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The three-dimensional passenger macroscopic fundamental diagram (pMFD) describes

the relation of the network accumulation of public transport and private vehicles, and

the passenger production. It allows for modeling the multi-modal traffic dynamics in

urban networks and deriving innovative performance indicators. This paper integrates

this concept into a multi-modal transport system design framework formulated as a

simulation-based optimization problem. In doing so, we consider the competition for

limited road space and the operational characteristics, such as congestion occurrences,

at the strategic design level. We evaluate the proposed framework in a case study

for the Sioux Falls network. Thereby, we deliver a proof of concept, and show that

the proposed methodology indeed designs a transport system which benefits the

overall system’s performance. This paper further advances the integration of sequential

model-based optimization techniques, macroscopic traffic flow concepts, and traffic

simulation to design multi-modal transport systems. This supports transport planners

and local authorities in composing efficient and robust transport networks.

Keywords: macroscopic fundamental diagram, bi-modal transport system, optimization, public transport, agent-

based simulation, transport system design

1. INTRODUCTION

Growing urbanization is leading to a drastic increase in traffic volumes in megacities all over the
world. The city growth results in rising traffic demand, which leads to increased air pollution,
congestion, and delays which can impact urban productivity growth (Sweet, 2014). Potential
solutions to these problems might arise with the increasing diversification of travel modes available
to citizens. With the introduction of new mobility services, such as ride-hailing and ride-pooling,
more and more alternatives to the private car become available. However, the effects of these
emerging mobility services are not only positive. For example, recent studies show that congestion
might increase due to ride-pooling (Tirachini, 2019). Moreover, public transport continues to serve
as the backbone of urban mobility providing a capacity substantially higher than any other travel
mode (e.g., Steer Davies Gleave, 2018). Focusing on capacities, both private and public transport
are required to be considered for maximizing the utilization of transport infrastructure.

For this purpose, we explore the design of public transport systems considering overall bi-
modal transport system dynamics including buses and private cars. The traditional framework
known as the transit network planning problem includes processes related to strategical, tactical,
and operational decisions. Due to its complexity, it is divided into the sub-problems of (i) transit
network design on the strategic level; (ii) frequency setting and (iii) timetable development on
the tactical level; as well as (iv) vehicle scheduling; and (v) driver scheduling on the operational
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level (Desaulniers and Hickman, 2007; Ceder, 2016). A
number of detailed reviews about these sub-problems
conducted by Guihaire and Hao (2008), Ibarra-Rojas et al.
(2015), Kepaptsoglou and Karlaftis (2009), Schöbel (2012),
and Iliopoulou et al. (2019) are available and provide a
comprehensive review of the state-of-the-art regarding the
corresponding methods. The authors show that a large body
of literature deals with solving the transit network design with
all different types of objective values. The review of Iliopoulou
and Kepaptsoglou (2019) discussed the potential of ITS data
and data-based optimization models for public transport
planning and operations. The authors found a lack of studies
regarding the role of ITS data for the public transit design
problem. Additionally, they noted that such data could feed
to new performance indicators that could serve as objective
values for optimization methods. Furthermore, most approaches
are traditionally uni-modal and only indirectly account for
interactions between different modes. The existing literature
on multi-modal network design is still limited (Farahani et al.,
2013). Most of the occurring studies focus only on designing
single-mode systems instead of the overall multi-modal system.
A few studies take into account both cars and public transport
with multi-modal objective values. However, they rarely consider
multi-modal traffic dynamics explicitly and often assume steady-
state traffic flows (Mesbah et al., 2011; Yao et al., 2012; Bingfeng
et al., 2017; Li and Wang, 2018). The importance of traffic
dynamics is indicated by the results of Sayyadi and Awasthi
(2018). The authors presented a simulation-based optimization
approach for identifying key determinants for sustainable
transportation planning. They confirm that congestion is one
of the key socio-economic-environmental variables for system
planning. Pinto et al. (2019) proposed a modeling framework
to optimize the transit network and shared-use autonomous
vehicles mobility systems. By incorporating an agent-based
simulation they acknowledge the role of traffic dynamics in the
network design. Although they did not consider the impacts of
the shared mobility vehicles on road traffic, their experiments
suggest that larger fleets significantly impact the congestion
on roadways. This suggests that modeling the interaction of
different modes and their impacts on traffic conditions is
important, and it remains an ongoing research topic. Given the
interactions of all modes and the competition for limited road
space, it is apparent that a uni-modal focus of transport design
methods is not expedient. It is of high importance to account for
multi-modal urban traffic dynamics while designing sustainable
transport systems.

The concept of the three-dimensional passenger macroscopic
fundamental diagram (pMFD) (Geroliminis et al., 2014;
Chiabaut, 2015) is a promising framework to account for such
dynamics, while exploiting existing and novel data sources.
This recent branch of research regarding the MFD explores
the functional relation of passenger production as person-
kilometers traveled and the network accumulation of public and
private transport vehicles. With its foundations in traffic flow
theory, it enables to consider both transport modes including
their interactions from a network-wide perspective. The pMFD
depends on the network topology, control strategy, and the public

transport system (Geroliminis et al., 2014). For its estimation,
traffic counts from fixed sensors, mobile probes, as well as
passenger counts from public transport vehicles are necessary.
Modern intelligent transport system (ITS) technologies can
provide such data. Examples for respective data sources are GPS
devices, mobile phones, automatic vehicle location and automatic
passenger count (APC) devices (Ambühl and Menendez, 2016;
Loder et al., 2017; Dakic andMenendez, 2018; Huang et al., 2019).
The pMFD allows deriving a multi-modal capacity in terms of
passengers, as well as other indicators such as the system’s optimal
operational regime (Geroliminis et al., 2014). The latter indicator
describes a set of bi-modal traffic states in the network for which
high passenger production values can be achieved. A few studies
apply the concept of the pMFD in the context of multi-modal
transport system optimization (Zheng and Geroliminis, 2013;
Amirgholy et al., 2017; Zheng et al., 2017; Zhang et al., 2018). The
main focus lies on space allocation between buses and cars based
on analytical formulations for the MFD. These studies indicate
that the pMFD potentially contributes to amulti-modal transport
system design framework that explicitly considers corresponding
urban traffic dynamics. Thereby, operational characteristics can
be considered at the strategic design level.

