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Breathing can be dangerous:
Opportunistic fungal pathogens
and the diverse community
of the small mammal
lung mycobiome

Paris S. Salazar-Hamm1*, Kyana N. Montoya1, Liliam Montoya2,
Kel Cook1, Schuyler Liphardt1, John W. Taylor2,
Joseph A. Cook1,3 and Donald O. Natvig1

1Department of Biology, University of New Mexico, Albuquerque, NM, United States, 2Department
of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States,
3Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, United States
Human lung mycobiome studies typically sample bronchoalveolar lavage or

sputum, potentially overlooking fungi embedded in tissues. Employing ultra-

frozen lung tissues from biorepositories, we obtained fungal ribosomal RNA

ITS2 sequences from 199 small mammals across 39 species. We documented

diverse fungi, including common environmental fungi such as Penicillium and

Aspergillus, associates of the human mycobiome such as Malassezia and

Candida , and others specifically adapted for lungs (Coccidioides,

Blastomyces, and Pneumocystis). Pneumocystis sequences were detected in

83% of the samples and generally exhibited phylogenetic congruence with

hosts. Among sequences from diverse opportunistic pathogens in the

Onygenales, species of Coccidioides occurred in 12% of samples and species

of Blastomyces in 85% of samples. Coccidioides sequences occurred in 14

mammalian species. The presence of neither Coccidioides nor Aspergillus

fumigatus correlated with substantial shifts in the overall mycobiome,

although there was some indication that fungal communities might be

influenced by high levels of A. fumigatus. Although members of the

Onygenales were common in lung samples (92%), they are not common in

environmental surveys. Our results indicate that Pneumocystis and certain

Onygenales are common commensal members of the lungmycobiome. These

results provide new insights into the biology of lung-inhabiting fungi and flag

small mammals as potential reservoirs for emerging fungal pathogens.
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Introduction

Human lungs are estimated to inhale 500 to 100,000 fungal

spores per day depending on local environmental conditions

(Hasleton, 1972; Hamm et al., 2020b). Substantial attention has

been paid to mechanisms fungi use to avoid the immune

response that lungs can mount against pathogens (e.g. Kwon-

Chung and Sugui, 2013; Wiesner and Klein, 2017; Ward et al.,

2021). Only recently, however, has it been suggested that healthy

lungs may harbor as many fungi as lungs diagnosed with overt

infections (Richardson et al., 2019), but it remains unclear which

fungi in healthy lung tissues present transiently as a result of

spore inhalations and which fungi survive as commensals,

pathogens, or mutualists.

Once thought to represent a sterile tissue, the lung is now

known to possess a microbiome, including a fungal component,

the mycobiome (Hamm et al., 2020b). Studies of the human lung

mycobiome have been limited, with samples typically derived

from sputum or bronchoalveolar lavage rather than from actual

tissues. Previous studies typically focused on diseased lungs

(Nguyen et al., 2015; Weaver et al., 2019), so knowledge of the

human lung mycobiome and more broadly the mammalian lung

mycobiome remains limited.

Museum collections provide opportunities to study animal-

microbe interactions across broad spatial scales and temporal

archives (Cheng et al., 2011; Carvalho et al., 2017; Dunnum et al.,

2017; Schindel and Cook, 2018). The goal of the current study

was to explore the value of ultra-frozen lung tissues from

museum collections to characterize the lung mycobiome of

wild small mammals using molecular and cultivation methods.

Lung samples were chosen to represent the species diversity

from arid environments across the southwestern United States,

in part to determine whether such frozen tissues would help

define the range and host species of Coccidioides, the causative

agent of coccidioidomycosis (Valley fever).

Long before the advent of modern molecular methods there

were indications in the 1940s and 1950s that apparently healthy

mammals frequently harbor living fungi in their lung tissues.

The evidence for this arose in part from attempts by Dr. C. W.

Emmons (Emmons and Ashburn, 1942; Emmons, 1943) to

determine whether rodents serve as natural reservoirs for

coccidioidomycosis. Those studies demonstrated a relatively

high incidence of Coccidioides among specific rodent hosts at

certain localities (15% of pocket mice and 17% kangaroo rats at

San Carlos Indian Reservation, San Carlos, Arizona; Emmons

and Ashburn, 1942). Moreover, these and other studies

demonstrated that a related fungus, now generally known as

Blastomyces parvus (previously Haplosporangium parvum or

Emmonsia parva), was detected even more frequently in

mammalian lung tissues of a wide variety of mammalian hosts

(Emmons and Ashburn, 1942; Jellison, 1950; Bakerspigel, 1956).
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Species of Pneumocystis represent a special case in the context

of the lung mycobiome, because they are obligately symbiotic lung

fungi. They are broadly distributed across mammals, and it has

been suggested that each mammalian species has at least one host-

specific species of Pneumocystis (Danesi et al., 2020). Molecular

surveys for Pneumocystis in domesticated animals and wildlife

have used targeted PCR approaches, and success rates have been

mixed depending on the animal species targeted (Demanche et al.,

2001; Akbar et al., 2012; Danesi et al., 2020). We report that high-

throughput sequencing targeting fungal ribosomal internal

transcribed spacer (ITS) sequences identifies this group at high

frequency (83%) among diverse and widely distributed small

mammals. This approach also provides preliminary information

regarding specific fungal-host associations and coevolutionary

histories for this group.

Our molecular study also expands the results of early lung

studies with respect to Coccidioides and Blastomyces and

demonstrates that mammalian lung tissues host a diverse

mycobiome, with many species either known or now appearing

to be adapted to the lung environment. Our results further

indicate that, along with Pneumocystidales, members of the

Onygenales, Malasseziales, and Saccharomycetales are common

constituents of the natural lung mycobiome. We hypothesize that

members of all four orders are typically benign commensals rather

than aggressive opportunistic pathogens and that the lung

mycobiome provides an excellent opportunity to better

understand the evolution of commensalism or pathogenicity.
Results

Tissue acquisition

A total of 199 ultra-frozen lung tissues were obtained

through formal request from the University of New Mexico

Museum of Southwestern Biology (MSB) and the University of

California Berkeley Museum of Vertebrate Zoology (MVZ).

