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Moving Array Traffic Probes
Blake Davis, Ang Ji*, Bichen Liu and David Levinson

School of Civil Engineering, University of Sydney, Sydney, NSW, Australia

This paper explores the potential of moving array “probes” to collect traffic data. This

application simulates the prospect of mining environmental data on traffic conditions to

present an inexpensive and potentially widespread source of traffic conditions. Based

on three different simulations, we measure the magnitude and trends of probe error

(comparing the probe’s “subjective” or time-weighted perception with an “objective”

observer) in density, speed, and flow in order to validate the proposed model and

compare the results with loop detectors. From these simulations, several conclusions

were reached. A single probe’s error follows a double hump trend due to an interplay

between the factors of traffic heterogeneity and shockwaves. Reduced visibility of the

single probe does not proportionately increase the error. Multiple probes do not tend to

increase accuracy significantly, which suggests that the data will be still useful even if

probes are sparsely distributed. Finally, probes can measure the conditions of oncoming

traffic more accurately than concurrent traffic. Further research is expected to consider

more complex road networks and develop methods to improve the accuracy of moving

array samples.

Keywords: autonomous vehicles, PROBES, traffic state estimation, floating car data, NetLogo

1. INTRODUCTION

The fast-approaching advent of Autonomous Vehicles (AVs) will have many benefits as well as
unforeseen disadvantages and risks (Davidson and Spinoulas, 2015; Levinson and Krizek, 2017;
Liu et al., 2017; Morando et al., 2018). After several years of development, the well-known
Google/Waymo Car project has gained significant momentum and has autonomously driven over
16 million autonomously driven km as of 2018 (Korosec, 2018). Within the next decade, it is
expected that AVs will be on the market and on public roads.

Given that such a shift in transport will probably require important changes in transport
networks (Fagnant and Kockelman, 2015), AVs’ potential in supplying accurate and detailed traffic
data may be invaluable in facilitating these changes. One of the neglected side-benefits of AVs is
their potential to act as moving array “probes” collecting traffic data which can then be utilized
to map real-time traffic conditions as well as long-term traffic information for planning and other
traffic engineering purposes. Unlike traditional vehicle probes, moving array probes can collect
data on their surroundings as well as their own state. While traditional vehicles can in theory
be equipped as moving array probes, autonomous vehicles will be such by default, providing
increasing streams of data.

At present, there are many methods of collecting traffic data, but most of them are time and
labor consuming, expensive, and localized. This study explores the possibility of using AV data as a
reliable, economical, and wide-coverage alternative to existing methods. This is chiefly undertaken
from the perspective of a single AV and its corresponding capabilities, given the relatively small
number of AVs which will impact on public roads initially. In addition, the benefits of greater
numbers of AV probes are also explored. Following this investigation, we recommend future
research into moving array traffic probes.
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The remainder of this paper is structured as follows. First,
section 2 reviews some of the existing data collection methods
and demonstrates the current research on traffic probes. Then,
sections 3, 4 state the methodologies that will be used to simulate
scenarios and to validate the model. In section 5, results and
discussion are proposed through the analysis of the percentage
absolute errors among three different cases. Finally, section 6
summarizes the findings and indicates the further objective of
moving array traffic probes.

2. REVIEW OF DATA COLLECTION
METHODS

Leduc (2008) distinguishes between traditional in-situ data
collection methods such as pneumatic road tubes and manual
counts and floating car data which provides traffic data from
moving probe vehicles. Seo et al. (2017) classified Traffic State
Estimation (TSE) into stationary data methods which collects
data at installed locations of stationary sensors and mobile data
methods which collect data on specific vehicles along their
trajectories. To differentiate the potential of AV probes, we
propose a new data collection method categorization system with
three classes:

• static array (Eulerian frame),
• moving point (Lagrangian frame) and
• moving array.

2.1. Static Array (Eulerian Frame)
Static array consists of those traditional data collection methods
which collect an array of data relating to multiple surrounding
vehicles from a static location, such as pneumatic tubes
and manual counts. Antoniou et al. (2011) classified current
technologies into three categories:

• point sensors,
• point-to-point sensors, and
• area-wide sensors.

Point sensors include instruments such as inductive loop
detectors, radar, infrared, ultrasound, video image detection, and
weigh in motion systems. These instruments work individually
and gather data without the aid of a secondary system. There
are a number of newer point-sensor technologies, primarily light
detection and ranging (LIDAR), which are also used in AVs
across the board (Schaub, 2018).

Point-to-point sensors involve data collectors such as
automated vehicle identification (AVI) and license plate
recognition, where a sensor (such as the electronic tag in the case
of AVI, and the camera in license plate recognition) transmits a
vehicle’s location to a secondary system which can then analyse
and use that data.

Area-wide sensors tend to be more experimental and are
usually large-scale networks of point-to-point sensors, which
contain the location data of a moving sensor (such as the mobile
phone or GPS in a vehicle) being accessed by a secondary system
in stations (i.e., cell towers) for many vehicles.