Following this research gap, we aim to analyze the potential of
the pMFD for the comprehensive design of a bi-modal transport
system including private and public transport. By considering
these modes and the corresponding mutual interactions, an
optimal utilization of existing infrastructure can be achieved.
We propose a methodological framework which we define as bi-
modal network design problem since both modes are affected.
This includes the formulation of an optimization problem
with an objective function related to the pMFD and decision
variables referring to the public transport system, namely the
bus routes and the number and position of bus stops served
along these routes. Current data types for the MFD estimation
rely on assumptions regarding bus passengers (e.g., Geroliminis
et al., 2014) or available APC data which introduce additional
inaccuracies and biases in the estimation (e.g., Loder et al., 2017).
To avoid such assumptions, we extract person-specific position
(PSP) data from an agent-based multi-modal microscopic traffic
simulation to estimate the pMFD. This simulation environment
allows us to consider vehicle interactions and mode-specific
operational characteristics in detail. To our best knowledge,
no studies exist which investigate the estimation of the pMFD
directly from PSP data. Our proposed approach sheds light on the
value of the pMFD and consequently of PSP data for the design
of bi-modal transport systems.

The contributions of this paper are three-fold:

1. pMFD estimation: We conduct and discuss the pMFD
estimation based on PSP data. By doing so, we explore for
the first time the value of such data for the estimation of the
three-dimensional pMFD. The analysis shows that the usage
of PSP data allows us to avoid biases from currently used
estimation techniques.

2. Bi-modal transport system design: We prove the practicability
and feasibility of applying the pMFD within an optimization
framework for the strategic design of bi-modal transport
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systems. The decision variables relate to bus lines, i.e., are the
bus route and the associated served bus stops. The objective
function includes both the maximum bi-modal passenger
production and the transport system’s optimal operational
regime. These parameters are derived from the pMFD, and
relate to the arrival rate of persons at their destination, as well
as the system’s robustness. Furthermore, our approach is able
to account for operational aspects such as congestion patterns
at the design level.

3. Balancing bi-modal travel production: We solve the bi-modal
network design problem for the Sioux Falls network based
on the proposed framework. Thereby, we provide a proof
of concept, find a quasi-optimal bus system for a given
demand and network topology, and show that the found
solution indeed finds a balance between modes compared to
existing solutions.

The results of this study support operators and planners to design
balanced transport systems as well as better transport policies for
multi-modal urban transport systems.

The remainder of this paper is structured as follows. The next
section briefly describes the development and current state-of-
the-art of the pMFD. Section 3 investigates the suitability of PSP
data for the pMFD estimation. Also, it analyzes the feasibility of
applying the concept of the pMFD in an optimization framework.
Subsequently, section 4 presents this framework in detail. It
includes the derivation of our objective function. In section 5, we
apply our approach in a case study for the Sioux Falls network as
a proof of concept. Moreover, we compare the results to existing
multi-modal transport systems for this network. Lastly, section 6
draws a conclusion and outlines future research.

2. BACKGROUND

Several studies analyzed the macroscopic relationship between
the network-wide vehicle outflow and the aggregated vehicle
accumulation (e.g., Godfrey, 1969; Herman and Prigogine, 1979;
Mahmassani et al., 1987; Daganzo, 2007). Geroliminis and
Daganzo (2008) confirmed the existence of the MFD by linking
the vehicle accumulation to the average flow in a network
with data from San Francisco and Yokohama. Recently, strong
evidence for the unimodal MFD was reported for an extensive
list of cities (Loder et al., 2019a). Moreover, first studies reported
of the empirical evidence for the multi-modal MFD. Loder et al.
(2017) presented a network-wide evaluation of the impacts of
different traffic modes for the city of Zurich, Switzerland. Huang
et al. (2019) estimated the MFD and the 3D-MFD for the city of
Shenzen, China, based on GPS data for cars and buses.

Various theoretical studies have analyzed the multi-modal
representation of traffic with the MFD. Gonzales and Daganzo
(2012) extended the morning commute problem from a single
bottleneck to multi-modal networks. This study explored the
system optimum at the network level based on an MFD
representation. Boyacı and Geroliminis (2011) extended the
variational theory (VT) (Daganzo, 2005a,b; Daganzo and
Menendez, 2005) to estimate the MFD for bi-modal arterials.
The authors considered cars and buses and computed the

passenger flow based on the dwell times of buses. Chiabaut (2015)
introduced an analytical method to estimate the performance
of bi-modal networks in terms of passenger flows while
accounting for mode choice. The model was applied to analyze
the effects of dynamic bus lanes. Some works targeted the
stochastic nature of traffic. Castrillon and Laval (2018) extended
the stochastic approximation for MFDs (Laval and Castrillón,
2015) to apply to bi-modal traffic on homogeneous urban
corridors. Based on unimodal semi-analytical MFD estimation
methods (Leclercq and Geroliminis, 2013; Tilg et al., 2020),
Dakic et al. (2019) developed a VT-based method to estimate
the passenger MFD for bi-modal corridors. Thereby, they
accounted for the stochastic nature of bus operations, moving
bus bottlenecks, and traffic state dependency of bus arrivals.
Paipuri and Leclercq (2020) investigate the application of 3D-
MFDs for modeling traffic dynamics in an urban region.
They propose a segregation of vehicle type-specific MFDs for
accurate prediction of traffic dynamics. While these studies
estimate the MFD for the bi-modal systems, they often
only apply to corridors or strongly reduced and artificial
grid networks.

The application of traffic simulators can eliminate
this limitation. Using a three-dimensional representation,
Geroliminis et al. (2014) studied the existence of the simulation-
based MFD for mixed bi-modal urban networks. They proposed
an analytical and data-based model to relate the bus and
car accumulation to the system-wide passenger flow. The
authors showed that the passenger flow is maximized at a
non-zero accumulation of buses. Moreover, they defined
the optimal operational regime for buses which could be
of interest to city managers and bus operators. We include
this optimal operational regime next to the maximum
passenger production in our optimization framework. Thereby,
we not only aim for a high capacity, but also for robust
operation. By doing so, we fully integrate the pMFD into
our framework.

The existing literature indicates that the application of the
pMFD is currently receiving increasing interest. Examples can
be found for bi-modal traffic control (Ampountolas et al., 2017)
and traffic systems including parking limitation and cruising-
for-parking flow (Zheng and Geroliminis, 2016). An application
related to public transport was shown in Zheng and Geroliminis
(2013). The authors allocated road space among travel modes
to minimize the total travel time of travelers based on the
semi-analytical approach developed by Boyacı and Geroliminis
(2011). Furthermore, Johari et al. (2020) analyzed the effects
of bus stop location (i.e., far-side and near-side) and berth
number at the network level based on the notion of the
multi-modal MFD. It enabled them to successfully include the
interactions between modes in the respective analyses. Also,
Zhang et al. (2018) developed a framework to analyze multi-
modal transport systems. Again, the focus lies on space allocation
between cars and buses and how operators react to certain
allocation strategies. In another study on space allocation, Roca-
Riu et al. (2020) proposed an analytical framework to quantify
mode-specific space consumption in urban areas. Thereby, the
authors exploited the idea of the multi-modal MFD. Still, these
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TABLE 1 | Literature applying the pMFD for multi-modal system optimization

purposes.