Samples represented 39 species from six mammalian families

(Heteromyidae, Cricetidae, Muridae, Sciuridae, Geomyidae, and

Leporidae) (Supplementary Table 1). Samples spanned 45

localities within 19 counties across California, Arizona, and

New Mexico. Museum specimen collection dates ranged from

1994 to 2019.
Confirmation of host identities

Because species designations that accompany most museum

specimens are initially morphology based, we sequenced a region

of the mitochondrial cytochrome b (cyt b) gene to test

mammalian host identities. We successfully captured
frontiersin.org
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mitochondrial cyt b sequences, a common molecular barcode,

from 156 of 199 samples to confirm or correct host

identifications. We found that 22 of the frozen tissue samples

had incorrect initial species designations. The analyses presented

here reflect species designations based on cyt b sequences

(Supplementary Table 1).
Lung mycobiome community analysis

We employed Illumina sequencing that targeted the fungal

nuclear ribosomal RNA ITS2 region for fungal community

analyses. Processing of ITS2 sequences with UPARSE of 199

small-mammalian lung samples produced a total of 16,515,699

sequences clustered into 762 operational taxonomic units

(OTUs; Blaxter et al., 2005). The average number of fungal

OTUs per sample was 43.7 (Supplementary Data Sheet 2).

Ascomycota (48%) and Basidiomycota (20%) were the

dominant phyla with only a few OTUs from Mucoromycota

(3%). Twenty-nine percent of the OTUs could not be identified

to phylum using either NCBI or UNITE databases. Among the

most abundant and frequent OTUs were members of the

Eurotiomycetes (Aspergillus, Penicillium, and Blastomyces),

Sordariomycetes (Sordariaceae), Pneumocystidomycetes

(Pneumocystis), Dothideomycetes (Alternaria, Curvularia, and

Aureobasidium), Saccharomycetes (Candida and Geotrichum)

and Malasseziomycetes (Malassezia) (Table 1). There was a

strong correlation between OTU frequency (percentage of

samples with a given OTU) and abundance (sequence read

numbers for a given OTU) (Figure 1).

We focused special attention on the frequency, abundance,

and diversity within the orders Onygenales, Pneumocystidales,

Malasseziales, and Saccharomycetales because of previous

reports regarding the lung mycobiome. The Onygenales

accounted for 19 OTUs and one or more of these OTUs were

in 183 (92%) samples (Table 1; Figure 2A). The Malasseziales

accounted for eight OTUs (all inMalassezia) and were present in

166 (83%) of the samples (Table 1). The Pneumocystidales were

represented by 21 OTUs (all in Pneumocystis) and were in 165

(83%) of the samples (Table 1; Figure 2B). Members of the

Saccharomycetales accounted for 13 OTUs and occurred in 75%

of the samples.

We note that 13 OTUs had top hits to species of Aspergillus,

and members of this genus occurred in 93% of the lung samples

(Table 1). The most frequent and abundant of these, OTU3, had

top BLAST GenBank hits to A. fumigatus (the primary cause of

aspergillosis) and occurred in 67% of the lung samples (Figure 1).

The difficulty in assessing the significance of sequences from A.

fumigatus and other members of the Eurotiales in the context of

the lung mycobiome is discussed below.
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Many of the fungi inhabiting lung tissues have been designated

as pathotrophs (Supplementary Figure 1A). When functional guild

designations of animal pathogens and parasites were pooled, it was

evident that most samples had a high abundance of known fungal

animal symbionts, but there remains a large unclassified component

(Supplementary Figure 1B).

Alpha diversity calculated by OTU richness, the Simpson

index, and the Shannon index showed no differences among host

family, state, or collection year (Supplementary Figure 2).

Rarefaction curves indicated substantial coverage

of OTU diversity, but coverage varied among samples

(Supplementary Figure 3).

Differences in fungal community composition among

samples were evaluated using nonmetric multidimensional

scaling (NMDS) ordinations with the Bray-Curtis dissimilarity

metric. There were no clear trends (p>0.05) in the fungal

communities across time (collection year or month), location

(state), or host (genus or family) although limited sample size

may have dampened visible patterns (Supplementary Figure 4).

Subsets of the data based on well sampled host families were

analyzed to explore small spatial scale patterns. PERMANOVA

was used to test for statistical differences between groups. In

Kern County, California, 40 samples collected from four

localities within a 50 km radius showed a clear separation

existed in fungal community composition between the host

genera of Dipodomys and Perognathus (Figure 3A, R2=0.22905,

p=0.001). A similar pattern was not observed for Sierra County,

New Mexico; while there was clustering of Chaetodipus samples,

Dipodomys and Perognathus sampling was not sufficient to make

direct comparisons with Kern County (Figure 3B, R2=0.07634,

p=0.188). The lung communities in samples with Coccidioides

present were not significantly different from those without

Coccidioides sequences (Figure 3C, R2=0.00539, p=0.351). In

NMDS analyses, lung samples with OTU3 (top BLAST hits to

strains of Aspergillus fumigatus) substantially overlapped those

without this OTU even though a PERMANOVA analysis

suggested differences between the two sample classes

(R2=0.00883, p=0.005). When only samples with >10,000

OTU3 reads were considered there was evidence of clustering

for these samples (Figure 3D).

A Mantel test revealed significant positive correlation between

geographic distance and fungal community dissimilarity

(r=0.1132, p=0.001). Positive spatial autocorrelation was seen at

two distance classes, less than 44.8 km and between 135 km and

224 km indicating that samples collected closer together tend to

have more similar fungal communities (Supplementary

Figure 5A). Other distance classes had no positive or negative

autocorrelation. Although lung fungal communities in general

exhibited low Bray-Curtis similarity in pairwise comparisons,

distance-decay analysis indicated significant decrease in

similarity with distance (p<0.001; Supplementary Figure 5).
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Coccidioides, Blastomyces parvus, and
other Onygenales

Of the 199 small mammalian lungs for which we obtained

Illumina ITS2 sequences, 24 (12%) produced Coccidioides

sequence reads. These Coccidioides-positive samples fell within

14 mammalian species (Ammospermophilus harrisii ,

Chaetodipus intermedius, Cheatodipus penicillatus, Dipodomys

heermanni, Dipodomys merriami, Neotoma albigula, Neotoma
Frontiers in Fungal Biology 04
stephensi, Onychomys torridus, Otospermophilus variegatus,

Perognathus ampulus , Peromyscus boylii , Peromyscus

maniculatus, Sylvilagus audubonii, and Thomomys bottae)

representing 10 genera and 5 families (Cricetidae,

Heteromyidae, Sciuridae, Geomyidae, and Leporidae)

(Figure 4; Supplementary Table 2). Positive Coccidioides

samples were found in California (Kern County), Arizona

(Cochise and Maricopa Counties) and New Mexico (Catron,

Sierra, and Socorro Counties) (Figure 5; Supplementary Table 2).
TABLE 1 Prevalence of major fungal taxa from ITS2 Illumina sequencing of 199 small-mammal lung samples.

