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A model that is capable of handling the non-linear trend of COVID-19 throughout the

US and evaluate different effects of interstate/intrastate mobility measures can help

decision-makers adjust guidelines and state-wide mandates to contain the pandemic’s

spread. The abundance of cellular-based data has made it possible to study many

aspects of users’ mobility, including their travel, contact, and dwell patterns. This study

uses a compartmental metapopulation model to present a correlation between the

contact and mobility indices and the likelihood of being susceptible to infection. We

studied the effect of travel from other states on overall infections in a destination state

and observed a strong inverse correlation of 0.98 between the contact index and social

awareness compartment, i.e., individuals who are no longer susceptible to infection. The

shelter-in-place what-if analysis for travelers from other states on the course of infection

in the destination state showed a possible reduction of over 22% in the total number of

infections and death if travelers sheltered in place for 5–7 days.

Keywords: shelter in place, COVID19, contact index, mobility index, compartmental modeling, interstate travel,

intrastate travel

1. INTRODUCTION

In December 2019, a viral infection caused by the SARS-CoV-2 virus took the world by surprise.
In a span of 2 months, this virus had spread to over 20 countries worldwide (Dong et al., 2020).
It was classified as the COVID-19 pandemic by the World Health Organization on February 11,
2020. Based on the Centers for Disease Control and Prevention (CDC), the first case of the novel
coronavirus was introduced to the US on January 15, 2020, through travel from Wuhan, China
(CDC, 2020). On January 17, 2020, CDC implemented health screening measures for travelers
at several major US airports. This signifies that the effect of travel in the spreading of the novel
coronavirus outbreak cannot be ignored (Wells et al., 2020).

For over a century, compartmentalized epidemiological models, generally referred to as the
susceptible, exposed, infected, recovered, and dead (SEIRD) models, have been considered the best
tool for modeling the trend of epidemics. These models share an ordinary differential equation
(ODE) at their core; however, most epidemiological models are based on the presumption of
a constant population divided into compartments and model individuals’ transition from one
compartment to another but do not consider travel from one location to another.
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COVID-19 has occurred at a time where detailed mobility
data is abundant and readily available. For example, analysis of
cellular signals has made it possible to determine several mobility
measures (such as mobility index, contact index, and at-home)
(Cuebiq, 2020a,c), which can be used to study the effect of travels
and enhance the epidemiological modeling.

This study aims to present a hybrid modeling methodology
using the model presented in Bakhtiari Ramezani et al.
(2021) and study the correlation of social awareness with
interstate/intrastate mobility and contact indices in the US. This
study also aims at determining the effect of traveling by exposed
travelers to a destination state, who do not adhere to shelter-in-
place guidelines, on overall exposures and infections. Section 2
provides an overview of the compartmental models and basic
assumptions surrounding them. Section 3 discusses methodology
and data gathering approaches used in the present work. Section
4 examines correlations between observed mobility data and
modeling outcomes for the state of Alabama.

2. BACKGROUND

Basic epidemiological modeling of the disease through ODEs is a
challenging task for the recent pandemic due to the lack of an
accurate model that can handle the non-linear behavior being
observed (e.g., Chatterjee et al., 2020; Fernández-Villaverde and
Jones, 2020; Jia et al., 2020; Lingzhi et al., 2020; Moghadas et al.,
2020; Volpatto et al., 2020;Wang et al., 2020).Whatmakes it even
more challenging to model the COVID-19 pandemic trend is the
introduction of social distancing measures, states of emergency,
and stay-at-home orders.

Belik et al. (2011) have presented a model to account for
movements to and from destinations based onmobility networks.
They used meta-population network topology and calculated the
epidemic’s velocity, highlighting the importance of considering
mobility in spatial epidemic models. Similarly, Pei et al. (2018)
used a meta-population model to study the Spatio-temporal
spreading of influenza and incorporated the mobility data into
their model. Their human-centered model could predict the
onset of the outbreak, its peak time, and peak intensity.