References Objective Problem type Model

type

Zheng and Geroliminis

(2013)

Min. total travel time Space allocation SA

Zheng et al. (2017) Min. congestion Space allocation MS

Amirgholy et al. (2017) Min. user, operator,

and external costs

Public transport design A

Zhang et al. (2018) Min. total system cost Space allocation SA

Dantsuji et al. (2019) Min. congestion Space allocation &

pricing

MS

Model types abbreviations stand for semi-analytical (SA), analytical (A), and microscopic

simulation (MS).

studies mainly apply semi-analytical models to estimate the
MFD. While Zheng et al. (2017) aimed to assign bus lanes,
their study represents an example where an optimization based
on microscopic simulation is conducted. Their objective was
to minimize the occurrence of congestion in the network.
However, the pMFD was estimated based on vehicle and not
PSP data. Moreover, the authors did not consider the design of
bus lines. Another example for a simulation-based optimization
was reported by Dantsuji et al. (2019). The authors proposed
a simulation-based joint optimization framework composed
of dedicated bus lanes and vehicular congestion pricing in
order to minimize the congestion according to the MFD.
Focusing on the actual design of transport systems, the pMFD
was applied in Amirgholy et al. (2017). Thereby, the authors
proposed a continuum approximation model to optimize various
public transport system parameters, such as the line spacing,
stop spacing, headway, and fare. The objective included users’,
operators’, and external costs. The analytical nature of their model
limits them to these parameters and simple symmetric networks.
Thus, they cannot choose any bus route or combination of served
bus stops.

We summarize the relevant studies in Table 1. Overall,
the literature confirms the increasing interest of researchers
in applying the pMFD to analyze and optimize multi-modal
transport systems. Naturally, the focus lies on operational aspects.
While these studies confirm the importance of accounting for
limited available space in urban areas, they rarely consider the
strategic design level. If so, they rely on analytic approximation
methods which are limited to artificial symmetric networks. To
avoid such a limitation to specific network types, we propose
a simulation-based framework. More specifically, we estimate
the pMFD based on PSP data from a multi-modal microscopic
agent-based simulation. We further derive a multi-objective
function from the pMFD and thereby fully integrate it into an
optimization framework. The decision variables regard to the
route and bus stops served of bus lines, but can easily be extended
to more parameters such as bus lanes or transit signal priority.
Thus, our approach further explores the applicability of the
pMFD for the bi-modal transport system design and contributes
to the existing literature.

FIGURE 1 | Schematic illustration of the pMFD and the objective values.

3. SIMULATION-BASED PMFD:
ESTIMATION AND SENSITIVITY

The goal of this paper is to develop and test a framework that
allows finding an optimal bi-modal system design concerning
the maximum passenger production as well as the system’s
optimal operational regime. For this purpose, we aim to integrate
the pMFD based on simulated PSP data into an optimization
framework. The estimation method of the pMFD based on PSP
data is described in the following.

3.1. Estimation Method
The pMFD describes the relation of the network accumulation
of cars Nc in vehicles, of buses Nb in vehicles, and the passenger
production 5 in person-km/h. The functional relation enables
us to derive our objective values, the maximum passenger
production and the optimal operational regime of the bi-modal
transport system. Figure 1 illustrates how these parameters relate
to the pMFD in a schematic manner. More details on the
objective values are provided in section 4.3.

The estimation of the bi-modal pMFD requires data from
both private vehicles and public transport passengers. This could
include loop detector data, floating car data and APC data (Loder
et al., 2017). In reported empirical studies, no passenger-specific
data were available so far. Thus, modelers estimated the passenger
flow based on bus dwell times and average car occupancies. In
the simulation-based studies, only vehicle data were available,
too. The possession of position data from individual travelers
reduces the bias and inaccuracy in the estimation of passenger
production, as we show in section 3.3.2. In such a case, the
position and speed for each person at each simulation time-step
are known. This information can be exploited to estimate the
pMFD. Contrarily to existing studies (e.g., Geroliminis et al.,
2014), one does not rely on assumptions regarding vehicle
occupancies by doing so.
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For a given transport system, i.e., a network topology, a
control setting and a time-varying origin-destination (OD)
demand, the following parameters are calculated for each time

interval T =
∑J

j=1 1t with J time steps and a time-step length

1t. Let Pj,m describe the total number of persons p who are
traveling at time-step j in the system with transportation mode
m = {c, b}. Additionally, let Vj,m describe the total number of
vehicles v which are traveling at time-step j in the system of
transportation mode m = {c, b}. Then, the total travel time tT,m
of all vehicles during T of transportation modem is:

tT,m =

J
∑

j=1

Vj,m1t (1)

For each person, the average speed during1t can be derived from
the output data and is denoted as uj. Thus, one can calculate the
total travel distance during T as:

dT =

P
∑

p=1

J
∑

j=1

uj1t (2)

Finally, this allows us to define the mode-specific vehicle
accumulation Nm,T and the passenger production 5T for each
time interval T as:

Nm,T = tT,m/T (3)

5T = dT/T (4)

Applying Equations (1)–(3) on the simulation output data for
each time interval T results in the triplets (Nc,Nb,5). This
point cloud is the pMFD. Similarly to Geroliminis et al. (2014),
we apply the Delaunay triangulation interpolation algorithm
(de Berg et al., 2008) on the sampled data points to derive
continuous production values in the accumulation plane. Hence,
we can approximate the passenger production 5 for unobserved
(Nc,Nb) values. Naturally, the estimation is more accurate in
regions close to observed data (Loder et al., 2017).

3.2. Simulation Environment
PSP data are the base for such an estimation of the pMFD. An
agent-based simulation environment models the movement of
single agents and thus, generates the corresponding trajectory
data. Therefore, we can track all person’s movements including
inter-modal trips. Since we focus on multi-modal systems, we
aim to include corresponding interaction between modes, for
example, delays of car drivers that occur at bus stops due
to temporal blockage of a road lane. Such detailed multi-
modal traffic dynamics are effectively modeled in microscopic
simulation environments, where the movements of single
vehicles and persons are described by corresponding car-
following, lane-changing, and pedestrian models. Moreover,
microscopic traffic simulators are suitable for the evaluation of
trafficmanagement strategies such as dedicated bus lanes and bus
prioritization at signalized intersections, which can be of interest
for future work.

In this paper, we choose SUMO (Lopez et al., 2018) which
is an agent-based microscopic traffic simulation. Please note
that the framework presented in this paper is not limited to
SUMO, and any agent-based microscopic simulator is suitable to
perform the presented analysis. As the overall aim is to optimize
the supply of a multi-modal transport system, we make several
assumptions regarding the demand. Travel demand consists of an
OD relations, departure times, and mode choice. SUMO enables
us to generate and assign person-specific and time-dependent
OD relations. For the sake of simplicity, departure times remain
unchanged. In order to consider mode choice, we let agents
choose their mode and route in an iterative manner. In each
iteration, agents evaluate their choice based on travel times. We
evaluate a number of three iterations. While the system might
not necessarily reach equilibrium within these iterations, this
approach represents a trade-off between the conceptual feasibility
of the integration of mode choice and the computational burden
of its implementation.