Phylum Class Order (total OTUs) Genera Prevalence

Ascomycota Eurotiomycetes Eurotiales (36) 99%

Penicillium 93%

Aspergillus 93%

Thermomyces 42%

Rasamsonia 19%

Onygenales (19) 92%

Blastomyces
Emmonsiellopsis

85%
22%

Auxarthron 20%

Emmonsia 16%

Coccidioides 12%

Sordariomycetes Sordariales (20) 98%

Sordariaceaea 94%

Botryotrichum 34%

Canariomyces 32%

Pneumocystidomycetes Pneumocystidales (21) Pneumocystis 83%

Dothideomycetes Pleosporales (45) 98%

Alternaria 86%

Curvularia 54%

Herpotrichia 32%

Phoma 30%

Preussia 22%

Cladosporiales (2) Cladosporium 71%

Dothideales (8) 68%

Aureobasidium 55%

Kabatiella 27%

Saccharomycetes Saccharomycetales (13) 75%

Candida 49%

Geotrichum 47%

Cyberlindnera 35%

Clavispora 18%

Debaryomyces 12%

Basidiomycota Malasseziomycetes Malasseziales (8) Malassezia 83%

Tremellomycetes Filobasidiales 46%

Naganishia 22%

Filobasidium 15%

Solicoccozyma 14%
fr
OTUs of the same genus were combined to determine the percentage of samples in which they were observed, and those in greater than 10% of the samples are displayed.
aCombined result for OTU2 (93% of the samples), which had a highest BLAST hit to an uncultured Sordariaceae sequence and second highest hit to Neurospora spp., and OTU197 (35% of
the samples), which had a highest hit to Neurospora spp.
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Coccidioides positive rates were highest in Maricopa County,

Arizona (27%) and Sierra County, New Mexico (20%). UPARSE

analysis produced two Coccidioides OTUs (OTU136 and

OTU899) that were 97.38% similar. OTU136 shared a closer

sequence similarity to C. posadasii and OTU899 shared a closer

sequence similarity to C. immitis (Figure 2A).

Seven OTUs exhibited best hits to Blastomyces parvus in

GenBank BLAST searches (Figure 2A). One or more of these

OTUs occurred in 85% of the lungs sampled. Blastomyces

OTU20 occurred in more than 80% of the samples and was

the third most frequent OTU in the community data (Figure 1).

Two other variants with top BLAST hits to B. parvus, OTU106

and OTU20, each occurred in more than half of the lungs

sampled (Figure 1). Co-occurrence analyses revealed no

significant correlation between the occurrence of members of

the B. parvus group and species of Coccidioides (rho= -0.0257,

p=0.6351, Supplementary Table 3).
Cultured members of the Onygenales

Although for most lung samples we did not have sufficient

tissue for culture plating, we plated tissues from the lungs of 25

animals that were collected in 2019 during this study. This was
Frontiers in Fungal Biology 05
done in part to test whether we could recover B. parvus and

other members of the Onygenales, after preliminary sequencing

efforts suggested the frequent presence of these fungi. Isolates

whose top BLAST hits were to B. parvus were the most frequent

among isolates obtained by direct culturing of lung tissues (11 of

29 isolates, Figure 2A; Supplementary Table 4).

Several OTUs had best BLAST GenBank hits to species in

other Onygenalean genera, including Emmonsia, Emonsiellopsis,

Auxarthron, Diploospora, Arthropsis, and Leucothecium

(Figure 2A). Among these latter genera, only a species of

Emmonsiellopsis was obtained in culture from mammal

lungs (Figure 2A).
Pneumocystidales diversity

The 21 OTUs assigned to Pneumocystis were present in

rodents of the families Heteromyidae, Cricetidae, and Sciuridae

with patterns suggesting substantial but not complete host

specificity (Figure 2B). Phylogenetic relationships among

fungal OTUs from the Heteromyidae were substantially

congruent with established relationships for the three

mammalian genera, namely showing a closer relationship

between Chaetodipus and Perognathus relative to Dipodomys
FIGURE 1

Relationship between frequency (percent of lung samples) and total reads for 762 OTUs. Taxonomic orders are given for those OTUs with a
frequency of ≥50% plus two OTUs with high read counts, OTU1 (Pneumocystidales) and OTU12 (Thelephorales).
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FIGURE 2

RaxML maximum likelihood phylogenies for Onygenales (A) and Pneumocystidales (B). Both trees have a mid-point root and bootstrap values
(1000 replicates) are shown for branches with greater than 60% support. (A) Onygenalean fungi obtained through culturing (blue) and Illumina
ITS2 sequencing (red) of lung tissues. Host species for which lung fungal cultures were obtained are in parentheses. Sequences in black type
were acquired from GenBank. (B) Pneumocystidales OTUs were obtained from Illumina ITS2 sequencing. Each box to the right of an OTU
represents one sample with >1,000 sequence reads for a given OTU. Boxes are color coded by genus with warm colors (red, orange, yellow)
within Heteromyidae, cool colors (green, blue, purple) within Cricetidae, and black for Sciuridae. Branches with species names and accession
numbers represent sequences obtained from GenBank. These trees are presented to illustrate the diversity of fungi from these two groups that
were obtained from lung samples, together with associations among cultured fungi, ITS sequences, and mammalian species. Based on ITS
sequences alone we were not able to resolve deeper evolutionary relationships unambiguously.
Frontiers in Fungal Biology frontiersin.org06
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(Alexander and Riddle, 2005). Pneumocystis sequences were

especially prevalent in species of Dipodomys (32 of 57 samples,

56%), and were less frequently observed in species of Peromyscus

(4 of 36 samples, 11%). Of the 165 samples containing

Pneumocystis, 23 (14%) had multiple OTUs with >1000

reads each.
Additional fungi cultured from
lung tissues

A total of 29 fungal isolates were obtained from five species

of rodents from Kern County, California (Supplementary

Table 4). In addition to isolates of the Onygenales referenced

above, isolates included Aspergillus fumigatus, Aspergillus sp.,

several isolates of Penicillium sp., two members of the

Chaetomiaceae, and two members of the Mucorales. As
Frontiers in Fungal Biology 07
mentioned above, sequences from A. fumigatus were both

frequent and abundant in the ITS2 Illumina data.
Discussion

Our Illumina sequencing results produced an average of just

over 40 fungal OTUs per lung sample and more than 700 OTUs

across the 199 samples examined (Supplementary Data Sheet 2).