For most static detectors, traffic counts, vehicle occupancy,
and instantaneous speeds of vehicles at the location can be
measured. This disaggregated information needs to be converted
into an average traffic state at a particular sample time (Seo et al.,
2017).

Macroscopically, Makigami et al. (1971) described traffic flow
variables based on a three-dimensional representation so that
those macroscopic variables can be derived by recorded location,
time, and cumulative vehicle counts. The detectors are widely
used to collect data because of their convenience and feasibility
in practice, however, the current spacing ranges from some
hundred meters to several kilometers due to high deployment
and maintenance fees of the sensors, such space resolution
may cause the collected data to be insufficient (Wang and
Papageorgiou, 2005). Moreover, the frequent missing or incorrect
counts from static detectors is another data accuracy and quality
problem (Chen et al., 2003).

2.2. Moving Point (Lagrangian Frame)
Moving point observations are most commonly seen as floating
car data, where point data is continuously collected by a moving
probe. However, that data only relates to the probe itself,
not the surrounding traffic. Despite limitations, floating car
data can collect a range of traffic-related information along
their trajectories providing individual position and velocity
information, for instance by employing smartphones and GPS
devices on-board probes. With calibrated fundamental diagrams
or similar relations (Nanthawichit et al., 2003; Work et al., 2010),
traffic state variables like density and flow can be estimated. There
have also emerged many fundamental diagram-free TSEs based
on streaming-data-driven methods to estimate macroscopic
variables (Coifman, 2003; Seo et al., 2015b; Bekiaris-Liberis et al.,
2016). Deployment of deep learning and V2X communications
may improve traffic state estimation (Sanguesa et al., 2015; Lou
et al., 2016; Lin et al., 2018; Xu et al., 2020), but there is no
evidence that such technologies will be ubiquitous nor feasible
in the near term. Simply speaking, a probe vehicle’s route
can be reconstructed based on a series of locations transmitted
by the probe to a secondary system for estimation. This was
tested, among other cases, in a Beijing study, where it was found
that location data from taxi probe vehicles could be used to
establish reasonably accurate probe routes to the point of making
cross-referenced geographical data potentially irrelevant (He and
Zheng, 2017). Another use of floating car data that has been
investigated is its ability to estimate route travel time. From
an array of location data for a given probe, a route and travel
time can theoretically be estimated (Rahmani et al., 2015). In
the meanwhile, methods for estimating the demand for traffic
networks using floating car data have also been investigated with
some success (Carrese et al., 2017).

One of the main limitations other than the small number
of probe vehicles is the low sampling frequency due to
technological restrictions. This leads to significant uncertainties
about the actual path taken by the vehicle and the speed of
the vehicle (as only average speed can be calculated) (Jenelius
and Koutsopoulos, 2015). Also, no information regarding traffic
density is available from most floating car studies without
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calibrated fundamental diagrams. However, even when mapping
from velocity to density through fundamental diagrams,
especially in free flow scenarios, the estimation will have
errors (Herrera and Bayen, 2010).

2.3. Moving Array: Moving Array Probes
A third class is the moving array—in that the data collection
device moves and collects data relating to multiple surrounding
vehicles (an array of data), not just the probe itself. While in
principle, manual-driven instrumented vehicles could also serve
as moving array probes, in practice, we expect the moving array
data to come free with AVs (Qiu et al., 2010; Cao et al., 2011). At
present instrumented vehicles can assess driver behavior (such as
car-following and reaction time) by video cameras and LIDAR
when following preceding cars (Ma and Andréasson, 2006; Soria
et al., 2014; Schorr et al., 2017). Few of them can measure speeds
and trajectories within their detection areas by using LIDAR and
GPS (Xuan and Coifman, 2012; Coifman et al., 2016). But in
practice, we expect the moving array data to come free with AVs
without extra labor and equipment installation costs.

The limitations of floating cars could be mitigated by moving
array AV probes, which produce information regarding traffic
flow and density inherently and do not necessarily need to
accumulate data or use fundamental diagrams to estimate
this information.

A fundamental difference between Lagrangian and Eulerian
data collection frames and moving array AV probes is that the
previous systems only collect data concerning the probe vehicle
itself, or (as for static traffic counters) collect data on multiple
vehicles in one location. The array of sensors necessarily built into
an AV have not yet been widely recognized as a potential source
of traffic data.

Currently, there has been a modest amount of research into
the use ofmoving array probes.Moving array probes can estimate
traffic flow characteristics by detecting the headway to the leading
vehicle (Seo et al., 2015b) or by combining stationary andmoving
probes collected data together based on the Point-Observations
N (PON) estimation (van Erp et al., 2018) both without assumed
fundamental diagrams or other flow models.

Moreover, LIDAR data can be interpreted to give useful
information about the status of the surrounding traffic (Cetin
et al., 2017), including detection and classification of vehicles
(as distinct from the ground and other surrounding objects)
and establishing trajectories for the detected vehicles with
various algorithms. However, this methodology depends upon
a reasonable number’ of probes to be collecting data in a given
area in order to estimate traffic density. Our study makes no
such assumption and considers the case where only one AV
is operating—to explore the data collection possibilities of a
single probe. This is particularly useful for the early stages
of the integration of AVs on public roads, when they will be
relatively scarce.

