicaria to estimate the functional diversity of BGCs present

in them. Specifically, we aim to answer the following questions:

(1) what is the functional diversity of BGCs in Umbilicaria? and

(2) what is the percentage of novel BGCs and species-specific

BGCs in Umbilicaria?
Materials and methods

Dataset

The genomes of the following Umbilicaria species were used

for this study: U. deusta, U. freyi, U. grisea, U. subpolyphylla, U.

hispanica, U. phaea, U. pustulata, U. muhlenbergii, and U.

spodochroa. Apart from U. muhlenbergii, which belongs to the

BioProject PRJNA239196, all the other genomes are a part of

BioProject PRJNA820300 (Table 1). The details of sample and

genomic library preparation, as well as genome sequencing, for

U. muhlenbergii are available in Park et al. (2014) and for the

other eight Umbilicaria spp. in Singh et al. (2022). Briefly, all the

genomes except U. muhlenbergii were generated via PacBio

SMRT sequencing on the Sequel System II (Radboud

University Medical Center (Radboudumc) in Nijmegen, the

Netherlands) using the continuous long-read (CLR) mode or

the circular consensus sequencing mode. The CLR reads were

then processed into highly accurate consensus sequences (i.e.,
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HiFi reads) and assembled into contigs using the assembler

metaFlye v2.7 (Kolmogorov et al., 2019). The contigs were then

scaffolded with Long Reads Scaffolder (LRScaf) v1.1.12

(github.com/shingocat/lrscaf; Qin et al., 2019). We used only

binned Ascomycota reads for this study [extracted using blastx

in DIAMOND (more-sensitive, frameshift 15, range-culling) on

a custom database and following the MEGAN6 Community

Edition pipeline (Huson et al., 2016).

Two metrics were used to evaluate the quality of the

genomes: completeness and number of scaffolds. Completeness

is the estimate of the fraction of genes present in the genome

with respect to the expected gene content. Completeness is

determined based on universally distributed orthologs. We

used Benchmarking Universal Single-Copy Orthologs

(BUSCO) (Simão et al . , 2015) to estimate genome

completeness. BUSCO estimates complete single-copy,

duplicated, fragmented, and missing genes in the data. The

number of scaffolds shows how fragmented the assembly is,

with a larger number indicating a more fragmented assembly.

Using Funannotate v1.8.9 on the resulting assemblies to

estimate the number of genes and proteins (Palmer and Stajich,

2019). Funannotate implements the algorithm evidence modeler

for gene prediction, which uses several different gene prediction

inputs (from Augustus, snap, GlimmerHMM, CodingQuarry,

and GeneMark-ES/ET) (Borodovsky and Lomsadze, 2011). In

the functional annotation step, Funannotate identifies Pfam

domains, carbohydrate-active enzymes, secreted proteins,

proteases (via MEROPS), BUSCO groups, gene ontology,

InterPro terms, and fungal transcription factors.
Biosynthetic gene cluster prediction and
clustering: AntiSMASH

Biosynthetic gene clusters were predicted using antiSMASH

(Antibiotics and SM Analysis Shell, v6.0), with scripts

implemented in the Funannotate pipeline (Blin et al., 2019;

Palmer and Stajich, 2019). We tested if a smaller genome size
TABLE 1 Voucher information of the genomes used in the study.

Organism Sample ID Sequencing technology BioProject BioSample Genome accession no.

U. deusta TBG_2334 PacBio Sequel II PRJNA820300 SAMN26992774 JALILR000000000

U. freyi TBG_2329 PacBio Sequel II PRJNA820300 SAMN26992773 JALILQ000000000

U. grisea TBG_2336 PacBio Sequel II PRJNA820300 SAMN26992780 JALILX000000000

U. hispanica TBG_2337 PacBio Sequel II PRJNA820300 SAMN26992775 JALILS000000000

U. muhlenbergii KoLRI No.
LF000956

Illumina HiSeq PRJNA239196 SAMN02650300 GCA_000611775.1

U. phaea TBG_1112 PacBio Sequel II PRJNA820300 SAMN26992776 JALILT000000000

U. pustulata TBG_2345 PacBio Sequel II PRJNA820300 SAMN26992777 JALILU000000000

U. spodochroa TBG_2434 PacBio Sequel II PRJNA820300 SAMN26992778 JALILV000000000

U. subpolyphylla TBG_2324 PacBio Sequel II PRJNA820300 SAMN26992779 JALILW000000000
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was correlated with a smaller number of BGCs. A correlation

coefficient near zero indicates no correlation and a coefficient

close to 1 indicates a positive correlation.
Biosynthetic gene cluster clustering into
BiG-FAM gene cluster families

