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This study exploited the advancements in information and communication technology

(ICT), connected and automated vehicles (CAVs), and sensing to develop proactive

multi-objective eco-routing strategies for travel time and Greenhouse Gas (GHG)

emissions reduction on urban road networks. For a robust application, several GHG

costing approaches were examined. The predictive models for link level traffic and

emission states were developed using the long short-termmemory (LSTM) deep network

with exogenous predictors. It was found that proactive routing strategies outperformed

the reactive strategies regardless of the routing objective. Whether reactive or proactive,

the multi-objective routing, with travel time and GHG minimization, outperformed the

single objective routing strategies. Using a proactive multi-objective (travel time and

GHG) routing strategy, we observed a reduction in average travel time (17%), average

vehicle kilometer traveled (22%), total GHG (18%), and total nitrogen oxide (20%) when

compared with the reactive single-objective (travel time).

Keywords: long-short term memory network (LSTM), anticipatory routing, network state prediction, greenhouse

gas (GHG) emissions, multiobjective optimization, eco-routing

1. INTRODUCTION

The transportation system in the U.S. produced 28% of the total greenhouse gas (GHG) emissions
in 2018, which was the largest share from a single source (EPA, 2020b). Greenhouse gases,
CO2, CH4, and N2O, are the gases that trap heat in the atmosphere (EPA, 2020a). According
to the United States Environmental Protection Agency in 2017, 81% of the GHG was CO2,
which is a major contributor to climate change and global warming. Generally, CH4, N2O
are converted to “CO2 equivalent” to estimate GHG emissions (United States Environmental
Protection Agency, 2020). In addition, transportation systems contribute to the increase in the
produced NOx (Campbell et al., 2018). The air pollutant NOx, which reflects the public health
aspect, represents a family of seven compounds, including N2O, which is a greenhouse gas
(Cox, 1999). The employment of ICT and connected and automated vehicles (CAVs) has been
suggested as a potential solution to alleviate the undesirable social and environmental impact of
transportation systems (Zegeye et al., 2009). In particular, routing schemes for CAVs have an
explicit impact on traffic (Yang and Recker, 2006; Alfaseeh et al., 2018; Djavadian and Farooq, 2018)
and environmental (Tu et al., 2019) characteristics.
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Reactive routing uses the current network state, while
proactive routing utilizes the predicted state (Bottom, 2000).
Proactive routing is considered a promising approach to improve
traffic characteristics of a network while avoiding congestion-
especially when we employ a highmarket penetration rate (MPR)
of vehicles that are equipped with a routing system that is based
on anticipated information (Mahmassani, 1994; Bottom, 2000;
Ben-Akiva et al., 2001).

Eco-routing is a special case of routing that specifically
considers the environmental aspects (Luo et al., 2016). Several
studies in the literature developed reactive eco-routing systems.
For instance, Alfaseeh et al. (2019) and Djavadian et al. (2020)
developed single as well as multi-objective eco-routing for CAVs
and found encouraging results. A developed review paper by
Alfaseeh and Farooq (2020) classified eco-routing models and
illustrated the strengths and weaknesses of each category. The
common limitations were related to the level of resolution of
data points, scale of the case study, and number of objectives
optimized at once.With reference to proactive routing in general,
a limited number of studies in the literature, especially recent
ones, has been noticed. For the few proactive routing studies
considering only travel time as the routing objective (Bottom,
2000; Ben-Akiva et al., 2001; Pan et al., 2013), the associated
limitations were related to the scale of the case study (Kaufman
et al., 1991), level of temporal and spatial resolution (Bilali et al.,
2019), use of centralized solutions that suffer from scaling issues,
and the use of reflective prediction models (Kaufman et al., 1991;
Bottom, 2000; Ben-Akiva et al., 2001; Pan et al., 2013). The found
proactive routing studies did not employ sophisticated predictive
models, which is a major limitation. The forecasted travel time
data points were provided by running the traffic simulation in
advance (Ben-Akiva et al., 2001; Kim et al., 2016; Bilali et al.,
2019) or based on regression models between speed and other
traffic variables, such as density (Pan et al., 2013). In most of
the studies, the travel time of time step t + i, obtained from
the traffic simulation or historical data, was used in time step t
for the proactive routing application, where i is the considered
prediction interval (Ben-Akiva et al., 2001).

Most of the previous eco-routing studies minimized fuel
consumption, which was estimated at the vehicle level (Rakha
et al., 2012; Elbery et al., 2016). This means that the characteristics
(mass, rolling coefficients, drag coefficient, etc.) of every vehicle
should be known for the estimation process (Wang et al., 2019).
This can be challenging when a network level optimization is
the objective, which is essential for a meaningful decrease in
emissions from transportation systems. We are of the view that
smart cities technologies, such as sensors, will be adopted quickly
in the near future. The three conventional types of sensors are
as follows: passive magnetic sensors, pneumatic tube sensors,
and inductive loops (Guerrero-Ibáñez et al., 2018). Unlike the
conventional sensors, Miovision SmartSense, which is based on
360 cameras, has the ability to process the captured videos
to analyze roadside for vehicle detection, traffic counts, and
event alerts (Barlow and Kennett, 2019). Downtown Toronto
has already installed, in parts of it, the aforementioned type of
sensors, Miovision SmartSense. Hence, this study assumes that
the required variables for eco-routing at link level, such as speed

and GHG emission rate (ER), are provided by sensors in real
time. This network-based approach is more practical and easier
to scale compared to the vehicle-based estimation approach.
While a vehicle-based approach requires the specifications of
every vehicle to estimate GHG emissions, a network-based
approach estimates GHG emissions based on gathering traffic
and environmental indicators for a defined spatial and temporal
level of resolution. This work developed proactive multi-
objective eco-routing strategies that can be implemented in
routing systems for connected and automated vehicles. Similarly
to the proposed reactive routing schemes in Djavadian et al.
(2020), a microscopic level of aggregation, an urban network as a
case study, and a high level of spatial (link level) and temporal
(1 min) resolution were employed in this study. Unlike the
previous proactive approaches that were centralized solutions,
this study developed the proactive routing strategies based on
a dynamic distributed routing control framework, End-to-End
Routing for Connected and Automated Vehicles (E2ECAV)
(Farooq and Djavadian, 2019). It has been found that distributed
routing systems, which adopt different types of communication
and several controlling nodes, outperformed the centralized
routing systems, which depend on one central node. Centralized
routing systems are associated with limitations related to the large
investment required, sensitivity to system failure, and complexity
in the case of system upgrades (Yang and Recker, 2006). In this
study, three eco-routing strategies were applied to optimize travel
time (TT), GHG, as well as the combination of TT and GHG. The
considered performance indicators for comparison between the
different routing strategies were average TT, average VKT, total
produced GHG, and total produced NOx emissions. The main
contributions of this research work are as follows:

• Examination of the most representative GHG costing
approach at highly disaggregate spatial and temporal
resolution-the unit of space being a road link and time
being 1min.