Another recent report also investigates the collection of
data from AVs (Chen et al., 2017) which focuses more on
traffic data collected for the immediate use of the AV itself
and is highly theoretical. The present investigation aims to
exploit AV collected data for more general purposes and

aggregate over a longer period of time to generate both real-
time and long-term information for the purposes of planning and
traffic management.

3. METHOD

Traditional traffic data collection consists of vehicle flows, mean
densities, velocities, and classifications (generally light vehicles vs.
heavy vehicles). Edie (1963) focused on the first three parameters
for a region D within given ranges of space and time.

The field to be explored is the use of data from already inbuilt
sensors in AVs as a potential, soon-to-be widespread, traffic
information source. The three fundamental parameters to be
considered are flow q, density k, and velocity u. As such, they
formed the primary objects of data collection for the AV probe
model as follows:

qD =

∑
i di

AD
; kD =

∑
i ri

AD
; uD =

qD

kD
(1)

where:
D is selected study region in the time-space plot;
qD is the space-mean flow in region D in veh/h;
kD is the space-mean density in region D in veh/km;
uD is the space-mean speed in region D in km/h;
di is the travel distance of vehicle i in region D in veh · km;
ri is the time spent of vehicle i in region D in veh · h;
AD is the time-space area of region D in km · h.

In AV probes, at present LIDAR is assumed to be the primary
data collection method, with a visible radius of 100 m over all
360◦. This system works by rapidly rotating an array of lasers
which reflects off surrounding objects. It builds up information
about the surrounding environment as a series of dynamic points.
For example, it measures the distance to target vehicles by
calculating how far the laser travels to and reflects back. For speed
measurements, LIDAR sends out two laser pulses successively
and compares the change in distance after receiving the pulses.
The speed is then calculated by the change in distance divided
by the time between two pulses. LIDAR counts the number of
vehicles by capturing the point cloud and extracting moving
vehicles within its detection range.

Conceptually, how an AV probe detects surrounding vehicles
may be seen in Figure 1. Following Cetin et al. (2017), partially
visible vehicles are still able to be accounted for in the vehicle
recognition system.

In this study, vehicle trajectories are computed based on the
tracking of successive locations for given vehicles according to
Cetin et al. (2017). Assuming this method, the vehicles within
the visible radius will be classified into eastbound and westbound
vehicles. These are treated separately as traffic conditions vary
based on the direction of travel.

For traffic traveling in the same direction as the probe, the
density is calculated based on the number of vehicles along
a distance during a specific period. The speed of the vehicles
(in the direction of travel) at the sample location is assumed
to be an average of the probe vehicle speed itself and that of
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FIGURE 1 | How LIDAR detects vehicles (arrows represent lasers being sent and reflected).

FIGURE 2 | The wave speed in a fundamental diagram.

the surrounding vehicles (calculated based on their trajectories).
Flow is the product of density and speed for both local and global
scenarios in study regionD. We assume that the global parameter
measurement reflects the “ground-truth” situation while the local
measurement is biased. The AV detection errors between two
measurements can then be investigated in different scenarios.

uD =
upr +

∑
unm

ND
; kD =

ND

lD
; qD = uD × kD (2)

where:
upr is the speed of the single probe itself;
unm is the speed of other vehicles in study region D;
ND is the number of vehicle counts in region D;
lD is the interval length of space in region D.

To explain the estimation errors under such heterogeneous
traffic conditions, we introduce the equilibrium curve of the
fundamental diagram for analysis. When there is a transition

between two different states in the diagram, a shockwave occurs
with the wave speed w:

w =
1q

1k
(3)

in which:
w is the wave speed between two different states;
1q is the change in flow between two states;
1k is the change in density (concentration) between two states.

In a q-k plot, the wave speed w represents the slope of the
shockwave between two states (Leutzbach, 1988). In free-flow
conditions, due to the heterogeneous conditions, vehicles often
platoon rather than distribute uniformly. Therefore, mean global
densities over space could be impacted so that a shockwave occurs
between two different states of free-flow conditions (shown
in Figure 2).

At the boundary of the free-flow state and the jam state,
the critical density kc (density at the capacity state) determines
whether there appears a state transition. Once the mean density
exceeds a critical point (k̄ > kc), an upstream stop-and-go
wave will then form backwards, and its queue accumulates when
the fraction of mean density and critical density increases until
jam conditions.

For a single probe existing in the road, it is initially
hypothesized that there would firstly be an increase of absolute
error in a probe’s measurements of density, speed, and flow in the
free-flow state. The reason behind this hypothesis is that a high
error is expected with the low coverage scenario because traffic
flow heterogeneity would dominate in these scenarios. That is,
in free-flow situations, there are few sections with localized
clusters but large sections with few or even no vehicles at all.
A probe cannot accurately detect the information from the less
representative observations because it is more likely to be a part
of the locally high density flow. For these situations, the probe
tends to over-estimate the overall density, in the meanwhile, the
speed is under-estimated by the blocked probe together with
other slow–moving vehicles.