The homologous BGCs present in the Umbilicaria genomes

were grouped into GCFs using BiG-FAM, which clusters

structurally- and functionally-related BGCs, and identifies the

structurally most divergent BGCs by comparing the query BGCs

with the 1,225,071 BGCs in the BiG-FAM database. The

1,225,071 BGCs in BiG-FAM are clustered into 29,955 GCFs

based on similar domain architectures. A GCF comprises closely

related BGCs, potentially encoding the same or very similar

compounds. By enabling such clustering, BiG-FAM establishes

the degree of similarity of BGCs of a query taxon to currently

known (functionally pre-characterized) fungal and bacterial

BGCs. The antiSMASH job ID of each Umbilicaria species was

used as input for BiG-FAM analysis.
Quantification of biosynthetic gene
cluster diversity and species-specific
biosynthetic gene clusters in
Umbilicaria: BiG-SLiCE

We used BiG-SLiCE (Kautsar et al., 2021b) to identify

the most unique or species-specific BGCs within Umbilicaria.

BiG-SLiCE 1.1.0. is a networking-based tool that assesses

relationships of BGCs in the dataset (i.e., Umbilicaria BGCs in

our study) and estimates their distance within the dataset to

identity unique, species-specific BGCs. The resulting distance (d)

indicates how closely a given BGC is related to the other BGCs.

BiG-SLiCE was run on the Umbilicaria BGC dataset (i.e., 217

BGCs from nine Umbilicaria spp.) using three different

thresholds (400, 900, and 1800).
Results

Overview of biosynthetic gene clusters in
the Umbilicaria genomes

Umbilicaria genomes contain 20–33 BGCs each, with the

largest number of BGCs detected in U. deusta and the lowest in

U. phaea (Figure 1A). We did not observe a correlation between

genome size and number of BGCs (correlation coefficient =

0.10). Umbilicaria species contain an average of 13 PKS clusters

and 4.2 NRPS clusters per species (Figure 1B), making a PKS to

NRPS cluster proportion of 3.1. The most dominant classes of

BGC inUmbilicaria are PKSs, which account for more than 50%
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of the total number of BGCs, followed by terpene clusters (about

20%) and NRPS clusters (about 15%) (Figure 2A). In contrast,

NRPSs are the most dominant class among fungal and bacterial

BGCs (Figures 2B, C), amounting to about 42% and

30%, respectively.
Biosynthetic gene cluster
clustering: BiG-FAM

Of the total 217 BGCs found in nine Umbilicaria species, 18

(8%) BGCs obtained a BGC-to-GCFs pairing distance lower

than 400, indicating that they potentially code for structurally

very similar compounds known from the BGCs of their

corresponging GCFs (Figures 3A, B). One hundred and fifty-

six (72%) BGCs had a pairing distance of 400–900, suggesting

that they share similar domain architectures with previously

described BGCs in the BiG-FAM database. We describe the

clusters belonging to above two groups as “associated product

structurally known”. Forty-three (20%) BGCs had a pairing

distance greater than 900, and are potentially BGCs encoding

novel NPs (Figure 3A). We call these clusters “associated

product putatively novel”. These BGCs belong to the classes

terpenes (one BGC), NRPSs (12 BGCs), and PKSs (30 BGCs).

The details of these BGCs and the sequence of the core gene are

provided in Supplementary Information S1.
Within-genus comparison of biosynthetic
gene clusters: BiG-SLiCE

We identified species-specific BGCs within Umbilicaria

using BiG-SLiCE. Out of 217 total BGCs, 159 (73%) grouped

into 20 GCFs (d = 900), suggesting that they are similar clusters

shared by multiple species, whereas 58 BCGs (27%) had d > 900,

indicating that they were only distantly related to other BGCs in

Umbilicaria. Each Umbilicaria species contains 4–10 (6.45%–

16.13%) unique species-specific BGCs (Supplementary

Information 2A). In U. deusta, we detected two BGCs (both

with PKSs as the core gene) that were extremely divergent (d >

1,800) within the genus (Supplementary Information 2B). Of

these BGCs, 15 were unique within Umbilicaria, as well

divergent from the known BGCs present in the BiG-

FAM database.
Discussion

Lichens produce a large number of NPs, and they have even

more BGCs (Meiser et al., 2017; Bertrand and Sorensen, 2018;