Pei et al. (2020) studied the correlation between the basic
reproductive numbers and social awareness factors, including
social distancing. Du et al. (2020), have used mobility data
and an incubation period of 10 days to study the effect of
lockdown and travel restrictions imposed on Wuhan to other
cities in China and examine how these restrictions may have
helped control the rate of the spreading. Similarly, Kraemer
et al. (2020) used the mobility data from Wuhan to study the
effects of travel restrictions on the containment of infections.
They observed that Wuhan’s early travel restrictions resulted in
a negative growth rate for COVID-19, consequently containing
the virus’s spreading. On the contrary, they express doubt in
the effectiveness of restrictions put in place much later in
the pandemic.

As pointed out earlier in this section, many of the
existing compartmental models fail to capture the non-
linear epidemic trend of COVID-19. To overcome this

shortcoming, Bakhtiari Ramezani et al. (2021) have presented
a non-linear compartmental model for susceptible, exposed,
asymptomatic, infected, recovered, dead, and quarantined
(SEAIRDQ), Figure 1 capable of capturing public awareness and
quarantine practices (Q). Additionally, this model accounts for
asymptomatic (A) individuals, i.e., infected with no apparent
symptoms. A more detailed analysis of the SEAIRDQ model
and theories surrounding each compartment is provided in
Bakhtiari Ramezani et al. (2021).

3. MATERIAL AND METHODOLOGY

3.1. Data
The number of daily death and reported confirmed infection
cases were acquired at the county-level for each state from USA
Facts (2020). This data was combined with county-level metrics
(including each county’s population) to get a fine level measure
of the spread of the virus in each state. Aggregated county-level
values were then used to model each state. Differential evolution
was used to find the globally optimal solution by minimizing the
errors between the observed cases and modeling outcomes.

Additionally, this study uses publicly available travel, mobility,
and contact index data from Cuebiq (2020a,c). According to
Lawrence (2019), location data collected from anonymous users
who choose to share their location data with Cuebiq’s mobile
application partners are used to calculate the dwell time. The
dwell time determines the length of stay of a mobile user at
a particular location and the distances traveled by the user in
a given period of time. We also use several of the metrics
that Cuebiq has defined (Cuebiq, 2020b), as the basis of our
correlation studies. These metrics include:

• Cuebiq Mobility Index (CMI): median of a derivative factor
to indicate how far individuals have traveled each day. The
CMI is expressed in a logarithmic scale, with a CMI of
three indicating that the target study area’s median users have
traveled 1,000 m (or 1 km) that day.

• Cuebiq Contact Index (CCI): determines whether two or more
devices have stayed within 15.2 m of each other over a five-
minute period. It should be noted that individuals without a
cellular device (such as students) or those who have not opted
for their location information to be anonymously shared are
excluded from these calculations.

• @Home or Shelter-In-Place (SIP): indicates the percentage of
users with movements <100 m of movement in a day.

• Year over Year (YoY): indicated the variation of a metric
(CMI, CCI, or SIP) relative to the mean of that metric over
the past 365 days.

3.2. Methodology
As mentioned before, the goal of the present study is to study the
effect of intrastate and interstate travels on the spread of COVID-
19. It should be noted that modeling the nationwide travel effects
necessitates the international travels into the US, along with
the 2-weeks shelter-in-place (SIP) data to be included; however,
such data was not accessible, and consequently, conducting a
nationwide study was not possible.
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FIGURE 1 | The SEAIRDQ compartmental model used in the present study. Individuals that are practicing social awareness (including social distancing, quarantine,

shelter in place,...) are removed from the S compartment at a non-linear rate of ω(t) and are added to the quarantine (Q) compartment. On the contrary, changes in the

quarantine observations are added back to the S compartment at a rate of ζ (t). In other words, parameters ω(t) and ζ (t) are polynomial functions that help in modeling

the non-linear fluctuations of the susceptible compartment as the result of government orders, public awareness, and social distancing measures (Bakhtiari Ramezani

et al., 2021).

As noted in section 3.1, due to privacy settings or availability
of a cellular device, differences between the population trend
captured through Cuebiq indices (such as SIP or CCI) and those
estimated by the model [such as S(t), or Q(t)], are expected to
exist. In order to examine the connection between epidemic and
inter-state travel behavior:

1. The number of travelers from each of the 50 states to a target
state was determined.

2. The number of individuals who traveled from another state
and did not observe the 2-weeks shelter-in-place guideline
(No-SIP) was determined.

3. To determine the probability of being exposed to infection
among the No-SIPs, the compartmental model was run for
each of the 50 states, and the probability of being exposed to
infections was determined for travelers from each state.