3.3. pMFD Estimation Based on PSP Data
In order to explore the suitability of PSP data for deriving the
pMFD, a simple transport system including a number of bus
lines is designed in the simulation. We extract person and vehicle
trajectories from the output. This includes the positions, IDs, and
speeds for all vehicles and persons at each simulation time-step.
This data set allows estimating the pMFD as explained above, and
further the discussion of the estimation procedure.

3.3.1. Simulation Setup
For the estimation and sensitivity analysis we choose a regular
5 × 5 grid network of square blocks as illustrated in Figure 2.
This implies a total of 26 blocks, 36 nodes, and 60 links. Each link
has a length of 250m, one lane per direction and a speed limit
of 50 km/h. Each intersection is controlled by a fixed-time traffic
signal with cycle lengths of 90 s and green times of 45 s without
any offsets.

As it can be seen in the figure, we place bus stops that
could potentially be served by a bus line at the downstream and
upstream end of each link.We define three bus lines by specifying
routes and the corresponding bus stops which are served for
each line. For this scenario, the number of served stops per bus
line is set to five, while the bus stop locations are randomly
chosen. Moreover, we vary the headways between 1 and 5min.
No preferential treatment of buses such as dedicated bus lanes or
transit signal priority is considered.

The person-specific OD pairs are generated randomly. These
trips are required to have a minimum length of three blocks,
i.e., 750m, to minimize a systematic bias for choosing walking
as travel mode. Furthermore, we set the car ownership to 66%.
In other words, only 66% of all agents can choose a private
vehicle as mode of travel. We do not consider mode choice for
this analysis, as the estimation of the pMFD is independent of
it. The simulation time is set to 2 h where the demand curve
increases gradually every 30 min to reach its maximum. Table 2
summarizes the assumptions for the simulation analysis.

In order to generate a sufficient number of data points for
the pMFD estimation, we sample four different scenarios by
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FIGURE 2 | Grid network for deriving the pMFD.

TABLE 2 | Simulation setup for the analysis of a PSP-data based estimation of

the pMFD.

Parameter Value Unit

Cycle length 90 [s]

Red time 45 [s]

Link lengths 250 [m]

Number of lanes per link 1 [-]

Speed limit 50 [km/h]

Bus headways 1–5 [min]

Bus stop type Curb-side [-]

Potential bus stop position Downstream and upstream end of link [-]

Car ownership 66 [%]

varying the random seed. The output data are aggregated in 5min
intervals and the vehicle accumulation for both modes (Nc,Nb),
as well as the passenger production 5, is calculated as explained
in section 3.1. Note that the production of walking persons is not
included in the pMFD estimation. Only the traveled distances by
car or bus are accounted for the pMFD estimation. This results
in a more sensitive reaction of the average production values to a
change in bus ridership.

3.3.2. Existence of a pMFD Based on PSP Data
Figure 3 shows the resulting pMFD. The y-axis depicts the
network accumulation of buses Nb, and the x-axis the

network accumulation of cars Nc. The color represents the
passenger production 5 in person-km/h. Dark blue corresponds
to a low production whereas bright yellow indicates high
production values.

The figure shows all ranges of passenger production and a
maximum at non-zero values for Nb which assembles results
from other studies. Additionally, the lowest production values
can be found for high values of Nc and Nb which is physically
meaningful. The overall picture resembles other pMFDs reported
in the literature. Despite that, we conclude the conducted
scenario study successfully shows the suitability of PSP data for
the estimation of the pMFD.

In the lack of accurate PSP data, assuming bus riderships to
calculate the passenger travel production has become a common
practice in the state-of-the-art (e.g Geroliminis et al., 2014).
Availability and low penetration rate of mobile phone data, lack
of methodologies to identify travel mode, and privacy concerns
of using such data have encouraged researchers to indirectly
estimate the bus ridership. However, in the past years, we have
seen that smartphones are becoming prevalent, travel mode
identification has become more reliable (Efthymiou et al., 2019),
and there a number of solutions proposed to rectify the data
privacy and security concerns (Christin, 2016). Hence, it is
essential to explore suitable methods to exploit the benefits of
such data.

In working toward this goal, we compare the obtained
passenger production 5 for one of the simulation scenarios
described earlier via two different methods: First, we assume that
we can track individuals very accurately by knowing their travel
mode, speed and position realized by GPS data from mobile
phones, i.e., PSP data is available. Second, we assume a pre-
defined bus and passenger car ridership for each corresponding
vehicle to calculate the passenger production. Based on the
simulation results we derive an average bus ridership of 20
persons for the whole simulation horizon and both bus lines, and
a passenger car occupancy of 1. Figure 4 shows the comparison
of passenger production computation based on the two methods
at each time-step:

The y-axis shows the passenger production based on the
assumption of pre-defined bus riderships and passenger car
occupancies. The x-axis shows the production calculated based
on PSP data. It can be seen that the passenger production is
overestimated by the assumption-based approach during the
beginning of the simulation, and underestimated during the
later periods of the simulation horizon. These times represent
the maximum demand, and thus a correct computation of the
passenger production is of high importance. Overall, the figure
shows that the PSP data-based computation of the passenger
production is indeed more accurate and thus valuable for the
optimization framework. A more intricate analysis of PSP data
for the pMFD estimation could include the comparison to APC
and loop detector data. However, such an analysis lies out of
scope for this study, and we leave this for future work.

3.4. Sensitivity to Bus Line Parameters
The next necessary step of analyzing the feasibility of integrating
the pMFD in an optimization framework is the investigation of
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FIGURE 3 | pMFD for a simple grid network: scatter plot (A) and contour plot (B).

FIGURE 4 | Scatterplot of assumption-based and PSP data-based passenger production values.

its sensitivity to related input parameters. Thus, we study the
sensitivity of the pMFD regarding bus line parameters. For this
purpose, we fix the headway to h = 3min, and vary only bus
routes and served bus stops. The underlying network is again the
5×5 grid network as shown in Figure 2. Moreover, all parameters
described in Table 2 except for the headways apply.