The opposite extreme situation of such observation bias is a
jam density situation, where the road coverage is at 100%. In
such cases, it was expected that probe measurement error would
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approach 0 since the traffic conditions are perfectly homogeneous
and the probe’s visible sample is perfectly representative of the
prevailing conditions.

However, the occurrence of inhomogeneous stop-and-go
waves mainly caused by driver lane-changing behaviors in
relative high road coverage rates also impacts on the accuracy of
probe data collection. When the road coverage exceeds a specific
state where the maximum flow rate exists, stop-and-go waves
appear to slow down or stop the vehicles (sometimes including
the probe) so that the density is over-estimated and the speed is
under-estimated by the probe.

This phenomenon led to the consequence that probe error
would not simply decrease from a high point under low road
coverage conditions, to zero as traffic approached jam density
conditions. It should follow another tendency with the increase
of road coverage.

Compared with the single probe, the inductive loop detector
had substantially lower error for low road coverage conditions,
because it is not subject to the same degree of observation bias,
in other words, it is less likely to be within an area of low density.
Similarly, the loop has the more accurate density measurements
in road coverage associated with shockwaves, because it does not
suffer from the probe’s increased likelihood of being stuck within
an area of congestion rather than an area of free flow. Thus, the
static nature of the loop detectormay, purely from the perspective
of accuracy, be seen as an advantage over the moving probe.
However, loop detectors are expensive to install and onlymonitor
a small area of the road, which are difficult for wide utilization,
while data from AVs could be theoretically free, abundant, and
sourced across a vast area. We expect future research can develop
calibration methods to correct for observation bias produced
from raw measurements.

To extend the theory from the one-directional model to
the two-directional model, it was important to establish the
consistency between two models. Therefore, 50,000-timestep
tests were run for a range of road cover percentages, in order
to plot an absolute error curve for a single probe measuring the
density, speed, and flow of concurrent traffic only. This curve
could then be compared with that plotted for the one-directional
model. Although there is an evident fluctuation for the two-
directional curve around the 20% coverage mark and there is
some difference in the magnitudes of the error between the two
curves, these issues are the result of different sample sizes for the
two curves and do not affect the conclusion that the same traffic
characteristics apply in both models.

4. SIMULATION STUDY

Three primary simulation scenarios were undertaken:

• Scenario 1: One probe operating in a one-directional pipeline;
• Scenario 2: Multiple probes operating in a one-directional

pipeline; and
• Scenario 3: One probe operating in a two-directional pipeline.

As pipelines, these involve a length of road with no intersections.
Moreover, the simulations are effectively circular pipelines, in

which vehicles that reach the end of the pipeline reappear
back at the beginning and continue driving. Future studies
should explore further complex scenarios. The base model adapts
Wilensky et al. (1998)’s “Traffic Two Lanes” model of two lanes
of traffic moving in one direction, with an adjustable number
of vehicles and acceleration/deceleration rates. The positions of
all agents are randomly-distributed instead of homogeneously-
distributed, consistent with reality. Each agent in Wilensky et al.
(1998)’s model moves forward based on its speed and preset
acceleration/deceleration until it reaches the speed of its leading
vehicle.The model also allows for vehicles to change lanes when
they are obstructed by slower moving vehicles ahead. The other
adjustable element of the model is the vehicle “patience.” This
model defines the “patience” variable as the number of times
when any vehicle’s speed is being restricted by vehicles ahead. If
the traffic flow is congested, drivers will quickly lose their patience
and frequently change lanes. Each vehicle has a slightly different
speed that it is attempting to reach, which reflects a distribution
of driver personalities. The model is implemented in NetLogo.

The model distance is given in units of cells, equivalent to a
standard vehicle length (4.5 m), and time in units of timesteps.
Furthermore, the timestep has been related to real-time units
such that the average speed of vehicles in the model is assumed
as 60 km/h. Given that the preset average speed of vehicles within
the model is 0.6 cells per timestep, a timestep is taken to be
0.162 s or 0.000045 h. The unit length of road that is used to
calculate density within the model is 44 cells (the length visible
to a single probe). More parameter setting details are shown in
Table 1.

In order to design three different simulation scenarios,
substantial additions and modifications were required to the
traffic model. For Scenario 1 (single probe in one-directional
pipeline), the road is widened to three lanes and the vehicle
defined in the base model as the “selected-car” is taken to be
the probe vehicle driving along the road with other traffic, but
with no other probe vehicles. The model is updated such that
the three primary traffic parameters: density, speed, and flow are
measured at every timestep by both the probe vehicle and the
system’s spatially-fixed observers.

Density is measured by the probe by counting the number
of vehicles (including itself) within a radius of 22 cells (model
unit of distance) or approximately 100 m, while “ground-truth”
is measured by the overall observer as the number of vehicles on
the pipeline (of length 440 cells or nearly 2 km) divided by 10.