Gerasimova et al., 2022). However, whether or not these BGCs

encode hitherto unknown metabolically diverse chemical

structures is not known. Here we quantify, for the first time,
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A B C

FIGURE 2

Biosynthetic gene clusters (BGCs) in (A) Umbilicaria, (B) the full fungal BGC dataset sensu Kautsar et al. 2021a, and (C) the full bacterial BGC
dataset sensu Kautsar et al. 2021a. Polyketide synthases (PKSs) are the predominant class of BGCs in Umbilicaria, whereas in fungi and bacteria
non-ribosomal peptide synthetases (NRPSs) are the most predominant BGC class. Although the number of publicly available lichen-forming
fungal (LFF) genomes (> 50) is much smaller than the number of non-lichenized fungi (about 2,100), in all of the LFF genomes analyzed PKS
clusters were the most common (see Discussion for details), suggesting that the predominance of PKSs, as observed here in the Umbilicaria
dataset, is a common feature of LFF genomes.
A

B

FIGURE 1

Genome quality metrics and diversity of biosynthetic genes in nine species of Umbilicaria. (A) Genome metrics, including the total number of
biosynthetic gene clusters (BGCs) as predicted by antiSMASH, and the number of genes and proteins estimated by InterProScan and SignalP, as
implemented in the Funannotate pipeline. (B) Diversity of BGCs associated with major natural product categories, indicated as percentages
(colored bars) and absolute numbers (numbers on bars).
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the proportion of BGCs linked to putatively novel NPs in a

group of closely related LFF. The identification of 23 clusters that

can encode putatively novel compounds can provide useful

insights for novel drug leads.

In this study, we mined the genomes of the Umbilicaria spp.

to identify all BGCs (Figure 1), clustered the structurally noval

BGCs and functionally similar BGCs into GCFs (Figures 3A, B),

and identified gene clusters potentially coding for novel NPs

(Figure 4; Supplementary Information 1). Using Umbilicaria

spp. as a study system, we show that the LFF biosynthetic

landscape is diverse from that of non-lichenized fungi and

bacteria. The LFF biosynthetic landscape is particularly rich in

PKSs (Figure 2), with a substantial portion of BGCs (about 28%

in case of Umbilicaria) potentially coding for novel NPs

(Figures 3A, B). To the best of our knowledge, this is the first

investigation of this kind using state-of-the-art computational

tools to determine the proportion of metabolic diversity in LFF

potentially coding for novel compounds and to identify
Frontiers in Fungal Biology 06
candidate genes as a source of drug leads to enable drug

discovery efforts to be prioritized.
Biosynthetic potential and biosynthetic
gene cluster diversity of Umbilicaria spp.

Although only PKS-derived NPs are reported from

Umbilicaria species (gyrophoric acid, umbilicaric acid, hiascic

acid, etc.) (Posner et al., 1992; Davydov et al., 2017; Singh et al.,

2021b), we found that the Umbilicaria BGC landscape is

biosynthetically diverse and comprises three to five classes of

NPs (Figures 1A, B). This is also the case for most other LFF; for

instance, PKS-derived NPs are reported from Bacidia spp.,

Cladonia spp., Endocarpon spp., Evernia prunastri, U.

pustulata, and Pseudevernia furfuracea, but all of them contain

several PKS, NRPS, and terpene gene clusters (Calchera et al.,

2019; Singh et al., 2021a; Singh et al., 2021b; Wang et al., 2021;
A

B

FIGURE 3

(A) Total biosynthetic gene clusters (BGCs) and gene cluster families (GCFs) as identified by BiG-FAM in Umbilicaria, along with the number of
BGCs clustering into pre-characterized GCFs in BiG-FAM and their distance (d) groups. Distance is a measure of how closely a given BGC is
related to other BGCs (d ≤ 400 suggests that the cluster codes for a structurally and functionally similar NP; d = 400–900 indicates that the
BGC codes for a related but structurally and functionally divergent NP; and d > 900 suggests that the BGC potentially codes for a novel NP).
(B) Bar plots representing the percentage of BGCs in each Umbilicaria species with d ≤ 400, d = 400–900, and d > 900. Only a small
proportion of BGCs in each species could be grouped into a pre-characterized GCF in the BiG-FAM database (21,678 species, 1,225,071 BGCs,
and 29,955 GCFs), whereas a large proportion of BGCs are only distantly related to the pre-characterized BGCs. Approximately 15%–30% of
BGCs could not be grouped into BiG-FAM GCFs and, therefore, potentially code for structurally and functionally divergent NPs.
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Gerasimova et al., 2022). All the above-mentioned studies show

