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Lagos is one of the fastest growing world mega-cities with a huge urban mobility crisis, the
traditional aggregate city’s development model could not provide reliable scientific
solutions to monitor the competing demands of various land-use components and the
urbanization’s effects on transport infrastructure space. This study uses a disaggregated
predictive spatial modeling approach to investigate the evolutionary dynamics of
transportation infrastructure space to address the fragmented urban chain process.
The methodology involves analysis and modeling of the land-use spatial transition
changes that have occurred over the past three decades using three Landsat imagery
epochs (1984, 2013, and 2019) in remote sensing ARC-GIS 10.7. Furthermore, the
prediction of the two-temporal milestones (2030 and 2050) using hybrid cellular automata-
Markov (CA-Markov) implemented in IDIRISI SELVA 17.0 software when the tides of
social-demographic factors were expected to bring about significant urban spatial
transformation. The forecast results are expected to increase the area for transport
infrastructure spaces by 93 km2 (7.3%) in 2030 and 157 km2 (12.4%) in 2050. The
model’s kappa reliability coefficient estimates for the three temporal scales (k1984 �
85%; k2013 � 88% and k2019 � 89%) are higher than the 80% minimum adjudged
strong agreement between the ground truth and prediction classified images in
literature. The model provides efficient tool in urban development planning and
sustainable transport decisions.

Keywords: transport infrastructures, land-use land cover change, urban growth phenomena, dynamic transition
modeling, sustainable mobility

INTRODUCTION

Globalization has not only brought about the transformation of human activities through the
alignment of the economy, trade, investment, employment, industry and technology beyond regions,
countries and continents. However, it has also triggered uncontrolled migration and urbanization
because of the attraction offered by the aforementioned activities. Many cities in the developing
countries are currently facing an uncertain future due to high urbanization rates and poor
infrastructure. The most critical aspect of local, regional and global relations is transportation,
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and the poorly rated and dysfunctional state of infrastructure in
developing countries has aggravated many social, economic and
environmental issues about the viability of the fast-agglomerating
urban centers of Africa and Asia (Njoh, 2008; Goryakin et al.,
2015). Urbanization includes regular land surfaces being changed
over into different land use/land cover (LULC), (i.e. Houses,
transport, built areas, parks, and other impermeable surfaces)
which results in dramatic transition in the consistency of the
urban landscape with its toll on human habitation and urban
areas (Cai et al., 2019). Rapid urbanization, population growth
and economic developments are the main causes of LULC change
with numerous consequences on urban settings, not least in terms
of ecological processes and increased environmental footprints
(Wang et al., 2018).

Urban chain process is thought to usher in positive
improvements in living quality, the advancement of human
civilization and economic accomplishment in developed
countries. Many African cities are hybrid urban and peri-
urban slums inundated by the massive influx of people hardly
able to cope with its inadequate and fragmented infrastructure
and planning developments (Xu et al., 2019). Reckoning with
some of the recent pressures and disruptions in cities caused by
increasing urbanization, lack of timely and credible information
on urban spatial-temporal transition in developing countries has
constantly been a strong barrier to the deployment and
implementation of suitable planning policies for city
management.

In the last centuries, societies continued to exploit and
transform the environment leading to tremendous
improvements (and dis-improvements) to landscape and land
Geo-morphology. This dramatic alteration has had a profound
effect on the natural environment, sometimes, leading to abuse,
over-exploitation and disruption over time (Adhikari and de
Beurs, 2017). When reflecting on the direct consequences of
over-exploitation and related human activities on land resources,
some researchers have stressed that the biophysical properties of
the land are over-exploited and the purpose on which it is based
or the reason for which the land is used (land-use) must be
moderated andmade sustainable (Turner et al., 2001; Ojima et al.,
2005; Peters et al., 2016).