The freeway stretch length is taken to be 2 km, which has been
used as the boundary of short and long stretches by previous
TSE investigations (Cremer, 1991). We first test how well the
moving array performs on a road of this length. Future research
can explore alternative stretch lengths.

It was assumed that the observer measure is the “true” density,
then the probe measure, which is subjective (i.e., from the
perspective of the vehicle, and time-weighted, and so depends on
how much time is spent in various conditions) is compared with
it, and an “error” is calculated. Throughout, the Mean Absolute
Percentage Error (MAPE) between the probe and the overall
observer is estimated. Note that these density measurements are
made by both the probe and the observer at each timestep (model
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TABLE 1 | Simulation parameter settings.

Parameters Values

Section length (m) 2,000

Average speed (km/h) 60

Maximum speed (km/h) 120

Vehicle length (m) 4.5

Acceleration (m2/s) 3.43

Deceleration (m2/s) 6.86

Minimum allowable distance (m) 4.5

Maximum patience 40

time unit), and most simulations were run for a duration of 5,000
timesteps. Speed is measured by the probe by detecting the speed
of all vehicles around it within a 22-cell radius and calculating
a mean of these. The observer speed is simply the space-mean
speeds of all vehicles on the pipeline. At each timestep, the
probe multiplies density and speed to calculate a flow for the
vehicles within its visible radius for each given timestep. A similar
function is performed by the overall observer, and the averaged
flows over the whole simulation can again be compared and the
error calculated.

For Scenario 2 (multiple probes in a one-directional pipeline),
a three-lane configuration is also used. The methods of collecting
parameter measurements for both the probe(s) and the overall
observer were the same as for Scenario 1. For each experiment,
the output is collected from 1, 2, 10, 20, and 100 probes (all
vehicles are probes). Then the measurements made by multiple
probes can be compared with the “true” observer measurement
and with each other.

For Scenario 3 (a single probe in a two-directional pipeline),
a six-lane configuration is created. The functions relating to the
single probe in terms of its parameter measurements are identical
to those developed for the previous scenarios. Both the probe
and the observer treat the measurements of concurrent and
oncoming traffic separately. However, in calculating the density
of oncoming traffic, the overall observer calculation is slightly
amended from the total number of cars observed divided by 10,
to the total number of cars observed divided by 10.5 in order
to compensate for the fact that the probe cannot actually see as
much of the oncoming road as it can of the concurrent road.

5. RESULTS AND DISCUSSION

5.1. Single Probe in One-Directional
Pipeline
The first scenario considered is a single probe in a three-lane one-
directional pipeline. It is expected that this would be applicable
to the early days of AVs, where AVs would be distributed along
roads at less than one vehicle per 2 km of the road. It is assumed
that such a low distribution would be the norm for a substantial
period of time before the large-scale introduction of AVs on
public roads. The aim of this scenario is to estimate the accuracy
of a single probe measuring the density, speed, and flow of traffic

TABLE 2 | Results comparison to other studies with varying AV penetration rates.

Method Probe types Detection

range (m)

Density

estimation

errors

Seo et al. (2015a) Probe vehicle with spacing 300 (23.0–68.5%)

45.8%

Measurement equipment

(PVSME)

1,000 (3.8–12.7%)

8.3%

Fountoulakis et al.

(2017)

Connected vehicles with

adaptive cruise control

200 (19.5–58.0%)

38.8%

Moving array traffic

probes

Vehicles with LIDAR 200 (5.2–86.6%)

45.9%

along a one-directional pipeline, with reference to the “true”
measures of the global observer. This is tested under a range
of traffic conditions, defined as the percentage of road covered
with vehicles (the road coverage). It is also represented by the
proportion of mean density and jam density k̄/kjam. The space–
time plots in Figure 3 illustrate how a single probe measures data
under different road coverage levels (10, 30, 70%), where the red
solid line indicates the trajectory of the single probe and the blue
dashed lines represent the trajectories of non-probe vehicles. The
light green shade is the covered area that can be detected from
LIDAR. Due to the randomdistribution of vehicles, they aremore
likely to form clusters or platoons (as shown in Figure 3A rather
than drive alone. Figure 4 shows the overall mean speed across
timesteps for different road coverage levels.

To explore the probe errors in varying traffic conditions, a
preliminary set of experiments was conducted at 10% intervals of
road coverage, with five experiments of 5,000 timesteps for each
traffic condition. The results did not follow a pure exponential
but a double-hump trend. The unexpected nature of these results
led to another set of experiments with the same conditions
and sample sizes (20 times 5,000—timestep tests for each road
coverage percentage in the detailed 0–30% range) in order to
clarify the double-hump trend further. The double-hump curve
was found to be consistent across both preliminary experiments.

The final experiment’s results can be seen in Figure 5A. The
magnitudes of the errors are comparable to most outcomes
in other studies (Seo et al., 2015a; Fountoulakis et al., 2017)
(presented in Table 2), with the difference in error trends
caused by considering traffic heterogeneity and shockwaves.
The results show high levels of absolute error for low road
coverage, however this error quickly decreased as road coverage
approached (approximately) 20%. Following this, there was a
second jump back up to high levels of error, which decreased
again, in an approximately exponential trend, as road coverage
approached jam density.