• Development of proactive multi-objective eco-routing
strategies, while employing the developed prediction model
for speed in this study and the developed GHG prediction
model in Alfaseeh et al. (2020).

• Detailed comparison between reactive and proactive
routing strategies.

In section 2, a brief literature review related to the existing eco-
routing studies, their strengths, and weaknesses is presented. In
addition, existing predictive models of travel time and GHG and
proactive routing studies are illustrated. The specifications of
the deployed case study are in section 3. Section 4 includes the
details related to the traffic and emission models, GHG costing
approaches, and GHG and speed predictive models. Section 5
incorporates the related results and discussion. Finally, section
6 summarizes the major findings and future outlook.

2. BACKGROUND

Due to the advancements in sensing and communication
technologies, their utilization in transportation systems, and
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the emergence of CAVs, the availability of the real-time high-
resolution data has become feasible on a large scale. Such data
are adopted to develop highly accurate prediction models that
have the potential to be used for proactive routing with multiple
objectives. In this section, the studies found in the literature
related to the reactive eco-routing, predictive models of travel
time and GHG, and proactive routing are briefly presented.

Alfaseeh and Farooq (2020) developed a comprehensive
review of eco-routing studies. They reported that the
previous reactive eco-routing studies have predominantly
used macroscopic level traffic and emission models, were based
on small case studies, used centralized routing mechanisms, and
have optimized single routing objectives at a time. To overcome
the aforementioned limitations, Alfaseeh et al. (2019) applied
multi-objective eco-routing in a distributed routing framework.
The authors used the per lane weighted average for the GHG
cost on links. Although normalizing by the number of lanes
resulted in underestimation for the links with a large number of
lanes, reductions in the travel time and produced emissions were
noticed when multi-objective routing was applied. Djavadian
et al. (2020) developed reactive multi-objective eco-routing
strategies for CAVs, considering the cost of idling as a penalty
at the downstream intersection of a link at every interval.
The authors used the marginal cost for GHG in the objective
function. They found that including the penalty cost contributed
to reductions of 4 and 3% in the average TT and produced total
GHG, respectively, in the case of multi-objective routing when
compared to single objective routing.

Predictive models are an essential component of the proactive
routing application. Vlahogianni et al. (2014) conducted
a comprehensive review related to the short-term traffic
forecasting. It was noticed that studies mainly considered
freeways as their case studies, statistical models, and a temporal
resolution of 5 min in most of the cases (Vlahogianni et al.,
2014). Freeways were utilized due to the complexity associated
with urban congested networks. The vehicular dynamics in urban
areas are subject to changes during a short time period (seconds).
It is the result of the stop and go phenomena and shorter length
of the links when compared to freeways. A low level of temporal
resolution was employed due to the scarcity of microscopic data
points and the required high computational power. The statistical
models, such as the autoregressive integrated moving average
(ARIMA) model, are easy to use but may not be able to capture
complex non-linear relationship between the variables (Zhang,
2003).

When it comes to travel time prediction, there are two
main streams: one that predicts travel time directly and one
that predicts speed and consequently travel time. For directly
forecasting travel time, several predictive models have been
employed. Linear modeling (Zhang and Rice, 2003), nonlinear
autoregressive with external inputs (NARX) model (Mane and
Pulugurtha, 2018), nonlinear autoregressive model (NAR) (Mane
and Pulugurtha, 2018), neural networks (NNs) (Mane and
Pulugurtha, 2018), and deep neural networks (Duan et al., 2016;
Ran et al., 2019). On the other hand, a large body of literature
exists where travel time was implicitly predicted from speed,
including Ma et al. (2015), Yao et al. (2017), and Gu et al. (2019).

The common features between most of the aforementioned
predictive models were the employed low temporal resolution
and small case study. The statistical models were also dominating
despite their inability to capture the complicated relationship
between the variables in concern. Even when a large network
was employed as in Zhang et al. (2019), the speed was predicted
at a low level of temporal resolution. With regards to the
predictive models for speed and travel time, it was found in the
literature that long short-term memory (LSTM) outperformed
other predictive approaches, including the ARIMA model (Ma
et al., 2015).

Related to GHG predictive models, GHG emissions were
predicted based on yearly data points of fuel (Zhao et al.,
2011), gross domestic product, or other economic factors (Pao
and Tsai, 2011; Ameyaw et al., 2019). The predictive models
varied from statistical (Tudor, 2016; Rahman and Hasan, 2017)
to deep neural networks based (Ameyaw et al., 2019). To
overcome the limitations of the previous predictive models, the
low spatial (national) and temporal (year) resolution, Alfaseeh
et al. (2020) developed a predictive model based on LSTM. The
GHG emission rate (ER) at a link level and 1 min time resolution
was predicted based on the most representative traffic indicators
of the previous time intervals.