We consider two different scenarios. First, we calculate all
possible routes for the 5 × 5 grid for 50 randomly chosen OD
pairs. We exclude those routes which are a subset of others. In
other words, routes which are entirely included in a different

larger route are not considered. Still, two routes can be partly
overlapping. Additionally, we exclude also routes which consist
of less than four links. The bus stops served are fixed for
this scenario. For a given demand profile, the simulation is
conducted for all routes and the pMFD is estimated based
on 5min aggregation intervals. For each simulation run, the
maximum passenger production 5max = max(5T) is extracted
from the output data. Figure 5A shows the results as a histogram
using the normalized count of occurrences of binned 5max.
Secondly, we fix the bus routes and vary the served bus stop
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FIGURE 5 | Sensitivity of 5max to bus line elements: Bus route variation (A) and bus stop variation (B).

combinations using the same network topology, demand pattern
and headway specification. Again, we run the simulation for 50
random scenarios, and show the resulting distribution of 5max

as a histogram in Figure 5B. We assume that 5max indicates the
overall sensitivity of the pMFD to the studied input parameters.

The x-axis displays the maximum passenger production 5max

in person-km/h. The y-axis shows the normalized count of
occurrences in bins. One can observe a strong accumulation
of observations around the mean for the bus route variation
and a more uniform distribution for the bus stop variation.
Nevertheless, both figures show clearly that the measured
maximum passenger production is sensitive to the respective
parameter. We conclude that the pMFD estimated based on the
simulation output reacts sufficiently sensitive to a change of bus
line elements to be the base for an optimization framework.

4. OPTIMIZATION OF URBAN BI-MODAL
TRANSPORT SYSTEMS

The formulation of an optimization problem includes the
specification of the evaluation function, the decision variables,
corresponding constraints, and the objective function. The
definition of these elements let us choose a suitable optimization
algorithm. Note that for the sake of simplicity we refer to “bus
system” as public transport system in this paper. However, the
methodology is not limited to buses, and can be applied for all
road-bound public transport systems.

The optimization of a transport system based on the pMFD
requires a network topology. Next to infrastructure elements
such as links, intersections, and control settings this includes
potential bus stops. Among these, some may be selected by the
optimization algorithm to be served by a bus line. Moreover, a
time-varying OD demand is specified. Given those inputs, we
define a multi-objective optimization problem in the following.

4.1. Evaluation Function
We design the optimization with respect to the pMFD. Several
simulation runs with different headways are required to generate

sufficient data points for an MFD estimation. These simulation
runs including the MFD estimation correspond to the so-called
function evaluation in the terminology applied in the fields of
optimization. This function can be classified as a stochastic black-
box function since the interaction of vehicles in the transport
system includes stochasticity and microscopic simulations can be
considered as functions of the black-box type. Moreover, as the
run time is measured in terms of seconds, the function is seen as
computationally expensive.

4.2. Decision Variables
The decision variables regard to a public transport system. In our
paper, we specify such a system based on its bus lines β .We define
a bus line β by its route rβ and the stops srβ served along the
route rβ . The headways are not varied within the optimization
as several ones are evaluated to estimate the pMFD. Thus, the
effect of specific headways on the production can inherently be
deduced from the pMFD itself which corresponds to the solution
of the optimization problem. The bus route is of a categorical type
and might differ in length and number of links included. The bus
stops served are defined as a boolean vector which specifies which
of the potential bus stops are served and which not. Next to the
choice of the served bus stop positions (either far-end or near-
end), both bus stops can be skipped. This decision variable is of a
conditional type as it depends on the bus route since longer bus
routes imply more potential bus stops.

We aim to reduce the complexity of the optimization problem
as follows. First, we derive the k-shortest paths for each OD pair
for a given network and define them as a set of bus routes Rβ .
Note that the choice of k-shortest paths increases the number of
possible routes for the optimization algorithm to choose from.
Each bus route is defined as a sequence of links. Again, we exclude
bus routes which are a subset of other routes. This largely reduces
the size of the problem. Second, for each route rβ all possible stop
combinations are calculated. This results in a set Bwhich includes
all possible route-stops combinations, i.e., all possible bus lines.
By doing so, we reduce both decision variables to a single one.
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The only constraints are given by the fact the decision variable β

needs to be a valid member of this set, i.e., β ∈ B.

4.3. Objective Function
The relevant objective value is derived based on the estimated
pMFD.We define the maximummeasured passenger production
5max as well as the optimal operational regime of the transport
system O as objective values. Under the realistic assumption
of a constant average trip length, the production is equal
to the vehicles arriving at their destination per time interval
(Geroliminis andDaganzo, 2008). This relationship is assumed to
be equally valid for person flows and independent of the demand.
Thus, we consider the maximum passenger production and the
optimal operational regime, which is related to the production as
well, as appropriate objectives for this study. We aim to offer a
trade-off of production maximization on the one hand, and an
increased optimal operational regime, which can be regarded as
the system’s robustness, on the other hand. The optimization can
be classified as of a multi-objective nature.

4.3.1. Objective Values
The maximum passenger production is derived as:

5max(β) = max(5T(β)) (5)

where 5T(β) is the passenger production from time interval T,
calculated based on Equations (1)–(3) described in section 3.1.
The variable β describes the bus line specification drawn from
the set B and serves as input to the simulation.

Further, we include the optimal operational regime O in the
objective function which is defined as the region encapsulated
by the iso-line of production values which are equal or greater
than 80% of the maximum passenger flow 5max (see Figure 1

in section 3.1). The denotation “optimal operational regime”
(Geroliminis et al., 2014) shall indicate the inclusion of bi-modal
traffic states where the production is reasonably high. Based
on the simulation results, we measure 5t ≥ 0.85max. Each
point is defined in the (Nc,Nb,5)-space. Thus, we can derive
the operational regime O as the convex hull in the (Nc,Nb)-plane
according to Preparata and Shamos (2012) as:

O(β) =

{

n
∑

i=1

γi · π(β)i|π(β)i ∈ 5(β)

≥ 0.85(β)max, n ∈ N,
n

∑

i=1

γi = 1, γi ≥ 0

}

(6)

4.3.2. Normalization
We scalarize both parameters to include them in the objective
function. For this purpose, we normalize each of the objective
values by estimating upper bounds for them. The parameter p
describes the upper bound for the production and is calculated
as follows:

p = lmax(Qc + Qbbmax) (7)

where lmax is the maximum trip length, Qc the maximum flow of
cars according to the link fundamental diagram,Qb = 1/hmin the
maximum bus flow based on the minimum evaluated headway
hmin and bmax the maximum capacity of bus vehicles.

Further, the parameter o describes the upper bound for the
operational regimeO. Loder et al. (2019b) define planes which act
as upper bounds for the pMFD in the (Nc,Nb,5)-space. These
planes include the Nc,Nb-plane. They define the upper bound
depending on the total network length, the length of dedicated
car and bus lanes and the jam densities related to both modes.
This corresponds to the maximum area in the Nc,Nb-plane and
thus can serve as an upper bound for the optimal operational
regime. Note that no bus or car only roads exist in our network.
Thus, we can describe o as follows:

o =
1

2

L

kj,c

Lb

kj,b
(8)

where L is the total network length in lane-kilometers available to
cars, kj,c the jam density of cars according to the link fundamental
diagram, Lb the maximum length of the public transport network
and kj,b the jam density of buses. By defining p and o we succeed
in finding normalization factors solely based on constants which
can be estimated based on the network topology and the public
transport system.