To attempt to explain this double-hump trend, further
analysis that produces a more nuanced view of the changes in
traffic conditions and how they affect error is required. Firstly,
with the aim of establishing the density corresponding to the
maximum flow in the model, a q-k curve was plotted based on
the overall observer’s measurements. It illustrated that maximum
flow occurred at 20% road coverage. Therefore, it was suggested
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FIGURE 3 | Time-space plot of single probe in one direction. (A) 10% road coverage. (B) 30% road coverage. (C) 70% road coverage.

that the maximum flow point is correlated with the first decrease
in error in the double hump curve, as this also occurs at 20%
road coverage. The reason for this correlation is probably that
at maximum flow, the probe is moving most efficiently with
almost no shockwaves, and then it is getting a larger and more
representative sample of vehicles along its trajectory.

Further to this, the traffic conditions were analyzed based on
stochasticity. To measure stochasticity, 1,000-timestep tests were
run for a range of road coverages. The standard deviations of
the densities measured in each zone were plotted for varying
coverage percentages. Thus, the variability of the different
percentages along the pipeline were compared. The results are
shown in Figure 5B.

From the above results, at the beginning, the errors are
high, because the single probe is highly like to be within a
platoon and observe the locally high density. Then, it reaches
the point of maximum flow (around 20% road coverage), traffic
conditions are relatively smooth, with nearly no shockwaves.
For road coverage higher than 20%, it was observed during
model simulations that stop-and-go waves had started occurring
in the traffic, and then caused lower flow rates. When
the flow rate is lowered, the accuracy benefits associated

with high flow rates are removed. The stochasticity of the
road conditions peaks at around 40–50% road coverage, but
then sharply decreased as conditions approached jam density.
Following the increase in error associated with the onset of
shockwaves, the error was found to decrease as conditions
approached jam density. This was in keeping with the hypothesis
mentioned before. The double-hump absolute error trend for
a single probe, and the major factors leading to it may
therefore be approximately expressed in the idealized diagram
in Figure 5C.

In both Figure 5A and its idealization Figure 5C, we found
that the accuracy of flow was a function of the accuracy of density
and the accuracy of speed measurements. It appears that density
inaccuracy dominates flow inaccuracy up until 20% coverage.
However, speed inaccuracy dominates flow inaccuracy for the
rest. It is clear that density error is consistently much larger
than speed error. This is expected given that density is subject
to both traffic heterogeneity and shockwaves and is thus highly
sensitive. Speed, on the other hand, is forgiving in that most
vehicles are moving within a relatively small band of speeds, and
thus any sample of speeds taken by the probe will not have a very
large error.
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FIGURE 4 | Speed maps for different traffic states. (A) Global mean speed map under 10% road coverage. (B) Global mean speed map under 30% road coverage.

(C) Global mean speed map under 70% road coverage. (D) Global mean speed map under 90% road coverage.

For all the above tests, a radius of visibility of 22 cells
(approximately 100 m) has been used for the probe in the model.
This is the ideal visible range of current LIDAR technology.
However, in reality it is likely that this ideal range would often
not be possible due to obstacles and weather conditions (among
other causes of visibility reduction). It is, however, hoped that
improvements in technology and well-placed LIDAR sensors
will allow the ideal visible radius to be largely met in reality.
Nonetheless, a series of tests were run to assess the absolute error
of a single probe with a reduced radius of visibility. The reduced
radius was taken as 11 cells (approximately 50 m). The results of
the reduced radius tests are shown below in Figure 5D. Note that
for each percentage of road coverage, 10 tests of 5,000 timesteps
were undertaken, so that the sample size is consistent with the
ideal (22 cells) visibility radius data presented again.

From Figure 5D, it will be noticed that for both density
and flow measurements, there is a consistent increase in the
absolute error from the ideal visibility radius to the reduced
visibility radius, which is generally not very significant except

for low road coverage. However, for speed measurements, there
is a large portion of road coverage percentages (30–70%) where
the absolute error actually decreases with the reduced visibility
radius. This feature, however, is caused by the reduced visibility
radius that decreases the observation of shockwaves so that the
accuracy slightly increases. Overall, the marginal increase in
error (or the resulting additional error) associated with reduced
visibility means that even in situations where LIDAR cannot be
used to its full potential due to obstacles or weather, is not very
significant. It should be noted that the conclusion above is on
the premise that the probe recognizes when it is experiencing
reduced visibility, then reduces its radius of visibility uniformly,
and bases any density calculations off that smaller section of road.

To summarize, a single probe’s absolute error follows a double-
hump trend, with the high error associated with low road
coverage; low error associated with the point of maximum flow;
high error again associated with the onset of shockwaves; and
low error again associated with the approach to jam density
conditions. The reason is mainly because the probe’s error is
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FIGURE 5 | Double-hump trend of the single probe and explanation. (A) Single probe absolute error to road coverage. (B) Stochasticity in different road coverages.