With reference to the proactive routing, several frameworks
were proposed to minimize travel time (Mahmassani, 1994;
Bottom, 2000; Ben-Akiva et al., 2001; Pan et al., 2013; Liang and
Wakahara, 2014; Claes, 2015; Liu and Qu, 2016). Bottom (2000)
developed a framework for proactive routing in a network with
only a single Origin-Destination (OD) pair, 14 links, and 11 OD
paths. In terms of the predicted traffic variables, the real-time
traffic characteristics and other related data were forecasted at the
short and medium term for the proactive routing. The variable
message signs (VMS) were employed to provide vehicles with
the best route. When the best route was defined, the driver’s
compliance was not guaranteed. The author thus incorporated
a logit model to define the drivers’ path choice (Bottom, 2000).
Ben-Akiva et al. (2001) proposed DynaMIT, which can be
employed to generate real-time guidance to the drivers. Off-
line and real time information were adopted. The off-line data
as well as historical network conditions were used for the state
estimation. While the real-time data were obtained from the
control system. Two simulation tools were used: demand and
supply. The demand simulator estimated and forecasted the
OD flow, departure time of drivers, mode, and route choice.
While the supply simulator directly simulated the interactions
between the demand and supply (network). Proactive routing
was applied while travel time minimization was the routing
objective. The predicted travel time was a function of experienced
travel time from the previous iteration. Speed on links was
estimated based on the linear relationship with density on links
in concern. The VMS were used to inform drivers with the
information of the best route. With regards to the findings,
the authors found that proactive routing was promising, as
it contributed to reductions in travel time of vehicles (Ben-
Akiva et al., 2001). Pan et al. (2013) suggested proactive re-
routing strategies to reduce travel time. The authors predicted
congestion based on density/jam density ratio. The speed was
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predicted based on the Greenshield model, the linear relationship
between density and speed, which is a limitation as realistically
the relationship is not linear. When the density is low, the
speed is underestimated (Papacostas and Prevedouros, 1993).
The authors found that their rerouting performed as good as the
dynamic traffic assignment (Pan et al., 2013). Another example is
the work by Liang and Wakahara (2014), who applied re-routing
based on congestion prediction. One of the developed predictive
models was based on the spatiotemporal correlation. The authors
assumed that the traffic flow was constant during each prediction
time interval, which is unrealistic. Liu and Qu (2016) proposed
a dynamic congestion model based on crowdsourcing in order
to apply proactive routing for a set of cooperative vehicles by
predicting the probability distribution of traffic conditions. The
adopted time interval for the routes update was 1 min, and the
data were obtained from the GPS traces and social media. They
found that their approach outperformed the reactive routing
approach (Liu and Qu, 2016).

To summarize, the existing predictive models are associated
with limitations related to the spatial and temporal resolution.
The proactive routing studies did not adopt efficient and accurate
predictive models and were used in the context of a centralized
routing framework. The centralized routing frameworks require
a large infrastructure investment, are highly sensitivity to
system failures, and involve high degree of complexity in
the case of a system upgrade (Farooq and Djavadian, 2019).
This study therefore tackled the aforementioned limitations.
To the best of our knowledge, our study is the first of its
kind to apply the proactive multi-objective eco-routing while
deploying deep learning based predictive models in a distributed
routing framework.

3. CASE STUDY

Downtown Toronto’s road network was adopted as a case
study because it experiences high levels of recurrent congestion-
especially during the morning peak period (Council of Ministers
Transportation and Highway Safety, 2012). Downtown Toronto
is the financial center of Canada and has the highest job
density among the major cities in the country. The network is
composed of 223 links (road segments between two intersections)
and 76 intersections. Based on the 2019/2020 Toronto’s vital
report (Toronto Foundation, 2020), several factors contribute to
the excessive congestion levels in Toronto. The population of
Toronto has increased yearly by 1% since 2011. Due to high cost
of living, Toronto is the most expensive major city in the country.
The ownership costs are growing four times faster than income,
while renting costs have grown two times faster than income over
the last decade (Toronto Foundation, 2020).

The vehicular demand was provided by the Transportation
Tomorrow Survey (TTS) for the period between 7:45 a.m. and
8:00 a.m. for the year 2014 (DMG, 2011). Additionally, the OD
of the demand was provided by TTS. Links in the case study are
associated with different features with respect to the speed limit,
number of lanes, and number of directions. That is, a high level
of heterogeneity is assured for a generic application. Figure 1

illustrates the area including the major roads. Links of speed
limits of 40 and 60 km/h represent 30 and 59%, respectively, of
links in the case study. Links of speed limits of 10, 30, and 80
km/h represent 2, 1, and 8%, respectively, of links in the case
study. With regards to the number of lanes, 1, 2, 3, and 4 of 7,
71, 15, and 7%, respectively, are used.

4. METHODOLOGY

This section includes the specifications of the employed traffic
and emission models, investigated GHG costing approaches,
adopted GHG and speed predictive models, and the routing
strategies considered. Figure 2 demonstrates the followed general
framework in this study. The estimated second-by-second speed
and acceleration were used for calculating GHG emissions.
Then five GHG costing approaches, which considered different
levels of spatial and temporal resolution, were investigated. After
defining the best GHG costing approach, single- and multi-
objective reactive and proactive routing strategies were applied.
Finally, a comprehensive comparison has been conducted to
illustrate the impact of routing vehicles proactively.

4.1. Traffic and Emission Models
Microscopic traffic (Djavadian and Farooq, 2018) and emission
(USEPA, 2015) simulators were deployed in this study to obtain
high resolution data points at every second. The Intelligent
Driver Model (IDM) (Treiber et al., 2000) was the adopted car-
following model for the displacement estimation at every second,
which was used to calculate the speed of vehicles (Djavadian
and Farooq, 2018). Motor Vehicle Emission Simulator (MOVES)
was the employed emission model to estimate the second-
by-second GHG (in CO2eq) of every vehicle (USEPA, 2015).
The produced second-by-second emissions by vehicles were
estimated based on the vehicle operating mode, which depends
on the vehicle-specific power (USEPA, 2015). According to the
2012 Canada-United States Air Quality Agreement Progress
Report (International Joint Commission, 2012), Canada started
usingMOVES the summer of 2012. The second-by-second traffic
and environmental variables were captured and then used to
estimate the spacemean link indicators, such as speed (km/hour),
density (veh/km), flow (veh/hour), and GHG ER (gram), while
considering the suitable spatial and temporal intervals. When all
of the vehicles reached their destinations, the simulation ended.
The indicators of links, speed, density, GHG, and flow were
updated at every minute. As links in an urban road network
are shorter and there are very few overtaking/lane changing
opportunities in a congested network, our lateral movement
model assigns the lane to a vehicle only at the beginning of
the link. It is also worth mentioning that First-In-First-Out
(FIFO) logic at intersections was deployed. The aforementioned
two assumptions related to the lateral movement and logic at
intersections do not affect the comparative analysis between the
different routing strategies developed. This is stemmed from the
fact that the aim in this paper was to investigate the impact
of different routing strategies rather than different controlling
techniques at intersections.
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FIGURE 1 | Case study, Downtown Toronto.