4. To inform the model of realistic initial estimates for social
awareness, the @Home (SIP) value of each state at the time
of reporting of the first infectious case is used to set the
lower bound for the initial social awareness or the quarantine
compartment population (Q0). The upper bound of Q0 for
that state is set to 99%, and a differential evolution model is
then used to match the model’s output with the reported cases.

5. Initial conditions (ICs) play an important role in the
correct behavior of the ODEs and are one of the most
prominent sources of bias in the calculations. To set the most
realistic ICs:

• Model variables’ bounds are chosen from reported values
in the literature. If a parameter was not reported in the
literature, Bayesian calibration and sensitivity analysis,
as described in Bakhtiari Ramezani et al. (2021), were
performed to ensure that the most suitable ranges
were used.

• Differential evolution modeling is performed on the first 60
days of the data (i.e., cumulative infections and deaths) in
each state.

• The trained model is used to estimate the correct ICs (A0,
S0, Q0, and E0). These initial values are used to perform a
history match for the whole observation period and further
refine the match parameters.

6. For each day in the interstate modeling period, the daily travel
data from each state is used to estimate the daily influx of
exposed travelers from that state. These new exposures and the
infections caused by previous travelers and otherwise normal
rate of infections are used to determine the compounding
effect on updated infections and deaths in the target state.

3.2.1. The Effect of Intrastate Mobility on

Susceptibility
To study the correlation between intrastate mobility and
susceptibility, we should first note that individuals are no longer
susceptible to infection as they move to the Social Awareness
compartment, Q(t). We should also note that the synchronicity
of reported data (i.e., the lag between observed data and reported
values) can adversely affect the results’ interpretability.

Several factors affect the synchronicity of reported data and
can introducemodeling biases. These may include the incubation
period (the time it takes for the first symptoms to emerge),
which is estimated to be between 5 and 7 days for COVID-19
(Jia et al., 2020; Volpatto et al., 2020; Bakhtiari Ramezani et al.,
2021), the waiting period to be tested, and availability of the
results (which was typically several days during the initial months
of the pandemic outbreak), technical issues, laboratory errors,
backlogs, and delay in entering the data into national databases.
Consequently, the spread resulting from an event that happened
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FIGURE 2 | Distribution of the symptomatic and asymptomatic compartments

using the SEAIRDQ model. Vertical lines show the starting and end of

Shelter-In-Place (SIP) order and face mask mandatory order, as well as the

starting date of the second peak and third peaks in AL through December 22,

2020.

at a particular date may not show itself in the data until several
days later.

Additionally, sincemost students do not carry a cellular device
to school, capturing the effect of school reopening through CCI
is not readily available. To overcome this shortcoming and avoid
any biases that can stem from this, we have limited the intrastate
study period to the first few months following the first reported
infection in the states (i.e., up until schools reopening).

3.2.2. Precautions for Travel—SIP
One of the important factors to consider while traveling from one
state to another is to shelter in place for 14 days upon arrival at
the destination. This section will examine the effect of interstate
travel and evaluate the additional risk of infection that may be
introduced as travel between the two regions takes place.

Due to the lack of high granularity data that would distinguish
between the general travelers and infected travelers, using a
multi-city compartmental model, such as the one suggested by
Arino and van den Driessche (2003), is not possible; instead, we
will examine the effect of mobility through a probability function
that estimates the number of exposed travelers to a destination.

The probability of being exposed at any given date in any
state is determined through the sum of all infected individuals
(whether symptomatic or asymptomatic) at that date, divided
by the total population of the state. Note should be taken that
the number of infected individuals is not simply the number of
positive cases reported at the date of interest, as this would not
take the course of the illness or asymptomatic individuals into
account. Instead, we will define the probability of being exposed
or infected at time t, in the state s as Ps(t):

Ps(t) =
Is(t)+ As(t)

Ns
(1)

FIGURE 3 | The cumulative infected and death cases reported vs. outputs of

the SEAIRDQ model in Alabama. Accuracy of more than 99% for the

confirmed infected cases, and over 98% for the deaths is observed,

suggesting a close match and correctly calibrated model.

TABLE 1 | Comparison between the recorded cases, and the outcome of the

SEAIRDQ model for the state of Alabama through December 22, 2020.