The following discussion assumes minimal contamination of

samples from natural and laboratory environments. As

described in Materials and Methods, all PCR-based

experiments included negative controls. In addition, while the

lung samples employed were collected over a period of twenty-

five years by multiple scientists, they were obtained using sterile

protocols designed to minimize contamination (Yates, 1996;

Yates et al., 1996; Galbreath et al., 2019). The problem of
A B

DC

FIGURE 3

NMDS ordination of small-mammal samples from Kern County California only (A), Sierra County New Mexico only (B), and all 199 small-
mammalian lung samples. (A) Samples collected within a 50 km radius in Kern County California suggest a difference in the lung mycobiome
communities of species of Dipodomys and Perognathus (R2= 0.22905, p=0.001). (B) Samples within a 50 km radius in Sierra County New
Mexico suggest a clustering of the lung mycobiome community within species of Chaetodipus but not differences from Neotoma or
Peromyscus species (R2=0.07634, p=0.188). (C) Analysis of all 199 samples reveals no fungal community differences between those samples
with Coccidioides and those without (R2=0.00539, p=0.351). (D) Analysis of all 199 samples demonstrated potential differences but also
substantial overlap between those samples with OTU3 (top BLAST hits to strains of Aspergillus fumigatus) and those without (R2= 0.00883,
p=0.005). A degree of clustering of samples with higher numbers of OTU3 reads (>10,000) was observed, however (indicated by the smaller
turquoise oval). For the analysis shown, A. fumigatus sequence reads were removed to prevent the effect of abundant OTU3 on Bray-Curtis
dissimilarity values. Results obtained when A. fumigatus reads were included in the analyses were in substance the same (R2= 0.01037, p=0.009,
results not presented). Additional NMDS ordination results are presented for collection year, location by state, and host family and genus in
Supplementary Figure 3.
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potential environmental and laboratory contamination has

received special interest in the context of species of Malassezia,

once thought to be restricted to skin but now recognized as

common in diverse microbiome and environmental samples

unrelated to contamination (Spatz and Richard, 2020). While

the potential for contamination by species of Malassezia and

other environmental fungi provide a caution for interpreting

results of microbiome studies in general, we note that the fungi

we have focused on here, especially the Onygenales and

Pneumocystidales, are not common in environmental samples.

We recognize four groups of fungi that occur in lung tissues:

1) those present because of incidental inhalation of spores but

not truly colonizing lung surfaces or tissues; 2) fungi that are

capable of colonizing lung tissue as commensals or pathogens

transiently or long-term but are not specifically adapted to the

lung; 3) fungi that are common members of the mammalian

mycobiome that can exist in lung tissues, but which can also be

associated with other tissues such as skin or gut, and 4) fungi

adapted to the lung, either obligately (Pneumocystis species) or

facultatively (Coccidioides species, Aspergillus fumigatus). These

categories will likely be fluid depending on the fungi and

mammals in question, for example because of potential

differential susceptibility of mammalian species to pathogenicity.

The two most difficult mycobiome groups to distinguish

between are those representing incidental inhalation (group 1)

and transient colonization (group 2). Fungi present from

incidental inhalation might be expected to occur in fewer

samples and/or exhibit low read numbers, and their sequences

would likely be common in environmental surveys. Such fungi

could include sporulating members of the Sordariales,

Helotiales, Pezizales, Dothidiales, Eurotiales, Hypocreales,

Agaricales, and Pleosporales (Klich, 2002; Fröhlich-Nowoisky

et al., 2009; Porras-Alfaro et al., 2011; Hamm et al., 2020a). A

study by Kramer et al. of the airway mycobiome of cystic fibrosis

patients found that sequences from many fungal species had

high fluctuations both among different patients and over time

when patients were sampled multiple times, suggesting the

pulmonary mycobiome was dominated by species present

temporarily because of inhalation of environmental spores

(Kramer et al., 2015). Similarly, Rubio-Portillo et al. reported

substantial variation among the mycobiomes of human

bronchoalveolar lavage samples from different individuals,

while in contrast they observed correlations between fungal

OTUs from lavage samples and air samples from the home

environments of test subjects (Rubio-Portillo et al., 2020). This

further supports the potential relevance to lung mycobiome

studies of incidental inhalation of spores from the

local environment.

The importance of transient colonization (group 2), though

difficult to separate from simple incidental inhalation in any

specific instance, can be inferred from the fact that common

environmental fungi not generally thought of as human

pathogens occasionally cause disease, especial ly in
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immunocompromised individuals. Such fungi include species

of Fusarium, Penicillium, Alternaria, and many others including

members of the Mucoromycota (Skiada et al., 2017). And

although the immune system of healthy individuals efficiently

works against such infections, the triggering of defensive

responses may in fact depend on transient colonization

(Hernández-Chávez et al., 2017; Gago et al., 2019). With

respect to our results, the strong correlation between read

abundance and frequency (Figure 1) might support the

argument that certain fungi, for example members of the

Eurotiales not generally recognized as pathogens, are capable

of colonization of healthy lung tissue beyond simply being

present passively because of inhalation. This could include

those species of Aspergillus that only rarely cause serious

infections (Tsang et al., 2020).

We also acknowledge that A. fumigatus, sequences of which

were common in our dataset (based on BLAST hits), is special in

that it causes the most frequently diagnosed lung mycosis and is

at the same time a common environmental saprotroph.

Aspergillus fumigatus has multiple adaptations that permit

colonization of lung tissues, including small spore size,

thermotolerance, and molecular mechanisms that allow

avoidance of immune responses (Robert and Casadevall, 2009;

Casadevall, 2012; Kwon-Chung and Sugui, 2013; Raffa and

Keller, 2019); and in that sense it might fit into either group 4

or group 2. Currently, it is difficult to know for certain whether

the apparent frequent occurrence of A. fumigatus in the lungs of

small mammals reflects the large number of spores in the

environment or colonization of lung tissues. However, the fact

that in NMDS analyses samples with high read counts for OTU3

(presumed A. fumigatus) formed a cluster relative to samples

with low and no OTU3 reads (Figure 3D) may provide support

for colonization in such samples.

Taken as a whole, our results have similarities and differences

with respect to results obtained for the lung mycobiome of humans.