4.2. GHG Costing Approaches
Most of the previous studies estimated GHG emissions based
on fuel consumption, which requires the specifications of
every vehicle for high resolution outcome (Wang et al., 2019).
Nevertheless, for network scale deployment, there is a need to
estimate GHG emissions based on collected data points (speed,
GHG ER, etc.) from sensors, which is what we aimed to achieve.
This network-based approach is more practical and scalable
compared to the vehicle-fuel based approaches. For a robust
eco-routing strategy, five different GHG costing approaches have
been assessed as illustrated in Table 1. The findings of this
analysis can be a guide for practitioners to choose the most
suitable GHG costing approach for their setting with respect to
the required level of resolution, computational power, and data
availability. GHGcost1(l,1j), as in Equation (1), is for when GHG
cost is the sum of GHG emissions of vehicles N on a studied link
l during and interval 1j. λ(i,l,k) is a binary variable: 1 if vehicle
i is on the studied link l at time k and 0 otherwise. As links
in the network have different number of lanes, GHGcost2(l,1j)
normalizes the total GHG cost based on the number of lanes Zl
following Equation (2). Considering a higher temporal resolution
is illustrated in the GHGcost3(l,1j) costing approach. The weighted
average of produced GHG on link l is the outcome of Equation
(3). At every second k of any interval (1–60 s), a weight k, is
multiplied by the produced GHG by vehicles. It means that the
GHG emissions produced at k = 1 are multiplied by a weight
of 1, while the produced GHG emission at second k = 60 is
multiplied by a weight of 60. The most recent seconds of an
interval 1j are associated with a higher weight in the link cost.
The sum is then divided by the sum of weights. This costing
approach takes the GHG cost at every second, which means
it is associated with a high temporal resolution compared to

GHGcost1(l,1j) and GHGcost2(l,1j). GHGcost4(l,1j) (Alfaseeh et al.,
2019), as in Equation (4), follows the same logic of GHGcost3(l,1j)
but divides by the number of lanes Zl of link l to normalize.
Finally, GHGcost5(l,1j) (Djavadian et al., 2020) is the marginal cost
of one vehicle traversing a studied link l. The marginal cost, as
shown in Equation (5), depends on an estimated emission rate
(ER) and the TT of interval1j on link l. TT is obtained following
Equation (6), whereDl represents link l length andV(l,1j) is link
l speed of 1j time interval.

GHGcost1(l,1j) =

1j
∑

k=1

N
∑

i=1

λ(i,l,k) × GHG(i,k) (1)

GHGcost2(l,1j) =

∑1j

k=1(
∑N

i=1 λ(i,l,k) × GHG(i,k))

Zl
(2)

GHGcost3(l,1j) =

∑1j

k=1(k×
∑N

i=1 λ(i,l,k) × GHG(i,k))
∑1j

k=1 k
(3)

GHGcost4(l,1j) =

∑1j

k=1(k×
∑N

i=1 λ(i,l,k)×GHG(i,k)
Zl

)
∑1j

k=1 k
(4)

GHGcost5(l,1j) = GHGER(l,1j) × TT(l,1j) (5)

TT(l,1j) =
Dl

V(l,1j)
(6)
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FIGURE 2 | Methodology followed in this study.

TABLE 1 | GHG costing strategies investigated.

Costing strategy name Approach Equation used

GHGcost1 Sum of GHG 1

GHGcost2 Sum of GHG per lane 2

GHGcost3 Weighted average of GHG 3

GHGcost4 Weighted average of GHG per lane 4

GHGcost5 Marginal GHG cost of 1 vehicle 5

4.3. GHG Emission Rate and Speed
Predictive Models
Two separate LSTM networks have been trained to predict
the required variables, TT and GHG, for the proactive single
and multi-objective routing strategies. The details of the data
collection process, including the size of training and testing
sets and statistical analysis of the data points are presented in
Appendix A. Recurrent neural network (RNN) represent a type
of deep neural networks (DNNs). Unlike the artificial neural
network (ANN), RNN consists of multiple layers between the
input and output layers. The RNN has the capability to specify
the correct mathematical manipulation to give an output from
an input, whether the relationship between variables is linear
or non-linear (Aggarwal, 2018). RNNs introduce the concept
of memory. The Long Short-Term Memory (LSTM) network
is a category of the RNNs that overcomes the major limitation
of regular RNNs, namely the vanishing gradient problem
(Amarpuri et al., 2019). LSTM also outperforms the statistical

models for time series data, such as ARIMA (Alfaseeh et al.,
2020). The LSTM network has been considered as one of the
most powerful RNN architectures in the case of sequential data
(Lipton et al., 2015). This justifies why LSTM was utilized in this
study for prediction. With reference to the LSTM architecture
and hyper-parameters, it has been found that the selection of
predictors, number of sequences, and the set of hyper-parameters
(Hutter et al., 2015; Reimers and Gurevych, 2017) have an explicit
impact on the prediction performance. In addition, increasing
the depth of the NNs may also introduce further enhancements
(Hermans and Schrauwen, 2013; Pascanu et al., 2013). Not to
forget that the efficiency of the hyper-parameters tuning process
is profound (Snoek et al., 2012). In this study, a comprehensive
correlation analysis has been conducted for GHG ER and
speed as discussed in Appendix B. For each of the predicted
variables, GHG ER and speed, the most representative predictors
and number of previous time steps (sequences) used in the
models were defined based on the correlation analysis. Then
hyper-parameters were tuned in two stages. The manual tuning
mainly tried to narrow the search range of the hyper-parameters
in concern for a more efficient systematic tuning process based
on the Bayesian optimization (Wu et al., 2019). Further details
related to the predictive LSTM network can be found in Alfaseeh
et al. (2020). To compare the trained LSTM networks, four
indicators were utilized: (1) correlation coefficient between
observed and predicted GHG ERs (in CO2eq g/sec), (2) fit to
the ideal 45o line, (3) root mean square error (RMSE), and (4) R2 .