4.3.3. Problem Formulation
The overall objective function includes weighting factors α5 and
αO for both terms. The weighting factors need to be set by the
modeler, and can be adapted to a certain problem setting and
represent the importance of each term. We linearize the multi-
objective optimization problem to a single objective function.
The overall problem is expressed as follows:

max
β

y(5(β),O(β) = α5

5max(β)

p
+ αO

O(β)

o
(9a)

s.t β ∈ B (9b)

4.4. Sequential Model-Based Optimization
We look for a global optimization algorithm suitable to find
the quasi-optimum for the case of a stochastic expensive
simulation-based black-box function. The family of optimization
techniques for such problems includes, for example, stochastic
approximations (e.g., Simultaneous Perturbation Stochastic
Approximation by Spall, 1992), evolutionary algorithms such
as particle swarm optimization (Kennedy and Eberhart, 1995)
or simulated annealing (Kirkpatrick et al., 1983), metaheuristics
such as tabu search (Glover, 1989, 1990), and sequential model-
based algorithms (SMBA) (also known as response surface
methods, surrogate models or metamodels, e.g., Regis and
Shoemaker, 2007).

For smooth, costly and noisy black-box function the
application of SMBA is expedient. Although the simulation-
based estimation of the pMFD is not necessarily smooth,
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there exist several strategies to apply such algorithms (Bartz-
Beielstein and Zaefferer, 2017) as seen in hyperparameter
optimization. These techniques usually require a low number
of function evaluations compared to e.g., evolutionary
algorithms (Müller and Shoemaker, 2014). Such alternative
optimization algorithms involve a high number of function
evaluations and are thus not feasible for the problem
stated within this paper. The comparably low number of
function evaluations necessary in SMBA is achieved by the
methodology which main elements are briefly described in
the following.

• Experimental design: SMBA build an approximate and
continuous surface based on an array of initial evaluations of
the expensive black-box function. The initial values are found
based on an experimental design. The general purpose of such
experimental design methods is to maximize the outcome
of information for a limited number of initial points and a
high number of possible parameter combinations. Thus, the
appropriate choice of the experimental design can lead to
faster convergence of the optimization.

• Surrogate model fitting: The next step is to fit a surrogate
model to the results derived from the experimental design.
An example for a surrogate model is Kriging (e.g., Forrester
et al., 2008) for the case of continuous problems. For
problems involving discrete and categorical variables, Bartz-
Beielstein and Zaefferer (2017) list a number of strategies
to apply in surrogate modeling. Next to the naive approach
of applying models designed for continuous problems, they
suggest using algorithms which are discrete in nature such
as random forests, or apply distance measures other than the
euclidean one.

• Candidate point selection: Based on the surrogate model,
the next most promising candidate for an evaluation of
the expensive original function is chosen. Examples for the
selectionmethods of candidates are the expected improvement
(Jones et al., 1998), the probability of improvement and the
lower confidence bound (Forrester et al., 2008). On the one
hand, the candidate point should be distant from the previous
point evaluated to facilitate a global search. On the other
hand, it should improve the currently found optimum. This
describes the trade-off between exploration and exploitation.
The evaluation of the surrogate model is substantially less
computationally expensive than the original function. Thus,
this approach is highly advantageous for expensive black-box
functions by minimizing the computational effort.

Once the candidate point is selected, the original expensive
function is evaluated. Subsequently, the surrogate model is
updated and a new candidate point is searched. This process
continues until the convergence criteria are met. Examples for
a successful application of such models for the field of traffic
simulation are shown in Tilg et al. (2018) and He (2014). We
conclude that the sequential model-based optimization approach
is suitable for our problem setting. The following section
describes the specific setup of the proposed SMBA for the design
of urban bi-modal transport systems.

4.5. Implementation of the Optimization
Framework
This section describes the implementation of the SMBA-based
framework in order to design bi-modal urban transport systems.
This implementation involves several steps. The corresponding
work flow is shown in Figure 6 and explained in detail below.

• Initialize system: The first step is the transport system
initialization which consists of the definition of a road
network, potential bus stops, and the number of bus lines to
be designed.

• Define decision variable set: Based on this initialized system,
we are able to define possible route and stop combinations,
and therefore our decision variable set B. Additionally,
we calculate the average Jaccard distance (Jaccard, 1901)
between each bus route, calculate the average and sort the
set B accordingly to further increase convergence speeds
of the optimization, and the smoothness of our original
function. By doing so, we follow the line of suggestions
indicated in Bartz-Beielstein and Zaefferer (2017) for discrete
optimization problems.

• Perform initial function evaluations: In the next step,
we select a subset from B based on an experimental
design of choice and perform the function evaluations,
i.e., estimate the corresponding pMFDs and derive the
objective values.

• Fit surrogate model: The next step involves the fitting of
a surrogate model. For the stated problem, we choose a
surrogate model based on extra trees regression (Geurts
et al., 2006; Pedregosa et al., 2011) since we deal with
categorical variables. This type of surrogate models have
previously been applied in the field of algorithm tuning (e.g.,
Hutter et al., 2011). Within our case study, we compared
this choice to alternatives based on radial basis functions
(Buhmann, 2003) and random forests (Breiman, 2001).
The extra trees regressor based surrogate model proved to
be superior.

• Select candidate point: The next step involves the selection
of the candidate point which we apply the lower confidence
bound for.

• Perform function evaluation: Subsequently, the microscopic
agent-based simulation is run several times to estimate the
pMFD and derive the objective values.

• Stop criterion: If the stop criterion is not reached, the surrogate
model is updated with the last function evaluation and another
iteration is started. Possible stop criteria are a minimum
change of the objective function, or a maximum number of
function evaluations.

The described optimization framework enables us to
systematically search for a maximal passenger production
and optimal operational regime given a network and demand
configuration. Note that the framework is not limited to simple
networks or specific demand configurations. Depending on
the computational resources, larger networks with arbitrary
demand patterns, and an array of bus lines can be optimized
as well.
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FIGURE 6 | Work flow of the optimization.

5. APPLICATION OF THE URBAN
BI-MODAL TRANSPORT SYSTEM DESIGN:
SIOUX FALLS CASE STUDY

This section proves the feasibility of the proposed approach of
optimizing a bi-modal transport system based on the pMFD.
For this purpose, we conduct a case study for the general and
well-known Sioux Falls network. Moreover, we compare an
existing bus network solution (Abdulaal and LeBlanc, 1979),
hereafter referred to as “base network,” to an alternative proposed
based on our framework. The base network was chosen as the
corresponding study is highly cited, and the network used as a
benchmark network in other studies as well (e.g., Miandoabchi

et al., 2012; Chakirov and Fourie, 2014). Moreover, the existence
of a multi-modal demand facilitates the comparison.