Parameter Value

Total population 4,903,185

Deaths (recorded) 4,452

Deaths (estimated—SEAIRDQ) 4,400

Estimated death accuracy 98.83%

Estimated death percentage of the population (SEAIRDQ) 0.090%

Confirmed cases 329,811

Confirmed cases (Estimated—SEAIRDQ) 331,808

Estimated confirmed cases accuracy 99.39%

Estimated infected percentage of the population (SEAIRDQ) 6.767%

Estimated starting date of the second peak First week of June

Estimated starting date of third peak Last week of August

where Is(t) and As(t) show the number of individuals at time t in
the symptomatic and asymptomatic compartments in the state s,
respectively, and Ns is the population of the state s.

The travelers’ SIP data suggests that the majority of travelers
(over 83.5%) have not adhered to the recommended SIP
measures and have had displacements of more than 100 m in the
first 14 days of their visit (Cuebiq, 2020c). It is important to note
that the exposed individuals can spread the disease at a minimum
rate of β(t) in the destination state, increasing the potential for
the number of infections. As a result, the influx of inter-state
travelers that fail to observe the SIP guidelines and adhere to them
can pose a considerable risk of spikes in the number of cases.

It is unlikely that travelers suffering from COVID-19
symptoms, or those who have completed their incubation period,
would leave for another (destination) state; as a result, we assume
that travelers incoming to a destination state are merely exposed
and have no initial symptoms, and will not exhibit any symptoms
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FIGURE 4 | Correlation between CCI and Q(t) in Alabama for the 5 months

proceeding the first reported case of infection in the state. A strong inverse

correlation of 98.7 between CCI and Q(t) is observed, with reporting lags of 24

days, suggesting that the SEAIRDQ model can capture the trends of social

distancing.

until their incubation period is completed, which as stated before
is estimated to be between 5 and 7 days.

The product of Ps(t), Equation (1), for each state by the
number of travelers per day from that state that have not observed
SIP, ns(t), gives the probable number of exposed or infected
individuals that have traveled to the destination of interest on a
single day:

δET(t) =
∑m

s=1
Ps(t)· ns(t) (2)

where δET(t) denotes the incrementally exposed individuals
added to the destination state through travel and will show signs
of infection following their incubation period, and m is the
total number of states with travelers coming to the destination
state. Each exposed traveler may become symptomatic infected
or asymptomatic infected. These exposed travelers residing in
the destination state and not observing SIP will expose other
susceptible individuals in the destination, S(t), with the state’s
transmission rate, β(t), during their incubation period. Since the
incubation period is between 5 and 7 days, a stacking effect will
be observed; a new batch of exposed individuals traveling into
the destination and not observing SIP will expose new susceptible
individuals. In contrast, the previously exposed travelers will keep
adding to the exposed individuals.

To accurately capture this compounding effect and complex
chain of exposures and subsequent infections through travel,
SEAIRDQmodeling is performed for all periods following travels,
on a smaller scale model that uses the initial number of exposed
travelers and the model parameters of the destination state.
This incremental analysis allows for a complete breakdown of
the spreading that results from travel vs. the normal course of
infectious disease.

3.2.3. Model Calibration
Following Bakhtiari Ramezani et al. (2021), a Bayesian
calibration study was conducted to minimize uncertainty in
different modeling parameters and produce results that capture
observed values of cumulative infection and death.

4. CASE STUDY

Due to the lack of data on incoming international travels to
the US, including the SIP data, this study has focused on state-
level modeling and nationwide travels. A case study is conducted
for Alabama to examine the correlation between intrastate and
interstate mobility and contact indices with social awareness
practices and examine the compounding effect of infections
through exposed travelers.

We will study a baseline model, reflecting on the existing
observations (including all interstate mobility trends), vs. an
idealized case where inbound exposed travelers would follow SIP
guidelines and self-quarantine for a minimum incubation period
of 5–7 days.

4.1. Baseline Modeling
As pointed out in section 3, the correct selection of the
initial conditions is critical to the ODEs. Published values and
observations from mobility data were used to set the ICs and
their lower/upper bounds. For example, the SIP value of 17%
for AL on March 14, 2020, shows that S0 is not the same as N,
the state’s total population. It should be noted that the majority
of the compartmental models, except for Jia et al. (2020) and
Bakhtiari Ramezani et al. (2021), take S0 to be the same as N.
The value of SIP is used as the lower bound of the initial social
awareness compartment, Q0.