(C) Idealized double-hump curve. (D) Comparison of absolute error for ideal and reduced visibility radius.

affected by heterogeneous traffic conditions with clusters in
the relative low coverage regime and stop-and-go waves in the
relative high coverage regime. Furthermore, even though a probe
is generally less accurate than a comparable static induction loop
detector in low road coverage situations or its visibility radius
gets restricted, it still shows the potential of collecting the data
efficiently and economically.

5.2. Multiple Probes in One-Directional
Pipeline
The second scenario that was considered involved up to
100 probes in a three-lane one-directional pipeline which
was identical to that used for Scenario 1. The aim of this
scenario was to explore the reduction of error associated with
multiple probes, and at what point the addition of probes no
longer contributed meaningful error reduction. Again, this was

tested under a range of traffic conditions by varying the road
coverage percentage.

It had been originally hypothesized that an increase in
the number of probes would decrease the absolute error
associated with density, speed, and flow measurement. After
the verification of simulation results, this was broadly found
to be the case that the majority of the decrease in error was
achieved by a relatively small number of additional probes,
but with some unexpected “noise” in the data. Even when
increasing number of probes, the common observation bias
appears to be significant. The results measuring the percentage
absolute error of parameters at 10, 20, 30, and 70% road
coverage, for 1, 2, 10, 20, and 100 probes, are presented
in Figures 6A–C. For each percentage of road coverage, five
simulations were undertaken of 1,000-timestep length and the
results averaged.
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FIGURE 6 | Percentage absolute error for multiple probes. (A) Percentage absolute error in density measurement. (B) Percentage absolute error in speed

measurement. (C) Percentage absolute error in flow measurement. (D) Space-time plot of multiple probes in one direction.

From Figure 6A, it is clear that the reduction in error
in the measurement of density between 10 probes and 100
probes is relatively small for all percentages of road coverage
tested. Any additional probes to these are not contributing
any substantial reduction of error. It is also found that the
improvement due to additional probes becomes less significant
progressively from 10% road coverage (with a reasonably
steep improvement), to 70% road coverage (with practically
no improvement).

The reduction of speed measurement error with the increase
of probes from Figure 6B is generally similar to that of density.
However, the errors are of a much smaller magnitude and in
a much smaller range, which is the reason for a lot of noise
in the data, and the apparently inexplicable trend at 70% road
coverage. It is again clear that any more than 10 probes (5
probes per kilometer) will not deliver any substantial error
reduction in speed measurement. Similarly, the trend registers

the greatest improvement with the onset of shockwaves (around
20% road coverage).

Again the reduction of flow measurement error with the
increase of probes is broadly consistent with density and speed
shown in Figure 6C. Given that density measurement tends to
dominate flow measurement, the flattening of the curves with
increased road coverage is again apparent, though more noise is
present due to the noise within both the density and the speed
measurement data.

The small error reductions, even when there are large numbers
of probes present, point to the considerable structural error
associated with moving array probes. This structural error is
mainly identified as common observation bias where most of
the vehicles are probes. Because the multiple probes drive in the
same direction, they “share” the observation bias as shown in
the superimposed parts (filled by dark green) of Figure 6D with
each other so that the bias cannot be eliminated progressively
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FIGURE 7 | Percentage absolute error for a single probe in a two-directional pipeline. (A) Percentage absolute error in density measurement. (B) Percentage absolute

error in density measurement (oncoming only). (C) Percentage absolute error in speed measurement. (D) Percentage absolute error in flow measurement.

with increased percentage of probes, even when it reaches 100%
probes. In this case, it is clear that there will be an overestimation
of vehicle density due to the shared bias. However, unfortunately,

this structural error is unavoidable, and it is the reason behind the

relatively small error reductions associated with multiple probes.

Thus, it can be concluded that an increased number of probes

reduces the absolute error associated with density, speed, and

flow measurement, with an optimum of 10 probes. However,
the reductions in error, as observed, are quite small due to the
superimposed bias of multiple probes.

5.3. Single Probe in Two-Directional
Pipeline
The third scenario that was considered involved a single probe
in a six-lane, two-directional pipeline essentially a duplication of
the pipeline used previously. From that, a further aspect of the
probe’s ability to measure the density, speed and flow of vehicles
passing in the opposite direction is tested. Insofar as this scenario
involves two directions of traffic, it better approximates reality.

With the model consistency being established, the probe’s
measurement error for the oncoming traffic’s information was
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plotted and distinguished against the error associated with
measuring concurrent traffic. The results are progressively
presented below in Figures 7A–D. Note the x-axis (Percentage
of Road Coverage) represents the varying traffic states for either
direction of the road, depending on in which direction the errors
are measured.