5.1. Network Topology and Demand
Pattern
We choose the Sioux Falls network to test our proposed
framework. Figure 7 shows the corresponding network topology.

The link lengths range from 150 to 600m. Links consist of
one lane per link and direction. Again, the speed limit is set to
50 km/h, and each intersection is controlled by the same fixed-
time signal program with cycle lengths of 90 s and green times
of 45 s without any offsets. No prioritization of public transport
in any way is applied. We set the demand similar to the one
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FIGURE 7 | Sioux Falls network.

specified in Abdulaal and LeBlanc (1979). The data specifies the
all-mode OD relations for a whole day within the network. We
consider a fraction of this demand, which leads to congestion
within the chosen simulation horizon for each run of 1 h. A
graphical illustration of the demand is shown in Figure 10A in
which the size of each node represents the summation of the
generated and attracted demand. For the reader’s convenience we
show this figure next to the bus network to which we compare
our solution. A more detailed discussion on this bus network
is provided below. Furthermore, we assume a car ownership
of 50%. However, we consider mode choice as described in
section 3.2 for this scenario. Note that any demand setting
including car ownership can be considered within the proposed
framework. We run five simulation runs with bus headways
of h = {5, 7.5, 10, 15, 20}min for each bus line to generate
data points for the MFD estimation. This number represents a
trade-off of computational cost and estimation accuracy. Table 3
summarizes all assumption for the considered scenario.

5.2. Specification of the Optimization Input
Parameters
To increase comparability to the base network, we optimize a
system with five bus lines. This demonstrates the ability of our
framework to handle not only a low and unrealistic number of
bus lines. Note that the dimension of the optimization increases

TABLE 3 | Simulation setup for the Sioux Falls case study.

Parameter Value Unit

Cycle length 90 [s]

Red time 45 [s]

Link lengths 150–600 [m]

Number of lanes per link 1 [-]

Speed limit 50 [km/h]

Bus headways 5–20 [min]

Bus stop type Curb-side [-]

Potential bus stop position Downstream and upstream end of link [-]

Car ownership 50 [%]

with the number of bus lines, and thus, convergence might be
affected. However, it does not increase the set of possible bus lines
B. To generate the set B, we consider 3 shortest paths for each OD
in the route generation. The parameters α5 and αO are both set
to 0.5. This implies an equal weight of the maximum passenger
production 5max and the optimal operational regime O in the
objective function.

Numerical tests have shown that the choice of an experimental
design based onHalton sequences (Halton, 1964) leads to the best
convergence results. Thus, we choose this type of experimental
design and sample 300 initial points. No hyperparameter tuning
for the extra trees regressor model was conducted, since the
default parameters led to satisfying results. We set the maximum
number of function evaluations to 1500 as a stop criterion.

5.3. Convergence, Quasi-Optimal pMFD,
and Implications
This section presents and discusses the results of applying the
proposed optimization framework for the Sioux Falls case study.
Figure 8 shows the convergence plot.

The y-axis shows the minimum of the objective function
found for a given number of function evaluations, which are
displayed on the x-axis. Please note that we multiplied the
objective function with -1, as the algorithm is implemented
as a minimization problem. Up to number 300, the results
are derived based on the experimental design. After that, new
function evaluations are performed based on the surrogate model
as explained in the previous section. The figure clearly shows
additional improvements after evaluation number 300 which
indicates the effectiveness of the optimization algorithm. We run
the optimization for 1,500 iterations and declare the found value
as quasi-global optimum. The convergence plot supports this
assumption, as no improved result is found for a larger number of
function evaluations. One iteration lasts between 2 and 20min on
an Intel(R) Xeon(R)W-2145 CPUwith 3.7 GHz and 64 GBRAM.
The computation time depends on the number of iterations
performed, as more iterations lead to a more complex regression.

The best solution found corresponds to five bus lines, defined
by their routes, bus stops and five different headways per line. The
simulation results include the PSP data and allows us to estimate
the pMFD. Similar to the procedure presented in section 3.3, we
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FIGURE 8 | Convergence plot of the optimization.

FIGURE 9 | pMFD of the optimized transport system for the Sioux Falls network: scatter plot (A) and contour plot (B).

apply the Delaunay triangulation to the corresponding data set.
Figure 9 shows the results as scatter and contour plot.

In both plots, the y-axis displays the network accumulation
of buses Nb [veh], and the x-axis the network accumulation of
cars Nc [veh]. The z-axis represents the passenger production 5

[person-km/h] in the scatter plot. In the contour plot, the dark
blue areas illustrate low passenger production values, whereas
the bright yellow region shows high passenger production. It
can be seen that the general shape of the surface corresponds
to the expected shape of the pMFD. For high car and bus
accumulations, the passenger production is low. Furthermore,
the highest passenger production is observed at non-extreme
headways. This implies that bus operation positively contributes
to the bi-modal passenger production. In other words, the
high capacities of bus vehicles outweigh the potential negative
effects of bus vehicles on car traffic. This is in line with

previously conducted research on the pMFD (Geroliminis et al.,
2014; Loder et al., 2017). Moreover, we highlight the optimal
operational regime by a red curve in the contour plot. The
enclosed region indicates where the system reaches 80% of
the maximum passenger production. It can be seen that the
corresponding range of bus and car vehicle accumulation
includes bus accumulations between 0 and 30 vehicles, and
car accumulations between 150 to 500 vehicles. These values
correspond to 5min averages. Per definition, the chosen bus
lines aim to maximize this region to increase the range of
traffic states with reasonably high production. This enables
traffic managers more flexibility for operational decisions as it
is robust to decent levels of congestion. Moreover, the pMFD
can support bus providers in increasing the cost-efficiency of
their service. It allows one to derive the optimal headways for
certain traffic states, instead of headways depending on the time
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FIGURE 10 | The Sioux Falls network: qualitative demand indication (A), proposed bus system (B), and bus system based on Abdulaal and LeBlanc (1979) (C).

of day. For example, if the overall production is not significantly
decreased by lowering the bus accumulation in the network,
headways could be increased to reduce costs. Associated traffic
dynamics are already included in the pMFD and are therefore
implicitly considered.

The application of the framework results in a network which
is shown in Figure 10B. Additionally, we present the bus system
presented in Abdulaal and LeBlanc (1979) in Figure 10C. The
routes are distinguished by color and line style.

We implement the original scenario in SUMO to compare not
only the network topology, but also the passenger production
as well as other traditional performance indicators such as
average waiting times and speeds. The corresponding results are
presented in Table 4.

Comparing the two bus networks based on the network
topology (see Figure 10) as well as on the performance
indicators listed in Table 4 reveals several differences which are
discussed below.