4.1.1. Insights and Data
According to Division of infectious Diseases and Outbreaks
(2020), several factors such as technical and laboratory errors,
overcoming backlogs due to installation of new laboratory
devices, and the likes, there are sudden spikes and inflation in the
number of cases reported in Alabama. In order to better capture
abnormalities seen in the reported data, data is analyzed in three
time-segments:

• March 13, 2020–July 1, 2020
• July 1, 2020–September 1, 2020
• September 1, 2020–December 22, 2020

The cumulative number of infected individuals and deaths for
Alabama is used to model each wave’s peaks and starting date.
Figure 2 shows the estimated symptomatic and asymptomatic
infections, starting and end of SIP order and face mask
mandatory order, as well as the starting date of the second and
third waves in AL through December 22, 2020. Figure 3 shows
a comparison between observed cumulative cases of infection
and deaths in Alabama vs. those of the SEAIRDQmodel. Table 1
shows a detailed comparison between estimated modeling results
and the recorded cases for the state of Alabama from March 13,
2020, through December 22, 2020.
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FIGURE 5 | Average travels to Alabama and the percentage of SIP and No SIP for each origin state. The pie charts’ size shows the number of travelers from each

state to Alabama during the 83 days study period. Divisions of the pie chart reflect the percentage of SIP and No-SIP travelers. Individuals observing SIP are shown as

green, and No-SIP individuals are denoted in red. The color scale of each state denotes the number of exposed travelers from that state. This number is determined

by the probability of being exposed in the origin state at the end of 83 days of study (SIP and travel data from Cuebiq, 2020c).

FIGURE 6 | Effect of exposed travelers on the daily number of symptomatic

and asymptomatic infections in Alabama. A reduction of 53.9%, or 26, 255

active infections, could have been observed if travelers from other states

observed the SIP practices.

4.2. Intrastate Mobility
A case study of intrastate mobility was conducted in Alabama; as
noted in section 3.2.1, the intrastate mobility study is based on
the first 5 months of data since initial infections were reported to
avoid any bias introduced from schools reopening.

Figure 4 shows an example of the correlation study between
the Q(t) compartment and the CCI in the state of Alabama.
A strong inverse correlation of 98.7 between CCI and Q(t)

FIGURE 7 | Effect of exposed travelers on cumulative infected individuals

estimated using SEAIRDQ in Alabama. A potential decrease of 22.95% or

roughly 76, 100 fewer infected cases could have been observed in Alabama,

given all travelers from higher-risk states were to SIP for a minimum of their

incubation period (5–7 days).

is observed, with reporting lags of 24 days. This strong
inverse correlation suggests that increased contact is inversely
proportional to social awareness. It can also be observed that
the SEAIRDQ model can capture the trends of social distancing
(and, inversely, the contacts). This suggests that trends that are
not necessarily observed through the contact metrics (such as the
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FIGURE 8 | Effect of exposed travelers on the number of deaths in Alabama.

Cumulative death would have been reduced by 22.43%, or 989 people if all

travelers from higher-risk states were to SIP for a minimum of their incubation

period (5–7 days).

presence of students at schools) are also inherently captured by
the model but cannot be further verified through CCI data alone.

A similar study was conducted for increased intrastate
mobility (i.e., increase in CMI YoY within a state) and Q(t);
however, a strong correlation between the degree of mobility
and susceptibility was not observed. This suggests that social
awareness is not necessarily affected by mobility alone. As long
as social distancing or other contact-related precautions are
followed, travel will not directly influence susceptibility.

4.3. Interstate Mobility
The interstate travel with SIP measurement is publicly available
on the Cuebiq website from September 28, 2020, through
December 22, 2020. For this reason, we have used this available
period to study the inter-state travel on the spread of COVID-
19. Cuebiq reports travelers’ data over 14 days; thus, overall data
are divided by 14 to estimate the number of travelers per day.
Figure 5 shows the average inter-state travels to Alabama from
other states over this period.