Fungi commonly detected in healthy human lungs have included

Candida (Saccharomycetales) Malassezia (Malasseziales),

Cladosporium (Cladosporiales), Penicillium and Aspergillus

(Eurotiales), and Pneumocystis (Tipton et al., 2017). Similarly,

OTUs representing the Malasseziales and Saccharomycetales

(including Candida), commonly associated with the human

mycobiome (group 3), were well represented in our data (83%

and 49% of the samples, respectively; Figure 1; Table 1). The

relatively high diversity of Malasseziales fungi (eight OTUs) in

our samples is similar to results reported previously for both healthy

and diseased human lungs (van Woerden et al., 2013; Willger et al.,

2014; Fraczek et al., 2018).

In our results, many OTUs were both abundant in sequence

reads and frequency across samples despite being from different

small mammals and various locations (Figure 1). This contrasts

with results reported for humans that indicated high inter-

individual variability for many OTUs (Kramer et al., 2015;

Rubio-Portillo et al., 2020). In addition, sequences from
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members of the Onygenales were frequent in our samples but

have been rare or non-existent in human samples. One potential

contributing factor to these differences between our study and

human studies is that we sampled lung tissues as opposed to

bronchoalveolar lavage or sputum, and as a result our samples

have the potential to detect fungi more deeply in tissues than

would be obtained with lavage or sputum sampling. Another

potential difference could reflect the fact that small, fossorial

mammals spend substantial amounts of time in close contact

with the soil environment, which could increase exposure to

fungi in the soil environment, thereby reflecting more intense

sampling of fungi in soil.

The most compelling results from our study relate to the

Pneumocystidales and Onygenales, offering new insights into

the biology of these organisms. Species of Pneumocystis have

long been reported to be common obligate lung fungi with

substantial host specificity, and most species are yet to be

formally described (Mazars et al., 1997; Demanche et al., 2001;

Laakkonen et al., 2001; Akbar et al., 2012). Members of this

group possess genomic and physiological adaptations to be

obligate biotrophs of mammals (Ma et al., 2016), and they

clearly belong to the group of fungi adapted to the lung (group

4). Surveys for species of Pneumocystis in the lungs of non-

human primates and bats using specific Pneumocystis-directed

PCR produced positive results in 30-40% of the lung tissues

examined (Demanche et al., 2001; Akbar et al., 2012), although

one study reported a high incidence in shrews (80% of 83

samples; Danesi et al., 2020). Our Illumina approach resulted

in 83% of the samples (165 of 199) containing sequences from

members of this group. This percentage is almost certainly an

underestimate, given that we examined only small amounts of

lung tissue from each animal. Our results suggest that in some

instances a single lung can harbor multiple Pneumocystis

lineages, similar to results reported for P. carinii and P.

wakefieldiae (Cushion et al., 2004; Latinne et al., 2021). For

example, several different individuals of Dipodomys heermanni

had more than 1000 reads assigned to both OTUs 27 and 1292.

Moreover, in some instances our data suggest the possibility of

lineage spillover across rodent families (Figure 2B). These are

congruent with the findings of Latinne et al. (2021) obtained for

Southeast Asian rodents indicating that certain Pneumocystis

lineages may not be restricted to a single host. Nevertheless, host

specificity of Pneumocystis species and their animal hosts is

apparent for multiple genera of Heteromyidae especially

Dipodomys (Figure 2B). The evolution of Pneumocystis host

niche is complex and not well understood (Babb-Biernacki et al.,

2020). Our study suggests that high-throughput non-targeted

sequencing can be valuable to gain information toward

understanding Pneumocystis diversity and host specificity.

Our results support the hypothesis that certain Onygenalean

fungi, including species of Coccidioides and members of the

Blastomyces parvus group, are adapted to infect and persist in

lung tissues. Taylor and Barker have argued that species of
Frontiers in Fungal Biology 09
Coccidioides are adapted to be endozoan inhabitants of small-

mammal lungs rather than soil fungi with the ability to cause

opportunistic infections (Taylor and Barker, 2019). This

argument is based in part on genomic studies of Coccidioides

species and other members of the Onygenales that showed a

reduction of genes involved in plant decomposition and an

increase in genes involved in the degradation of animal

proteins (Sharpton et al., 2009). Moreover, sequences from

species of Coccidioides and Blastomyces are rare in

environmental surveys including studies that sample sites

where species of Coccidioides are endemic (Porras-Alfaro et al.,

2011; Bates et al., 2012), and the detection of Coccidioides species

in soils is sporadic even with robust methods (Greene et al.,

2000; Barker et al., 2012). Further, OTUs from the Onygenales

typically do not have close relatives among sequences from

environmental samples (uncultured fungi) in GenBank. This

paucity of representation in environmental surveys contrasts

with the diversity (19 OTUs) and prevalence (92%) of

Onygenalean OTUs in the lung tissues examined here. An

illustration of this disparity is found in a comparison of

BLAST hits at GenBank using the eight most frequent

Eurotiales OTUs in our dataset with those obtained with the

eight most frequent Onygenales OTUs (Supplementary Table 5).

The Eurotiales had equally good hits to GenBank entries from

environmental samples and sequences obtained from known

organisms. In contrast, the Onygenales sequences produced

close matches to sequences from known organisms but not to

environmental sequences.

Although coccidioidomycosis has been reported in diverse

animal species (del Rocıó Reyes-Montes et al., 2016), there are

only two studies reporting the direct isolation of Coccidioides

species from wild small mammals. One reported cultured

Coccidioides from pocket mice (Chaetodipus intermedius, C.

penicillatus, and C. baileyi, reported as Perognathus in the

literature but later reassigned to Chaetodipus; Hafner and

Hafner, 1983), the southern grasshopper mouse (Onychomys

torridus), and a Merriam’s kangaroo rat (Dipodomys merriami)

trapped in Arizona (Emmons and Ashburn, 1942). In Baja

Mexico, a serology assay detected coccidioidal antibodies in a

deer mouse (Peromyscus maniculatus) and desert woodrat

(Neotoma lepida; Catalán-Dibene et al., 2014). Our ITS2 data

represent the first high-throughput sequencing approach to

attempt detection of Coccidioides species in wild small-

mammal lungs. Here, we report 14 species of small mammals

with sequences from Cocc idio ides , n ine of which

(Ammospermophilus harrisii, Dipodomys heermanni, Neotoma

albigula, Neotoma stephensi, Otospermophilus variegatus,

Perognathus ampulus, Peromyscus boylii, Sylvilagus audubonii,

and Thomomys bottae) are newly documented host

species (Figure 4A).