4.4. Distributed Routing Framework
A dynamic distributed routing framework, E2ECAV proposed
by Farooq and Djavadian (2019), was used to test the routing
strategies. E2ECAV is based on a network of Intelligent
Intersections (I2s) that can dynamically route CAVs. The system
guarantees routing in a finite amount of time. When a CAV
arrives at any intersection, the CAV declares its destination to
the I2, which based on the routing objective/strategy, routes
the vehicle in the right direction. It is worth mentioning that
for this particular case study, the links cost, whether it was TT
or GHG, was updated at every minute. However, E2ECAV can
operate on any other update interval. For further description of
the E2ECAV, dynamic distributed routing system, and various
applications we refer readers to Alfaseeh et al. (2018), Djavadian
and Farooq (2018), Farooq andDjavadian (2019), Tu et al. (2019),
and Djavadian et al. (2020).

4.5. Routing Strategies
Three strategies based on optimizing TT, GHG, and TT&GHG
were examined for each of the reactive and proactive routing
schemes, while using simulation. Equation (7) presents the
general formula based on the routing objective, TT, GHG, or
TT&GHG, where Ti is travel time on link i and Ei is emissions
on link i, which is the GHG (in CO2eq) in our case; n is the
number of links of a path k; and Wt and We are the weights
associated with travel time and emissions, respectively. T and E in
Equation (7) are of different units. When multi-objective routing
was applied, converting them to a consistent unit (monetary
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value) was the solution for a realistic application. The adopted
TT monetary value was $27.36/hour (Statistics Canada, 2018).
The used monetary value of GHG emission was $15.77/Ton (The
World Bank, 2019). The weights in Equation (7) were used for the
aforementioned normalization process. Every routing strategy
was run for five replications of different seeds to account for
stochasticity. When the routing strategy was reactive, optimized
variables were taken at the current time step. While when the
routing strategy was proactive, predicted values of the future
time step of the developed predicted models were employed. For
instance, routing strategy TTm means that TTwas obtained based
on the current time step value of speed following Equation (6).
While TT&GHGa was the proactive routing strategy of when the
predicted TT and GHG of the future time step (of the best trained
LSTM networks) were utilized. The TT cost of links at every
minute followed Equation (6). The link GHG cost in this study
was chosen based on the analysis in section 5.1.1 of the different
GHG costing approaches.

min

{

n
∑

i=1

Wt .Ti +

n
∑

i=1

We.Ei

}

(7)

Subject to:
Wt > 0, Ti > 0,We > 0, and Ei > 0.

5. RESULTS AND DISCUSSION

To apply proactive routing in this study, predictive models were
developed. The LSTM based predictive model of the GHG cost
was developed in Alfaseeh et al. (2020), but the major findings
are shared in section 5.1. The developed speed predictive model
is presented in section 5.1. The comparison between the routing
strategies are conducted in sections 5.2–5.4.

5.1. Development of the Predictive Models
Before developing the predictive models, the most representative
GHG costing approach was investigated, as demonstrated in
section 5.1.1. A comprehensive correlation analysis was applied
for the GHG ER and speed as illustrated in Appendix B. The
developed predictive models are demonstrated in section 5.1.2.

5.1.1. GHG Costing Approaches
This analysis was applied for GHGm, as reactive routing was the
base case, to illustrate which GHG costing approach was the most
suitable for our application. Figure 3 shows that normalizing
based on the number of lanes as in GHGcost2 and GHGcost4

was associated with a slight enhancement in terms of all the
performance indicators compared to GHGcost1 and GHGcost3,
respectively. This is due to the different number of lanes of the
links in the network that made the total GHG not reflective
of the actual conditions. For the costing approaches GHGcost1

and GHGcost3, if the GHG cost of link a with two lanes and b
with four lanes are 70 and 100 g, respectively, link a would be
prioritized. However, dividing by the number of lanes shows that
link b should be prioritized based on GHGcost2 or GHGcost4. A
reduction in the average TT of around 3% in both GHGcost2 and

GHGcost4 compared to GHGcost1 and GHGcost3, respectively, was
observed. Using the total GHG on links of the GHGcost1 costing
approach, triggered the highest average TT, average VKT, total
GHG, and total NOx of 16 min, 2 km, 2,518 kg, and 0.716 kg,
respectively. The explanation was related to not considering any
of the traffic characteristics on the link, such as speed, density, or
flow. In the case of GHGcost1 costing approach, 100 g of the total
GHG emission can be for two dramatically different sets of traffic
characteristics. The first condition can be for a very congested
short link of low capacity, while the other condition can be for an
uncongested long link of high capacity.

GHGcost3 was associated with significant reductions in the
average TT, average VKT, total GHG, and total NOx of 33,
21, 32, and 25%, respectively, when compared to GHGcost1 as
shown in Figure 3. The main justification is the adopted high
temporal resolution, compared to GHGcost1. Furthermore, giving
higher weights to the most recent seconds contributed to the
improvements in terms of average TT, average VKT total GHG,
and total NOx. The closer to the prediction update, the higher the
weight for the produced GHG by vehicles. GHGcost5, which is the
marginal cost of one vehicle based on the GHG ER and TT on
the studied link, was very much comparable to the GHGcost4 in
terms of the performance. Despite the lower temporal resolution
utilized by GHGcost5 (1 min) compared to GHGcost4 (1 s),
considering TT on studied links by the former contributed to the
similar performance (mean TT, mean VKT, total GHG, and total
NOx) compared to latter. GHGcost5 is themost representative and
suitable costing approach as it is based on the reflective ER and
speed on the studied link as illustrated in Equation (5). Due to
the quasi-convex relationship between the speed and GHG ER
(Djavadian et al., 2020), too low or too high speed would trigger
higher emission rates. Links with too high speed are associated
with high GHG ERs but less travel time. Links with too low speed
contribute adversely not only to the GHG ER but also to the
travel time on the links. It is expected that the GHG marginal
cost searches for the optimal combination of speed, VKT, and
GHG ER to satisfy the optimization Equation (7). GHGcost5 was
the used costing approach for the related reactive and proactive
routing strategies in this study.