that the biosynthetic potential of LFF vastly exceeds their

detectable chemical diversity. On average, LFF may contain up

to 30–40 BGCs, but the number of identified compounds per

species is usually fewer than 10 (Calchera et al., 2019; Pizarro

et al., 2020; Singh et al., 2021a). This could be because most of

the clusters are silent and do not synthesize the NP, or it could be

simply because of the failure to detect the NP. Bioinformatic

characterization of entire BGC landscape followed by

identification of most distinct BGCs provides a way to

estimate the novelty of all BGCs, including the unexpressed

and silent ones.
Biosynthetic gene cluster diversity of
non-lichenized fungi compared with
bacteria and non-lichenized fungi

We identified five classes of BGCs in the Umbilicaria

genomes. PKSs were the most dominant class, accounting for

about 50% of BGCs, followed by terpenes (19%) and NRPSs

(14%) (Figures 1, 2A). BGCs, including PKS, typically make up

the majority of BGCs in LFF, for instance about 60% in E.

prunastri, 61% in P. furfuracea, 65% in Cladonia spp., 58% in E.

pusillum, 46% in Lobaria pulmonaria, and 63% in Ramalina

peruviana (Calchera et al., 2019; Kim et al., 2021; Singh et al.,

2021a; Singh et al., 2021b).

Robey et al. (2021) identified 36,399 BGCs in 1,037 fungal

genomes, which suggests that the average number of BGCs in a

non-lichenized fungal genome is 35. This is lower than what has

been reported from bacteria, with Liu et al. (2022) reporting

170,685 BGCs from 5,666 genomes (i.e., an average of 30 BCGs

per genome). Umbilicaria species have, on average, 24 BGCs,

which is lower than the average number of BGCs present in non-

lichenized fungi and bacteria. However, Umbilicaria species, in

general, are chemically not particularly diverse (Singh et al.,

2022) and are, therefore, expected to have a smaller number of

BGCs than other LFF.

Although the number of publicly accessible, good-quality

genomes is somewhat lower for LFF (< 25), than for bacteria

and non-lichenized fungi, the data available [nine Umbilicaria

spp. genomes (Singh et al., 2022) plus nine other publicly available

lichen genomes] suggest that the predominance of PKSs is a

common feature of BGCs in LFF, accounting for more than 50%

of the total number of BGCs. In contrast, NRPSs are the most

prevalent BGC class in bacteria and non-lichenized fungi,

accounting for about 30% and 42% of BGCs, respectively,

followed by the PKSs (Figures 2B, C). This suggests that the

biosynthetic potential of LFF is unique especially with respect to

PKS diversity. In this regard, a recent study suggested that,
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although bacteria and fungi may share a few NPs, they do not

have an overlapping chemical space and, instead, have distinct

biosynthetic potential (Robey et al., 2021). LFF, having a distinct

BGC landscape, present a complementary source of NPs with

promising medicinally relevant biosynthetic properties.
Umbilicaria biosynthetic gene cluster:
gene cluster families and novel
natural products

Gene cluster families are the groups of BGCs that encode the

same or very similar molecules. A total of 217 BGCs from nine

Umbilicaria species were clustered into 135 unique GCFs.

(Figure 3A). This suggests that Umbilicaria spp. are potentially

capable of synthesizing many structurally and functionally

different NPs, although in nature only one compound class is

typically detected (depsides, coded by the BGCs with PKS as the

core gene.

Only a small fraction (8%) of Umbilicaria BGCs could be

clustered with the pre-characterized BGCs (Figures 3A, B).

About 71% of the BGCs were clustered to BiG-FAM GCFs

with distance greater than 400–900, indicating that they were

only distantly related in structure and function (Figures 3A, B).

These BGCs are also interesting candidates to be investigated for

their biosynthetic properties, as even a minor difference in the

cluster and the chemistry of the final metabolites could cause a

crucial difference in bioactivity related to function and the

pharmacological potential of the product (Lautié et al., 2020).

Approximately 21% of BGCs were highly divergent (d > 900)

and are novel, potentially coding for structurally and

functionally unique NPs, and could, therefore, be an

interesting target for NP-based drug discovery (Figure 3B).