Early research from Emmons and colleagues suggested a

higher correlation with heteromyid rodents and Coccidioides in

the environment (Emmons and Ashburn, 1942; Emmons, 1943).
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Within the Heteromyidae rodents in our study, the genus

Chaetodipus had a 15% positivity rate and Dipodomys had a

10% positivity rate, but they did not greatly differ from our

overall average Coccidioides detection frequency (12%)

(Figure 4B). In terms of future studies, Neotoma (woodrats)

may be of particular interest with a Coccidioides positive rate of

24%, two-fold higher than our overall average (Figure 4B). An

overlap analysis between the distribution models of rodents

and species of Coccidioides has suggested that Neotoma

lepida is a predominant co-occurring species (Ocampo-

Chavira et al., 2020).

We were limited by sample size in terms of the Leporidae,

Sciuridae, and Muridae. Notwithstanding, one Sylvilagus

audubonii (desert cottontail) sample was positive for

Coccidioides (Figure 4A). Sylvilagus audubonii DNA was found

in association with Coccidioides positive burrows in Arizona

(Kollath et al., 2019). Despite having only five samples of sciurids

(squirrels), we detected Coccidioides in two genera

(Ammospermophilus and Otospermophilus) corresponding to

40% of the samples. Only two murid samples were obtained,

and neither were positive for Coccidioides.

With the expected expansion of coccidioidomycosis

endemic regions in the United States (Lauer, 2017; Gorris

et al., 2019), efforts have increased to model the factors

affecting the distribution of the disease and predict its

expansion under climate change scenarios. These efforts have,

however, focused on environmental factors (climate, soil,

elevation, and land cover variables) to predict ecological niches

for C. immitis and C. posadasii (Baptista-Rosas et al., 2007;

Gorris et al., 2018; Weaver et al., 2020; Dobos et al., 2021). Our

study supports the prediction that small mammals play

important roles as host reservoirs of Coccidioides species (del

Rocıó Reyes-Montes et al., 2016; Taylor and Barker, 2019),

suggesting that the ecology, distribution, and taxonomy of

small mammals should be incorporated into Coccidioides

modeling efforts.

The presence of Coccidioides sequences does not appear to

disrupt the lung mycobiome (Figure 3C). Studies with

chytridiomycosis in frogs (Jani and Briggs, 2014) and snake

fungal disease (Allender et al., 2018) suggest that these infections

cause a disruption of the microbiome and a decrease in both

fungal and bacterial diversity with fungal pathogen introduction.

In sea star wasting disease, changes in microbial community

composition occurred during disease progression, with

decreasing species richness only in the late stages of the

disease (Lloyd and Pespeni, 2018). The presence of

Coccidioides without mycobiome disruption might imply a

primarily commensal relationship with its host until a change

in host conditions favoring a pathogenic state.

Emmons suggested a correlation between the presence of

Blastomyces parvus (previously Haplosporangium parvum) and

Coccidioides stating, “The isolation of H. parvum from rodents

of a given area is taken to indicate that C. immitis is probably
Frontiers in Fungal Biology 10
also present in that area” (Emmons, 1943). Our ITS2 sequencing

revealed Blastomyces sequences in 85% of the samples suggesting

that it is more common in small-mammal lungs than are species

of Coccidioides (12%). When abundances were rarified,

Blastomyces was present without Coccidioides in 77 samples,

but only co-occurred with Coccidioides in 6 samples. A

Spearman correlation and a permutation test found no

statistical correlation between the two Onygenalean genera

(Supplementary Table 3). Even without correlation, it is

notable that Blastomyces parvus is in high frequency in small-

mammal lungs despite its ability to cause adiaspiromycosis

(Emmons and Ashburn, 1942). Emmonsia crescens (OTU15),

detected in 16% of the samples, is an additional etiological agent

of adiaspiromycosis (Table 1, Figure 2A) (Emmons and Jellison,

1960). Adiaspiromycosis often presents as a pulmonary infection

common to fossorial mammals like rodents but is much rarer in

humans (Anstead et al., 2012).

Lung samples employed in this study were chosen to reflect

the geographic range of human coccidioidomycosis from low to

high incidence to determine if we could detect sequences from

species of Coccidioides. One of the most revealing aspects of our

results, however, had to do with the high frequency of sequences

from B. parvus and other members of the Onygenales among

lung samples (92%). In addition, B. parvus was the most

common fungal species cultured from lung tissue. We argue

that the endozoan, small mammal reservoir hypothesis (Taylor

and Barker, 2019) should be expanded beyond species of

Coccidioides to encompass multiple Ajellomycetaceae

(Onygenales) fungi including Blastomyces, Emergomyces,

Emmonsia, and Emmonsiellopsis, an argument with significant

clinical relevance. The phylogenetic diversity within this group is

becoming ever more important to the medical field as over the

last four decades there has been an increase in reports of novel

Emmonsia-like human pathogens (Schwartz et al., 2015). Our

study and others (Danesi et al., 2020) demonstrate the

commonality of these Emmonsia-like fungi globally in wild

animals. Host jumps have allowed and will likely continue to

allow these fungi to evolve and diversify followed by radiation,

specialization, and speciation which in some cases could increase

their virulence (Thines, 2019).

This study was made possible by the frozen tissue collections

of the UNM Museum of Southwestern Biology and the UCB

Museum of Vertebrate Zoology. While acknowledging the value

of the availability of diverse, frozen tissue collections, we also

note that molecular barcoding of specimens to confirm host

identifications is best practice (Dunnum et al., 2017). About 11%

of the samples in this study showed incongruence between host

identification based on cyt b sequences and that reported in

museum databases. Nine of these frozen samples can be

attributed to tissues that were apparently mislabeled at the

time of collection, while 13 samples represent misidentification

of closely related cryptic species for which morphology alone is

inconclusive. Misidentification based on morphological features
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alone has been reported to be as high as 10% in some pathogen

studies (Müller et al., 2013); however, without the ability to both

test the host identity with a molecular approach and return to a

physical voucher, these kinds of incongruencies would have been

impossible to rectify. Directly linking genetic data to a physical

specimen should become a necessary component of infectious

disease studies (Thompson et al., 2021).
Materials and methods

Tissue acquisition

Ultra-frozen lung tissues were obtained from the University

of NewMexico Museum of Southwestern Biology (MSB) and the

University of California Berkeley Museum of Vertebrate
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Zoology (MVZ) by formal request. Sampling ranged from

1994 to 2019. Archival tissues loaned to this project included

39 species within five families (Heteromyidae, Cricetidae,

Muridae, Sciuridae, and Geomyidae) of rodents and one rabbit

species in Leporidae (Supplementary Table 1). Field sampling

procedures followed established, sterile protocols developed to

avoid cross-contamination and maximize the utility of these

collections (Yates, 1996; Yates et al., 1996; Galbreath et al., 2019).