5.1.2. GHG and Speed Predictive Models
For each of the predicted variables, GHG ER and speed, a
comprehensive list of predictors and number of sequences has
been examined. The best predictive LSTM networks of both the
GHG ER and speed were of two hidden layers while the hyper-
parameters were systematically tuned. In terms of the predictors
for GHG ER forecasting (Alfaseeh et al., 2020), the best set was of
three sequences of speed, GHG ER, density, and in-links speed.
These are the top four highly correlated variables with GHGER at
the 6th min as illustrated in Figure B1. For speed prediction, the
best setting was associated with three sequences of speed, density,
and in-links speed as demonstrated in Figure B2. In terms of
the hyper-parameters, two solvers were considered, the adaptive
moment estimation (Adam) methods (Kingma and Ba, 2014)
and the stochastic gradient descent with momentum (sgdm)
(Robert, 2014). Several hyper-parameters were considered for
tuning: initial learning rate, max epochs, learning rate drop factor,
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FIGURE 3 | The Impact of Different GHG Costing Approaches on the (A) mean TT and VKT and (B) total GHG and NOx.

momentum, learning rate drop period, number of hidden units
of the first LSTM (hidden) layer, and the number of hidden
units of the second (LSTM) layer when required. The first
stage of tuning was manual, which was adopted to narrow the
search range of the optimal hyper-parameters. The next stage
was systematic using the Bayesian optimization (Wu et al., 2019;
Alfaseeh et al., 2020), which employed the narrowed search
range of the manual tuning stage. The training results of the
best LSTM predictive networks of the GHG ER and speed are
shown in Figures 4A,B, respectively. The figures represent the
true/simulated vs. predicted GHG ERs (in CO2eq g/sec).

For the prediction performance, four indicators were
deployed: (1) the correlation coefficient between observed and
predicted GHG ERs (in CO2eq g/sec), (2) the fit to the ideal
straight curve reflecting on the precision, (3) R2 statistics, and
(4) the RMSE reflecting on the accuracy (Alfaseeh et al., 2020).
The correlation coefficients of GHG ER and speed prediction
were 0.77 and 0.92, respectively. The RMSE of the GHG ER and
speed predictive models was 0.36 g and 5.95 km/h, respectively.
The performance of the speed predictive model was noticeably
better than the one of the GHGER. This is due to the complicated
relationship between the GHGER and the predictors, while speed
has more straight forward relationships with the used predictors.
For instance, speed and density have a monotonically decreasing
relationship (Papacostas and Prevedouros, 1993), while the GHG
ER has a quasi-convex relationship with the most important
predictor (speed) (Djavadian et al., 2020). It is crucial to note
that the developed LSTM predictive models are generally suitable
for urban networks. This has been demonstrated in the statistical
analysis of traffic and environmental predictors. In the training
dataset, speed ranged from 0 to 80 km/h, density ranged from 0
to 150 veh/km/ln, flow ranged from 0 to 8,000 veh/h, and GHG
ER ranged from around 0.9 to 5 g/sec. Thus, any urban network
of indicators within the aforementioned ranges can be used for
prediction purposes.

It is noticed in both Figure 4A and Figure 4B that true values
higher than 4 g/sec and 60 km/h, respectively, were not predicted

with a high level of accuracy. This stems from the fact that the
frequency of the data points reflecting these conditions was much
less compared to the other conditions as in Figure A1. The data
points reflecting on the GHG ER >4 g/sec, as in Figure A1D, is
only 0.007% of the total GHG ER data points. The high GHG
is associated with either low or high speed, which is due to the
quasi-convex relationship of GHG ER with speed (Djavadian
et al., 2020). Similarly, the data points of speed higher than 60
km/h and<20 km/h represent only 0.11% of the total data points,
while the data points of speed between 20 and 60 km/h represent
0.89% as in Figure A1A.

5.2. Routing Strategies Analysis
Three strategies that optimized TT, GHG, and TT&GHG were
examined for each of the reactive and proactive routing, while
using the E2ECAV (Farooq and Djavadian, 2019) routing
framework. Single and multi-objectives were considered for
reactive and proactive routing. Mean TT, mean VKT, total
GHG, and total NOx were the performance indicators taken
into account and the results are shown in Figure 5. It is of
high importance to include the NOx as a performance factor
to assess the impact of the different routing strategies on the
public health aspect (Alfaseeh and Farooq, 2020). It is crucial to
note that logical constraints have been included for a realistic
application while estimating the cost on links. When either the
predicted GHG ER or speed of a future time step was negative,
the value was set to zero. Predicted speed of a future time step
that surpassed the link speed limit was set to the link speed limit.
With regards to the results, Figure 5 illustrates that the proactive
routing strategies outperformed the reactive ones regardless
of the routing objective. The justification of this outcome is
threefold. Firstly, the reflective costing approach of the GHG
emissions (when GHG was part of the optimization process) was
adopted. GHG costing approach optimized not only the GHG
ER but also the travel time implicitly to avoid re-routing. The
marginal cost prioritized the links of speed close to the optimal
value based on the quasi-convex relationship between the GHG
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FIGURE 4 | True vs. predicted of the best LSTM models of (A) GHG ERs (in CO2eq g/sec) (Alfaseeh et al., 2020) and (B) speed.

ER and speed (Djavadian et al., 2020). Secondly, the sophisticated
developed predictive models based on high resolution data
points were deployed. Lastly, by taking into account the traffic
conditions and their evolution, routing was more proactive than
simply being reactive to the current conditions.