• Network topology: Our solution predominantly covers the
upper right part of the network, while the lower left part is
not served by any bus line. This leads to the fact that the
bus lines corresponding to our solution appear to be highly
overlapping. In fact, line 1 and 2 follow the exact same route.
This demonstrates that our framework is able to merge two
bus routes in order to increase the headway. Also, line 3 and 5
share many links in the respective routes. In contrast, the base
network covers the whole network more uniformly. It consists
only of two links which are served by two bus lines. While the
solution of the proposed methodology might seem counter-
intuitive at the first glimpse, it becomes more reasonable once
the nature of the pMFD is taken into account. Essentially, the
pMFD allows for a compromise between private vehicle and
public transport users. Considering the OD relations for Sioux
Falls, as qualitatively presented in Figure 10A, it becomes clear
that the nodes in the lower left part of the network, e.g., no.
12, 13, 14, 23, and 24, have a below-average demand. These
nodes are not directly served by our solution. Please note that

persons can still walk to bus stops nearby, walk directly to
their destination, or take the car as an alternative. Nodes in the
central part such as no. 10, 11, 15, 16, and 17 occur to be highly
frequented. All these nodes are served by bus lines in our
solution. Furthermore, the top right part of the network has
a very low demand in general. Bus lines operating in this area
can operate faster and with less disturbances since they will
be less affected by congestion. To sum up, our approach takes
the street network topology as well as the spatial extend of the
demand into account, considers mutual interaction between
modes, and designs a system based on these aspects.

• Average speeds: An indicator of interest is the average speed
of persons riding a bus or driving in a private vehicle. The
analysis of this indicator for both scenarios shows that our
proposed solution results in a slight increase of 0.2m/s per
person on average. While this seems to be a low value, it is a
substantial increase from the system’s perspective.

• Average waiting times: However, the average waiting time per
person occurs to be increased in our solution, although at a
marginal level. Possible reasons are that persons who walk are
not explicitly considered in the passenger production. Thus,
this indicator is not optimized within our framework.

• Maximum passenger production: Nevertheless, the maximum
passenger production is clearly increased by our solution.
While this is not surprising as it plays a major role in the
objective function, it shows the benefit of our solution from the
system’s perspective. A high passenger production is related to
a high trip ending rate, and thus to a higher number of people
reaching their destination per time interval.

In summary, this section shows that the optimization
framework as proposed converges successfully for the case
study. Additionally, we visually inspect the resulting pMFD and
confirm its meaningfulness. Lastly, we compare the bus network
found with our framework to an existing solution reported
in Abdulaal and LeBlanc (1979). We discuss the different
network topologies, as well as other performance indicators of
both systems. We find that the proposed methodology finds
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TABLE 4 | Case study results.

Base network

(Abdulaal and LeBlanc, 1979) Proposed network

Average waiting time [s] 28.3 29.1

Average speed [m/s] 4.2 4.4

Maximum passenger 1,234 1,395

production [person-km/h]

a reasonable balance between optimal public transport and
car-oriented operation, and improves the system’s performance
while user related indicators i.e., average speed and average
waiting time change only slightly. Thanks to the microscopic
nature of the simulation, the interaction between modes
can effectively be considered. Furthermore, the microscopic
simulation can be run for any reasonable network and demand
configuration, and the pMFD can be estimated for any size of
PSP data. Thus, our framework applies conceptually to any of
such network and demand configurations. The major challenge
is the computational burden which becomes more prominent
with large-scale networks. Such burden can be tackled by
developing more efficient optimization algorithms, which is thus
an interesting field of future research. Nevertheless, the results
of our study confirm that the pMFD can be integrated into the
optimization framework and thus operational aspects can be
considered in the strategic design phase. Hence, our framework
contributes to a bi-modal network design which considers the
competition for limited road space.

6. CONCLUSION

This paper presents a methodological framework to design a bi-
modal transport system. We integrate the concept of the pMFD
into a simulation-based optimization. The proposed method
successfully maximizes the bi-modal network-wide passenger
production and the system’s optimal operational regime.
Thereby, we are able to consider operational characteristics at
the strategic design level. The pMFD is estimated based on
trajectories from agents traveling the network. These data are
extracted from the multi-modal microscopic traffic simulation
SUMO. This simulator allows for generating inter-modal person-
specific demand while modeling vehicle interactions on links and
at intersections in a detailed manner. Note that our framework
is not restricted to specific agent-based multi-modal microscopic
simulation software.

First, we investigate the suitability of the multi-modal agent-
based simulation environment and its output data for the
estimation of the pMFD. This includes the sensitivity of the
pMFD to bus line attributes such as the route and the stop
sequence. The results indicate that the novel PSP-data based
approach (i) represents a suitable technique for estimating the
pMFD and (ii) consequently allows the assessment of different
bi-modal transport systems. The absence of any data-related
assumptions (e.g., ridership based on dwell times) of current
estimation techniques avoids corresponding biases in the pMFD
estimation. Secondly, a sequential model-based optimization

framework is presented. For a given number of buses, the
routes and stops are found, and several headways are evaluated.
This constitutes a strategic bi-modal transport system design.
Thirdly, the framework is tested for the well-known Sioux Falls
network for a proof of concept, and compared to an existing bus
network. We analyze both bus networks from the system’s and
the user’s perspective.

In summary, we conclude that the pMFD, well founded
in traffic flow theory, can be accurately estimated based on
PSP data. Moreover, it is a suitable concept for deriving an
objective function for simulation-based optimization of bi-modal
transport systems. It becomes clear that the consideration of bi-
modal interactions is advantageous for the system’s performance,
while user-centric indicators are only slightly affected. Both
modes essentially contribute to the overall passenger production.
Therefore, we come to the conclusion that considering these
bi-modal traffic dynamics and the competition for limited road
space at the strategic level can be beneficial for the performance of
the overall system. This line of design can increase the reliability
of planned services and thus can support local authorities to
manage multi-modal city-wide road-bound traffic.

Future work will relate to the implementation of larger
networks, and improved optimization techniques. Generally,
the pMFD can be extended to consider other modes such as
demand-responsive shuttles, or ride-hailing and ride-pooling
systems. Since such modes can be implemented in a microscopic
simulator, they can be considered in the proposed optimization
framework. Overall, the framework could serve as a helpful
decision tool in the question which modes shall be offered by
local transport authorities. However, this study has shown that a
microscopic simulation-based approach might lead to very high
computational costs, which is one of the main drawbacks of the
proposed framework. These high costs might be circumnavigated
by developing mesoscopic or macroscopic methods to directly
map a multi-modal transport system to the pMFD. To assure
convergence for larger networks, it would require improved
efficiency of the optimization technique. Promising results in the
fields of combinatorial optimization point out potential research
directions (Lepretre et al., 2019).
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