Typically, specimens were preserved under a series of three-year

protocols approved through the Institutional Animal Care and

Use Committees (IACUC). The current protocol (Animal

Welfare Assurance # D16-00565; A4023-01) is enforced under

the United States Department of Agriculture Registration # 85-

R-0002. Upon sacrifice of the mammal specimen following

approved guidelines for animal care and use (Sikes et al.,

2016), lung samples were collected into cryovials, immediately
A

B

FIGURE 4

Bar plot of Coccidioides positive and negative samples by species (A) and by genus (B).
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flash frozen in liquid nitrogen, and then archived and data-based

at the ultrafrozen facilities at MSB and MVZ. Samples were

obtained from 45 sampling localities from 19 counties in

California, Arizona, and New Mexico within the known

distribution of coccidioidomycosis (Figure 5).
DNA purification from lung tissues

Approximately 0.025 g of lung tissue was lyophilized for 24

hours followed by DNA extraction using the following CTAB

procedure. Tissue was resuspended and ground in 500 µL

cetyltrimethylammonium bromide (CTAB) lysis buffer (2%

CTAB, 1.4 M NaCl, 20 mM EDTA, 100 mM Tris–HCl) plus b-
mercaptoethanol (final concentration 0.2%) and 10 µL protease K

(10 mg/mL) followed by an hour at 65°C. An isoamyl alcohol/

chloroform extraction was performed by adding 500µL isoamyl

alcohol-chloroform (1:24) followed by 20 minutes of gentle

shaking and then centrifugation at 16,000g for 5 minutes. The

upper aqueous phase was transferred to a fresh tube. DNA was

precipitated by addition of 15 µL 3M sodium acetate (pH 5.2) and

500µL ice-cold isopropanol. Samples were inverted and incubated

at -20°C for 10 minutes. After centrifugation, the pellet was

washed twice, first with 500µL ice-cold 70% ethanol and then

with 500µL ice-cold 100% ethanol. Ethanol was discarded and the

pellet dried prior to resuspension in 50µL sterile H2O. DNA was

further purified with Agencourt AMPure beads (Agencourt

Bioscience Corporation, Beverly, MA, USA) following

instructions from the manufacturer.
Frontiers in Fungal Biology 12
Host identifications

Host species were tentatively identified in the field using

morphological parameters including but not limited to total

length, tail length, hind foot length, ear length, reproductive

data, total weight, and coat coloration. Geographic locality and

field guides were additionally used for verification. To check

species designations, we partially sequenced the mitochondrial

cyt b region. Purified DNA extracted from lung tissue was used

to amplify the cyt b region with primers targeting specific host

groups. Cricetids (Neotoma , Peromyscus , Onychomys,

Reithrodontomys, Baiomys, and Sigmodon), and murids (Mus)

were amplified with the MSB05 and MSB14 modified primers as

described in (Hope et al., 2010). Heteromyids (Chaetodipus,

Dipodomys, and Perognathus), geomyids (Thomomys), and

sciurids (Ammospermophilus, Tamias, and Otospermophilus)

were amplified with the MVZ05 and MVZ14 primer pair

(Smith and Patton, 1993). If the initial amplification was

unsuccessful, we employed primer pair MVZ05 and MVZ04

which amplifies a shorter 426 bp segment (Smith et al., 1992).

Polymerase chain reaction (PCR) conditions were as follows:

initial denaturation at 95°C for 10 min, followed by 34 cycles of

95°C for 15 sec, annealing at 52°C for 30 sec, and extension at

72°C for 1 min, with a final extension at 72°C for 5 min, and

holding at 4°C. PCR was followed by gel electrophoresis

confirmation. Products were purified with ExoSAP-IT

(Affymetrix, Santa Clara, CA) according to the manufacturer’s

recommendations followed by Sanger sequencing using BigDye

Terminator v3.1(Applied Biosystems, Foster City, CA)
FIGURE 5

Sampling of small-mammalian lungs across the southwestern U.S. detect Coccidioides in wild animals. The number of samples sequenced per
county is depicted in blue. Coccidioides positive trapping locations are shown with an orange dot with increasing size based on the number of
positive samples in that specific location. GPS locations less than 1 km apart were merged. The insert indicates the endemic range for the genus
Coccidioides, with darker shades of green indicating higher levels of incidence, as recognized by the U.S. Centers for Disease Control and
Prevention (see Gorris et al., 2019).
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employing the forward and reverse primers. Identification was

performed using BLAST searches. Cyt b sequences were

deposited in GenBank (Sayers et al., 2021) under accession

numbers OK134972 to OK135142 (Supplementary Table 1).

For 43 samples that could not be verified with molecular

methods, we utilized the archived host identification (https://

arctos.database.museum).
Illumina library preparation
and sequencing

The preparation of amplicon libraries was preceded by a

PCR amplification using primers ITS1-F and ITS4 (White et al.,

1990; Gardes and Bruns, 1993) to amplify the fungal nuclear

ribosomal ITS region from whole-lung DNA. These reactions

were performed in 15 µL reactions with 7.5 µL Premix ExTaq

polymerase (Takara, Mountain View, CA), 1 µL of each (5 µM)

primer, 2 µL of 1 mg/mL bovine serum albumin, 2.5 µL of sterile

water and 1 µL of template DNA. PCR products were checked by

gel electrophoresis. DNA concentration of successful

amplifications were measured with a Qubit dsDNA HS kit

(Life Technologies Inc., Gaithersburg, MD) and serial dilutions

were performed to dilute inhibitors. A second PCR was

preformed to contain a 29 (forward) or 25 (reverse) base

linker, a 12 base barcode, a 29 (forward) or 34 (reverse) base

pad, a 0-8 base heterogeneity spacer, and the fungal ITS2 5.8S-

FUN and ITS4-FUN primers (Taylor et al., 2016), following the

procedure in (Gao et al., 2019). Negative controls were included

with all PCR procedures to ensure that amplified fragments did

not result from laboratory contamination. PCR products were

purified using AMPure magnetic beads (Beckman Coulter Inc.,

Brea, CA) following the manufacturer’s instructions and pooled

to create DNA libraries following the Illumina MiSeq DNA

library preparation protocol for paired-end reads. Libraries were

quality checked for concentration and amplicon size using the

Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,

CA) at the Vincent J. Coates Genomics Sequencing Laboratory

(GSL, University of California, Berkeley, CA). Pyrosequencing

was performed on the Illumina MiSeq PE300 sequencing

platform at the GSL. All raw reads were deposited in the

NCBI Short Read Archive (SRA) under BioProject

ID PRJNA769405.
Sequence processing

Illumina sequences were processed initially with USEARCH

v11 (Edgar, 2013). Sequences less than 250 bases in length were

removed, as were adapter and primer sequences, and presumed

chimeras. Sequences were clustered into OTUs at 99% similarity

with UPARSE implemented in USEARCH (Edgar, 2010).
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Reports of nearly identical outcomes for community analyses

utilizing OTUs and ASVs (Glassman and Martiny, 2018; Joos

et al., 2020) support our choice of OTUs to avoid overestimating

the number of fungal lineages due to intragenomic and

intraspecific variation among ribosomal DNA repeats in the

ITS2 region (Schoch et al., 2012; Estensmo et al., 2021).