The strikingly large number of novel BGCs in a single fungal

genus adds to the mounting evidence that non-model and

understudied taxa are an enormous, untapped source of

novel NPs.

Genome mining for large genomic regions, such as fungal

BGCs, works best when the genomes under study are complete

and contiguous, as well as reliably annotated. Many publicly

available LFF genomes do not fulfill these criteria, thus

preventing a taxonomically broad study of biosynthetic novelty

encoded in the genomes of LFF. We were surprised that even a

“chemically boring” lichen taxon, such as the genus Umbilicaria,

harbored 43 BGCs putatively encoding a diverse range of

previously unknown NPs. This leads us to speculate that

chemically more diverse taxa, for example, Lecanorales or

Pertusariales, each of which includes hundreds of species, are

even richer sources of BGCs with novel functions and of

compounds with potential novel pharmaceutical applications.
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Unique biosynthetic gene clusters within
Umbilicaria spp.: BiG-SLiCE

Biosynthetic gene clusters that are unique to one species are

candidates for interesting NPs (Navarro-Muñoz et al., 2020; Kautsar

et al., 2021b; Robey et al., 2021). On average, each Umbilicaria

species contains seven species-specific BGCs. U. deusta and U. freyi

have the greatest number of novel BCGs, whereas U. hispanica

contains the fewest (Figure 4). This suggests that even closely-

related species (i.e., species within a single genus) contain diverse

biosynthetic potential. Species- or strain-specific biosynthetic

potential has already been demonstrated for LFF, for example in

U. pustulata (Singh et al., 2021b) and P. furfuracea (Singh et al.,

2021a), and it is rather common among fungi (Alam et al., 2021;

Robey et al., 2021; Singh et al., 2021b). For instance, the majority

(57%) of the BGCs in Streptomyces are strain specific (Choudoir

et al., 2018). The unique BGCs within Umbilicaria belong to the

BGC classes PKSs, terpenes, and NRPSs, as well as to the indoles

(Supplementary Information S2). Notably, of these classes, only

PKS-derived NPs have been well studied in LFF. Several studies

have shown PKS-derived NPs to have diverse pharmacological

properties (Manojlović et al., 2012; Cardile et al., 2017; Ingelfinger

et al., 2020).

Two PKSs obtained a pairing distance greater than 1800. These

PKSs were the most divergent (Supplementary Information S2)
Frontiers in Fungal Biology 08
within Umbilicaria and are “orphan (i.e., clusters for which

corresponding metabolite cannot be predicted). Recently, several

orphan clusters have been activated to synthesize a compound with

useful pharmacological properties; for example, the antibiotic

holomycin gene cluster from the marine bacterium

Photobacterium galatheae (Mattern et al., 2015; Shi et al., 2019;

Ziko et al., 2019; Buijs et al., 2020). The novel and orphan clusters

reported in this study are potentially interesting source of molecules

with unique pharmacological properties and may novel serve as

drug leads.

About 17% of fungal BGCs, 8% of bacterial BGCs, and

19% of LFF BGCs are terpenes (Figure 2). Terpenes are

pharmaceutically extremely versatile, having antimicrobial,

anti-inflammatory, neurodegenerative, and cytotoxic

properties (Jaeger and Cuny, 2016; Cox-Georgian et al.,

2019; Guimarães et al., 2019; Jiang et al., 2020; Yang et al.,

2020; Del Prado-Audelo et al., 2021). Among the most

common plant-derived terpenes and terpenoids are

curcumin and eucalyptus oil. Although several studies have

reported the pharmacological properties of fungal terpenes,

such studies on LFF-derived terpenes are lacking, even

though LFF genomes contain higher number of terpenes.

In this study, we also report structurally and functionally

unique terpenes as promising candidates to be investigated

for their pharmaceutical potential.
FIGURE 4

Pie chart depicting the contribution of each species to the overall novel Umbilicaria biosynthetic gene clusters (BGCs) (as identified by BiG-
SLiCE, distance threshold T > 900) Each Umbilicaria species contains 4–10 unique, species-specific BGCs. Umbilicaria freyi and U. deusta
contain the largest number of novel BGCs. The number of novel BGCs is slightly positively correlated to the number of clusters (R = 0.68). Of
58 unique BGCs (T > 900), 56.89% were terpene clusters and 41.37% were PKS clusters.
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