The performance trend for reactive routing strategies was
similar to that of the proactive routing strategies. From the
worst to the best, TT was followed by GHG and TT&GHG
in terms of the four performance indicators. Whether it was
reactive or proactive routing, when TT was optimized the worst
performance indicators were observed compared to when the
routing objective was GHG or TT&GHG. The justification is that
when TT was the objective all that matters was the spent TT
on the links regardless of the VKT, GHG, and NOx indicators.
Vehicles were distributed in the network to achieve the least
TT, but this came at the cost of longer traveled distances and
more produced GHG and NOx. Nevertheless, GHGm and GHGa

introduced a decrease in the total produced GHG of 11 and
6% compared to TTm and TTa, respectively. This improvement
can be directly linked to the marginal costing approach as in
Equation (5), which takes into account not only the GHG ER but
also speed on links. In other words, when the routing objective
was GHG, the chosen links were defined based on the best
combination of the GHG ER and speed that minimized the
cost following Equation (7). The relationship between GHG and
speed is quasi-convex (Djavadian et al., 2020) in which too low
or too high speed would contribute to a higher GHG ER and
higher GHG cost eventually. The multi-objective TT&GHGm

outperformed both TTm and GHGm in terms of the whole
performance indicators. A reduction was observed in average
TT, average VKT, total GHG, and total NOx of 17, 13, 16,
and 14%, respectively, for the TT& GHGm strategy compared
to TTm strategy. The reduction in the performance indicators
of TT&GHGm was marginal compared to the GHGm routing
strategy. TT&GHG routing objective controlled the TT cost and
did not allow it to neglect the GHG objective. TT was thus

reduced as long as it still satisfied the objective of reducing
GHG. Paths of longer distances were not chosen as this triggered
the increase in both the produced GHG and NOx like in TT
routing strategy. TT&GHGa was associated with reductions in
the average TT, average VKT, total GHG, and total NOx of 15,
1, 10, and 7%, respectively, compared to TTa. Comparing the
best proactive routing strategy TT&GHGa to the TTm illustrates
a reduction in average TT, average VKT, total GHG, and total
NOx of 17, 22, 18, and 20%, respectively. With reference to
the NOx variable, it has been found that the relationship between
NOx and speed is also quasi-convex (Djavadian et al., 2020).
Moreover, previous studies have confirmed that at high speeds
NOx is sensitive to aggressive driving (Tu et al., 2019). Figure 5B
shows that when GHG was part of the routing objective (GHG
or TT&GHG), the produced NOx was less compared to when
TT was the routing objective regardless of the routing protocol,
reactive or proactive. It can be concluded that the experienced
additional time and longer trips by vehicles in the case of reactive
and proactive routing contributed to the increase in the produced
GHG and NOx emissions.

5.3. Path Analysis
For this analysis, one vehicle was chosen randomly, and its
reactive and proactive paths with different routing objectives
were investigated. Comparing the reactive in Figure 6 with the
proactive routes in Figure 7 for each of the objectives shows that
there was more re-routing in the former contributing to longer
trips and probably more time in the network as illustrated in
section 5.2. The main explanation is that the cost of links was
based on the current traffic conditions and did not consider the
evolution of traffic in future.

In Figure 6, re-routing happened on the north-south links
more frequently due to their higher capacity, which triggered
higher speed (less TT), compared to the east-west links. This
analysis supports the findings in Figure 5A, which demonstrates
the decrease in average TT and VKT while proactive routing
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FIGURE 5 | The impact of reactive and proactive routing strategies on the (A) mean TT and VKT and (B) total GHG and NOx.

was adopted. Whether the routing protocol was reactive or
proactive, comparing the length of the path of the TT to GHG
and TT&GHG routing strategies illustrates that the length of
the path of TT strategy was the longest. The main justification
is that when TT was the objective, vehicles were distributed in
the network utilizing uncongested links to achieve the least TT
regardless of the traveled distance, produced GHG, and produced
NOx. Figure 7A illustrates that instead of taking route a (east-
west), of two links, route b (north-south), of five links, was
chosen. The vehicle traversed an additional distance of around
700 m when taking route b compared to GHGa and TT&GHGa

routing strategies. The speed of route b was around 38 km/h,
while the speed of route a was around 1 km/h. This asserts that
vehicles were distributed in the network to links of high speed
to minimize the TT regardless of the traveled distance. When
TT was the objective, the time spent on the links was optimized,
while when GHG was part of routing objective the links of
optimal speed were prioritized as long as the GHG marginal
cost was minimized. The length of routes of the GHGa and
TT&GHGa routing strategies was comparable as illustrated in
Figures 7B,C, respectively.

5.4. Network Level Analysis
To examine the effect at the network level of the reactive and
proactive routing strategies while adopting different routing
objectives, average speed, produced GHG, and produced NOx
over time were examined. In other words, at every minute,
average speed, total GHG, and total NOx of the whole links
in the network were estimated for this analysis. The demand
was loaded at 7:45 a.m., and the total demand was in the
network at around 8:00 a.m., which represented the peak of
the congestion. Comparing Figure 8 to Figure 9, shows that the
network has been loaded and unloaded quicker in the case of
proactive routing.

Particularly, for TTm, the vehicles spent 15% more time in
the network compared to TTa. This finding is aligned with

the analysis of the TT, VKT, GHG, and NOx in Figure 5 for
TTm compared to TTa. Figure 6 demonstrates the additional re-
routing in the case of reactive routing compared to the proactive
routing strategies in Figure 7. The noticed additional re-routing
in the case of TTm, which triggered longer trip lengths compared
to TTa, contributed to the additional spent time in the network
as well. The throughput over time of TTm was less compared to
GHGm and TT&GHGm. It took around 8 and 10.6% less time
to load and unload the network for GHGm and TT&GHGm,
respectively, compared to TTm. The main explanation is that
when travel time minimization was the objective, all link options
were analyzed, and the final cost of travel time did not take
into account the VKT as long as the objective was minimized.
However, when GHG was the part of the optimization process,
the links of optimal speed were prioritized and the re-routing
averted. The GHG marginal cost as in Equation (5) made sure
that vehicles spent the least amount of time and traveled the least
distance while the objective was minimized, which is observed
in Figures 6, 7 of the related strategies. The average speed
till 8:10 a.m. of the reactive routing strategies in Figure 8A

was almost identical for the three routing strategies, while
GHGa and TT&GHGa were associated with a slightly higher
speed than TTa as in Figure 9. This asserts the importance
and positive impact of the proactive routing, which takes into
account the future state of traffic conditions in the network.
After 8:10 a.m. and till the end of the simulation, the increase in
speed for GHGa and TT&GHGa compared to TTa was higher
than in the case of the GHGm and TT&GHGm compared to
TTm. The reason is that the vehicles reached their destination
faster in the case of proactive routing compared to reactive
routing, which means less vehicles were in the network in the
former case.