Representative OTU sequences were assigned taxonomy

initially using SINTAX (Edgar, 2016) and the UNITE database

v8.2 (Nilsson et al., 2019), supplemented with GenBank BLAST

searches for taxonomic confirmation. The results presented in

Figures 1, 2 and Table 1 reflect taxonomy confirmed with

searches at GenBank. Fungal sequences from representative

OTUs were deposited in GenBank under the accession

numbers OK078030 to OK078530 (Supplementary Data Sheet

2 links OTUs and accession numbers). Code can be found at

https://github.com/p-salazarhamm/mammal_lung_mycobiome.
Community and spatial analyses

We visualized differences in lung mycobiome composition

among small mammals across time, space, and host using two-

dimensional NMDS ordinations, a method commonly employed

in microbial ecology to evaluate dissimilarities among

communities (Legendre and Legendre, 2012). We transformed

the data to relative abundance by dividing OTU read counts by

the total of all reads within a sample. Ordinations were then

performed on the relative abundance transformed fungal

community data using the Bray-Curtis dissimilarity metric in

the phyloseq package v1.30.0 (McMurdie and Holmes, 2013).

We created subsets of the data and generated ordinations for

intensely sampled counties to assess differences in fungal

community by host on small spatial scales.

Spatial structure was examined by using a Mantel test in the

vegan package v2.5-7 (Oksanen et al., 2019) in R v3.5.1 (R Core

Team, 2018) to investigate a correlation between geographic

distance and sample similarity. To assess the spatial distances at

which communities were more or less similar than expected due

to chance, we used a Mantel correlogram also in the vegan

package. Furthermore, we plotted distance decay of similarity by

plotting spatial distance between each pair of samples against the

Bray-Curtis similarity between those samples.
Functional analyses

We used FUNGuild v1.1 (Nguyen et al., 2016) to assign

trophic modes and guilds (functional groups) to fungal OTUs.

Animal-fungal symbionts per sample were pooled by

determining the percent of reads in each sample that belonged

to OTUs whose guild assignments included animal pathogen

and animal parasite.
frontiersin.org

https://arctos.database.museum
https://arctos.database.museum
https://github.com/p-salazarhamm/mammal_lung_mycobiome
https://doi.org/10.3389/ffunb.2022.996574
https://www.frontiersin.org/journals/fungal-biology
https://www.frontiersin.org


Salazar-Hamm et al. 10.3389/ffunb.2022.996574
Alpha diversity

OTU richness, the Simpson index, and the Shannon index

were calculated to assess differences in alpha diversity of samples

by location (state), host family, and collection date. To account

for differing sequencing depths among samples, expected

richness at 1000 reads was calculated using the rrarefy

function in the vegan package (Oksanen et al., 2019). We used

1000 reads as a cutoff to retain reads from species of

Coccidioides, which were in low abundance. We additionally

computed the rarefaction curve to determine OTU richness at

varying sequencing depths.
Co-occurrence analysis

Abundance data was rarified at three different read depths

using the rrarefy.perm() function for computing 1000

rarefactions using EcolUtils R package (https://github.com/

GuillemSalazar/EcolUtils). The patterns held consistent at the

various depths (Supplementary Table 3). Seven OTUs (OTU20,

OTU58, OTU1155, OTU1107, OTU106, OTU1174, and

OTU896) identified as Blastomyces were grouped together to

determine their co-occurrence with the two OTUs of

Coccidioides (OTU136 and OTU899). The observed Spearman

correlation was calculated. To test for significance, a

permutation test was run for 10000 random draws and the

observed rho statistic was compared to the corresponding

null distribution.
Phylogenetic analyses

Illumina sequences representative of OTUs from the

Onygenales and Pneumocystidales along with representative

sequences from GenBank were subjected to phylogenetic

analyses. Sequences were aligned with MAFFT using default

parameters (gap open penalty 1.53, gap extension penalty 0.123)

(Katoh and Standley, 2013), and alignments (Supplementary Data

Sheets 3, 4) were subjected to maximum likelihood analysis with

RAxML (Stamatakis, 2006) in each case employing 1000 bootstrap

replicates (GTRCAT substitution model).
Culture isolation

If available, a portion of the lung tissue was used in culturing

on a yeast glucose media (1% yeast extract, 2% glucose, 1.5% agar)

with the addition of tetracycline (10 mg/L) and chloramphenicol

(50 mg/L). Typically, 3-4 small lung fragments (approximately

0.25 cm each) were plated onto a single 10-cm agar plate. Plates
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were incubated at 25°C until fungal growth was visible. Colonies

arising from these segments were transferred as hyphal tips to

fresh individual plates. Colony and microscopic characteristics

were assessed before selecting isolates for ITS Sanger sequencing.

After 2-7 days growth, tissue was collected, and DNA was

extracted using the above CTAB procedure with the reduction

of the heating step to 30 min at 65°C. PCR was performed as

above with primers ITS1-F and ITS4 (White et al., 1990; Gardes

and Bruns, 1993) primers followed by confirmation with gel

electrophoresis confirmation. Products were purified with

ExoSAP-IT (Affymetrix, Santa Clara, California) according to

the manufacturer’s recommendations. The entire ITS region was

targeted for Sanger sequencing using BigDye Terminator v3.1

(Applied Biosystems, Foster City, CA) and sequences were

identified using BLAST (Altschul et al., 1990). Sequences from

lung fungal cultures were deposited in GenBank under accession

numbers MW652389-MW652417 (Supplementary Table 4).
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del Rocıó Reyes-Montes, M., Pérez-Huitrón, M. A., Ocaña-Monroy, J. L., Frıás-
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