The total number of interstate travelers from all states to
Alabama shows 87.886 Million individuals over these 83 days
with a 14-day window, averaging 75.6 thousand travelers per day,
or an equivalent of 1.5% of the total population of Alabama. This
means that the total travel volume to this state over the short span
of 83 days is approximately 1.28 times the state’s total population;
thus, travel and its likelihood of amplifying the transmission
cannot be ignored.

As discussed in section 3.2.2, incremental SEAIRDQmodeling
is performed for each day after September 28, 2020 (the first day
for which travel data is available). For each day of modeling,
Equation (2) is used to estimate the daily flow of exposed
individuals (yet to become fully infected) into the destination
state. The total number of exposed individuals is subsequently
used for E0. Furthermore, Q0 is taken to be zero, while I0, and

A0 are both set to an initial seed value of one. The rest of the ICs
from Alabama are used in the SEAIRDQmodel for time t.

Figure 6 shows a comparison between the current
symptomatic and asymptomatic infections in Alabama,
reflecting the compounded effect of travels, vs. a model in which
no travelers from other states were included in the model. As
suggested by this figure, a considerable reduction of 53.9%, or
26, 255 individuals, could have been observed in the number
of active infections if travelers from other states observed the
SIP practices.

Figures 7, 8 show the outcome of the SEAIRDQ model
on incremental travels. As noted in Figure 7, assuming that
symptomatic individuals will quarantine, a potential decrease of
22.95% or roughly 76, 100 fewer infected cases could have been
observed in Alabama, given all travelers from higher-risk states
were to SIP for a minimum of their incubation period (5–7
days). On a similar note, according to Figure 8, cumulative death
would have been reduced by 22.43%, or 989 people, if the same
considerations were made.

5. CONCLUSION

A compartmental metapopulation model was used in the present
study to analyze the correlation between social awareness
compartment, Q, and contact index, CCI. It was observed
that a strong inverse correlation exists between the contact
index and social awareness and that the SEAIRDQ model
can capture these correlations accurately. A similar correlation
could not be established between Q and mobility index; this
suggests that mobility by itself is not a defining factor for
the spread of the disease, as long as the social distancing
measures are observed. While the compartmental model was
capable of capturing Q, even after school opening and ease of
restrictions, lack of contact data for students and other social
sectors has resulted in less apparent correlations, suggesting
that CCI alone is insufficient to capture relaxation of social
awareness measures. A probabilistic model was also created to
estimate the number of exposed individuals traveling from other
states to a destination state. Subsequent incremental modeling
of travels to the destination state suggested that as much as
22% reduction in cumulative infections and deaths could be
achieved, solely by observing SIP measures by travelers from
other states.
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6. NOMENCLATURE

Variable Description

S(t) Number of susceptible individuals at time t

Q(t) Number of not susceptible individuals at time t

I(t) Number of symptomatic infected individuals at time t

A(t) Number of asymptomatic infected individuals at time t

E(t) Number of exposed individuals at time t

R(t) Number of recovered individuals at time t

D(t) Number of deceased individuals at time t

ω(t) Effect of moving individuals from S to Q

ζ (t) Rate of leaving Q and becoming susceptible again

β Infection rate of the symptomatic compartment

θ Infection rate of the asymptomatic compartment

fI Fraction of the deceased infected individuals removed from I

fA Fraction of the deceased infected individuals removed from A

γI Recovery rate in the symptomatic compartment

γA Recovery rate in the asymptomatic compartment

µI death rate in the symptomatic compartment

µA death rate in the asymptomatic compartment

σ Incubation rate

ρ Fraction of the exposed individuals ultimately becoming

infected

η Rate of recovered individuals loosing their immunity and

returning to S

CCI Cuebiq Contact Index, Cuebiq (2020a)

CMI Cuebiq Mobility Index, Cuebiq (2020b)

SIP Shelter-In-Place, Cuebiq (2020c)

s Identifier for a state

m Ensemble of all states from which individuals have traveled to

a destination state

Ps(t) Probability of being exposed when traveling from state s at

time t

Is(t) Number of symptomatic infected individuals in state s at time t

As(t) Number of asymptomatic infected individuals in state s at

time t

Ns Total population of state s

δET (t) Incremental exposed individuals added to the destination

state through travel at time t

ns(t) Number of travelers not observing SIP and traveling from

state s at time t
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