The main difference between Figure 8B and Figure 9B is
that the period of time vehicles produced GHG was longer in
the former, as the proactive routing included the future state
of the traffic conditions and dealt with the changes proactively
compared to the reactive routing. In addition, the GHG costing
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FIGURE 6 | Reactive routes of a random vehicle subjected to different routing strategies: (A) TT, (B) GHG, and (C) TT&GHG.

FIGURE 7 | Proactive routes of a random vehicle subjected to different routing strategies: (A) TT, (B) GHG, and (C) TT&GHG.

FIGURE 8 | The Network under the different reactive routing strategies and its (A) speed, (B) GHG, and (C) NOx over time.

FIGURE 9 | The Network under the different proactive routing strategies and its (A) speed, (B) GHG, and (C) NOx over time.
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approach took into account not only the GHG ER but also the
speed and VKT implicitly. The experienced additional time and
VKT by vehicles in the case of TTm, as shown in Figure 5A,
contributed to the higher levels of GHG compared to GHGm

and TT&GHGm in Figure 8B, especially after the congestion
peak at 8:10 a.m. The number of vehicles in the network is an
essential factor to keep in mind. On the other hand, comparing
the GHG over time of TTa to GHGa and TT&GHGa, illustrated
less variation.

NOx over time followed the same trend of GHG over time and
was associated with fewer emissions over time while the proactive
routing was utilized as in Figure 9C compared to Figure 8C of
the reactive routing strategies. For the NOx over time analysis, as
shown in Figures 8C, 9C, the high values until around 8:00 a.m.
were due to the high speed of the uncongested network. After
8:00 a.m., the number of vehicles and speed level controlled the
produced NOx. At 8:00 a.m., the complete demand was in the
network and the speed was the variable with direct impact on the
produced NOx. It was observed that for TTm in Figure 8C and
TTa in Figure 9C, NOx was higher than the cases when GHG
or TT&GHG was the routing objective. This is because vehicles
were directed to longer paths, but of higher speed to minimize
the travel time. NOx is sensitive to aggressive driving (Tu et al.,
2019), which makes higher speed links unfavorable. However, the
reduction in the experienced TT and VKT in the network in the
case of proactive routing means higher throughput over time.
The higher throughput contributed to less NOx over time.

It can be concluded that using predicted link cost was
associated with significant improvements at the network level.
Furthermore, utilizing the GHG marginal cost, which takes into
account not only the GHG ER but also the speed and VKT, was
very effective and outperformed the travel time cost in terms of
the whole performance indicators.

6. CONCLUSION AND POTENTIAL
DIRECTIONS

Existing eco-routing studies are predominantly associated with
limitations related to the aggregation level of the traffic
flow and emission models, scale of the case study, used
routing system (centralized), and the number of simultaneously
optimized objectives (Alfaseeh and Farooq, 2020). Alfaseeh et al.
(2019) and Djavadian et al. (2020) overcame these limitations
and applied reactive multi-objective eco-routing strategies in
a distributed routing framework with favorable outcomes.
However, the technological advancements related to ICT and
CAVs have not yet been exploited completely. This study thus
suggested proactive multi-objective eco-routing strategies using
a distributed routing system for CAVs (E2ECAV) (Farooq and
Djavadian, 2019) to reduce the produced emissions. Predictive
models of GHG ER and speed were developed and used.
A deep-learning-based time series model, LSTM, was trained
while systematically tuned. For sequential data, LSTM is known
to be the most powerful recurrent NN architectures (Lipton
et al., 2015). Furthermore, the LSTM model employed here
outperformed the commonly used models, such as ARIMA
(Alfaseeh et al., 2020).

The major findings of this study are as follows. Proactive
routing strategies outperformed the reactive ones due to the
inclusion of future traffic and environmental conditions in
the route calculations. The paths of reactive routing strategies
demonstrated a high degree of re-routing, as the cost did
not consider the evolution of traffic and environmental states.
Routing based on GHG as the objective was associated with
noticeable reductions in average TT, average VKT, total GHG,
and total NOx compared to the case where TT was the objective.
This stems from the use of the marginal cost in Equation (5),
which resulted in the best combination of speed, distance, and
GHG ER on links that minimized the GHG cost. Re-routing was
minimized when GHG was part of the optimization process as
the increase in the VKT had a negative impact on the produced
GHG. The GHG routing objective contributed to less TT and
VKT, which led to less GHG andNOx in the network. For reactive
and proactive routing, TT&GHG routing strategy introduced
enhancements in terms of the four performance indicators
compared to the TT routing strategy. Comparison of the former
to the latter would be like comparing the system optimal (SO) to
the user equilibrium (UE) (Papacostas and Prevedouros, 1993).
Comparing the best proactive routing strategy, which optimized
not only TT but also GHG, illustrated a reduction in average TT,
average VKT, total GHG, and total NOx of 17, 21, 18, and 20%,
respectively, when compared with the reactive routing aiming to
minimize TT.

For future work, utilizing real data points from sensors instead
of simulated data would result in higher heterogeneity in the
data and ensure robustness in the models. The constrained
eco-routing concept is an important aspect to be tackled and
would illustrate the tradeoffs compared to the regular eco-routing
application. As 100% CAVs MPR was employed in this study,
the impact of different MPRs should be taken into account.
The most preferable MPR of CAVs could vary from a traffic
condition to another and this must be defined. The utilized
predictive models in this study can be further enhanced by using
more data points to represent the conditions of low frequency
of occurrence. In addition, predictive models can be developed
based on categorized characteristics, such as speed limit, number
of lanes, etc., of links for further enhancements. With regards
to the scalability aspect, it is suggested that proactive routing
is applied in a larger network with both uninterrupted and
interrupted traffic flow. Nevertheless, the predictive models
should accommodate the difference between the two types
of traffic flow. The employed distributed routing framework
adopts only the V2I and I2I communication. The impact of
incorporating the V2V communication is another suggestion
for future work. Incorporating proactive routing strategies as an
additional option in the personal navigation platforms would
contribute to more efficient and sustainable transportation
systems. Despite the strong contradiction between NOx and
speed, including NOx as a routing objective is encouraged.
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