Figure 7A shows that the error is consistently lower when
the probe measures the density of oncoming traffic as opposed
to concurrent traffic regardless of the concurrent varying road
coverage. The reason for this significant reduction in error can be
that the probe detects a much larger sample of different vehicles
and conditions when viewing oncoming traffic. Moreover, a
probe traveling in the opposite direction is not more likely to be
within areas of congestion that would normally cause observation
bias, so that aspect of observation bias is largely removed in
the case of oncoming traffic. However, to investigate how the
accuracy of oncoming traffic density measurement is affected
by concurrent traffic conditions, these cases are enlarged in
Figure 7B. From this figure, it is clear that the trends are quite
opaque, given that the range in which these errors occur is 0–
4.5%. Also, it may be seen that, broadly speaking, the lowest error
occurs when the concurrent traffic conditions are at 20% road
coverage, which is associated with the highest levels of flow, and
thus with the largest sample possible (both of concurrent and
oncoming traffic). Note that despite the noise in the data and the
small range of errors, it may be assumed that concurrent traffic
conditions have relatively little (and quite unpredictable) effects
on the accuracy of density measurements of oncoming traffic.

From Figure 7C, there tends to be a single hump-like curve
in error when measuring the speed of oncoming traffic, under
all concurrent traffic conditions. That is because with the onset
of shockwaves, a probe tends to see more slow-moving vehicles
since it is more likely to be within a shockwave itself. Besides,
when observing oncoming traffic, the probe tends to observe
shockwaves for a longer time than areas of free-flow given their
slower movement. Since the error is based on an average of all
measurements (50,000—one corresponding to each timestep), a
disproportionate number of the timesteps will have been spent
observing shockwaves in the oncoming traffic. Thus, overall,
slow-moving vehicles are over-represented when shockwaves
occur so that it leads to the underestimation of the speed in road
coverage percentages where shockwaves are present.

From Figure 7D, it can be seen that, again, flow measurement
error tends to follow density more than speed. Thus, as for
density, the measurement of flow has a (generally) substantial
reduction in error when it is of the oncoming traffic rather
than concurrent traffic. All the preceding reasons are applicable
here since the flow is merely the product of density and speed.
However, it is notable that the measurement of oncoming traffic
appears to be sometimes less accurate than of concurrent traffic.
This occurs when concurrent traffic is at 10% coverage due to
associated with observation bias due to insufficient vehicles to
detect, and when concurrent traffic is at high percentages (70–
90), which reduces the sampling power of the probe due to its
slow movement. Despite that, it is clear that in the measurement
of flow, it is generally more accurate to measure oncoming traffic
rather than concurrent traffic.

6. CONCLUSION

It has been seen that there is potential in the use of autonomous
vehicles as moving array probes. Through the construction
of three scenarios, the nature and trends in probe “error”
have been detected, presenting the possibility of correction,
which may produce results that are acceptable given the other
benefits associated with AV probes and the conditions being
monitored. Research should be directed to developing techniques
to correct for measurement bias. The term “error” itself is
a somewhat misleading, as the probe measures the world
subjectively, from the point-of-view of the moving vehicle (as
a moving array), while the objective loop detector is objective
from a fixed point or in the case of complete coverage,
all fixed points (providing the omniscient perspective). But
the probe measurement, which is time-weighted, i.e., depends
on how much time is spent in traffic, is actually closer
to how travelers perceive traffic than how system managers
measure it (Levinson, 2003), and may provide valuable insights
by itself.

The most fundamental finding relating to a single probe’s
error was the double-hump trend. Probe error was thus found
to be the result of an interaction between traffic heterogeneity
and shockwaves. It was also found that when the probe’s
radius of visibility is reduced by half, the increase in error
is small.

The results of the investigation into multiple probes differed
slightly from expectations. It is found that while there is a
decrease in error associated with an increase in the number of
probes, it is generally not very large, or proportionate to the
number of additional probes. The reason for this is the substantial
and unavoidable structural observation bias and tendency to be
within areas of congestion.

Finally, it was learned that the effects of concurrent traffic
conditions on the observation of oncoming are appreciable but
secondary. It was the case that high flow (critical density) in
concurrent traffic, was broadly associated with the lower error in
the measurement of oncoming traffic.

Future investigation can consider alternative geometric
configurations beyond the pipeline including intersections
and surrounding infrastructures. More scenarios (for instance,
multiple probes in a two-directional pipeline) and more realistic
traffic conditions may yield additional insights. Meanwhile,
camera recordings are expected to be integrated with the LIDAR
data for 3D scenes of tracking objects, which is ongoing in
many autonomous vehicle companies. This technology will
enhance not only self-driving technology but also the analysis
of driver behavior. GPS and V2X communications systems
may assist AV probes in the future. In situations where AV
traffic is isolated, for instance in dedicated lanes, the accuracy
of LIDAR data improves by reducing or eliminating the
impact of platooning biases. Overall, it is hoped that this
investigation has shown the potential and limitations of AVs
used as moving array traffic probes, which is worthy of further
research. While accuracy limitations were observed that differ
from other traditional data collection methods, we believe these
are correctable with appropriate calibration methods, and are
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outweighed by the economy and ubiquity that AV probes appear
to offer.
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