There is no stop button to urban growth, development and
complex spatial-temporal transformation, not least when the
economic prospects remain the strongest impetus. Therefore,
keeping tabs on the transition through modeling, simulating and
forecasting the future city growth and scenarios would be
beneficial as an effective planning tool for grasp the
interactions between the natural environment and the
anthropogenic challenges of rapid urbanization. Accordingly,
the estimation of LULC transitions is a necessary step to gain
holistic and ethical insights needed for management of natural
resource and sustainable development tracking (Cobbinah and
Aboagye, 2017).

The extent of spatial-temporal land use change varies with
time, geographic area and most significantly, the land cover
nature. Land cover is the bio-physical areas observed from the
Earth, which includes vegetation, bare lands, soils, rock
outcrops and water catchments (Panagos et al., 2015).

Information on LULC cannot easily be obtained without
the aid of applied remote sensing technologies and
techniques. For example, geographic information systems
(GIS) and remote sensing (RS) are powerful tools for
capturing reliable and timely information on the spatial
distribution of LULC changes across large areas. In
addition, GIS provides a versatile framework to track
changes for digital data collection, storage, display and
analysis (Dragicevic et al., 2001).

Remote sensing imagery and GIS have proven to be useful
tools in determining LULC changes, for geodetic probing and
interpretation of geophysical changes of the Earth’s surface. The
application of GIS-RS in urban and environmental planning has
resulted in the tremendous development of spatial modeling
methods, not least when used in decision and planning
support modeling tools such as Markov chain (MC) (Jokar
Arsanjani et al., 2013) and hybrid Cellular Automata-Markov
(CA-Markov) (Basse et al., 2014). Other decision support tools are
Logistical Regression (LR) (Hu and Lo, 2007), Artificial Neural
Network (ANN) (Pijanowski et al., 2002) and the dynamic
Conversion of Land Use and its Effects (CLUE) models. Also,
many studies have shown that integrated multilayer perception-
Markov chain analysis approach with GIS could be effectively
used for measuring and modeling changes in spatial-temporal
LULC changes (Mishra and Rai, 2016).

These models have proven their ability to provide a
quantitative approach to tackle multi-dimensional problems of
cities and as an environmental planning decision-making
technique. Therein, it can be used to assess land suitability for
development–both crucial and necessary for effective
management of large cities. Similarly, a number of researchers
have regularly highlighted the shortcomings of these types of
individual models (Guan et al., 2008; Basse et al., 2014). To
overcome the perceived shortcomings, hybridized integrated
modeling approaches are commonly used for simulating and
projecting LULC - see for example, (Triantakonstantis and
Mountrakis, 2012).

In the last decades, remote sensing (RS) and geographic
information systems (GIS) have been successfully used for
land and other natural resources management and for
updating spatial data. It is effective both in terms of offering a
much lower cost than conventional ground survey methods and
the efficacy of rapid routine LULC data acquisition (Araya and
Cabral, 2010). Understanding the growth, shape and pattern of
complex dynamics require robust RS techniques and tools
including GIS and CA-Markov for decision modeling (Barredo
et al., 2004).

Since 1972, satellite data and images from the Landsat
Multispectral Scanner (MSS), Thematic Mapper (TM) and
Enhanced Thematic Mapper Plus (ETM+) have been widely
used because of their rich spectral resolutions in land cover
studies in many diverse agricultural, forestry and built
environment fields (Reis, 2008). Landsat is one of the most
widely used remote sensing data for satellites, and its
continuous long-term availability, cost-effectiveness and
timeliness have made it an invaluable resource for monitoring
LULC change. Vast literature has provided general technical
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information on Landsat data (Chander et al., 2009; Markham and
Helder, 2012; Roy et al., 2014).

Tracking the change process is necessary to identify land
use properties of interest between two or more temporal dates
on digital images. Most common techniques described in the
literature involve comparison and classification of key
components based on temporal images at various
referenced dates. Some of the familiar methods include
traditional image distinction, image regression, post-
classification-comparison, image ratio, and change on-
screen manual digitization by a review of key components
and classification of multi-date images. Research Synopsis
have proven that the post-classification-comparison (pixel-
by-pixel) analysis is the most reliable approach and has the
benefit of evidence the magnitude of the changes (Leao et al.,
2001; Jat et al., 2017).

In the current study, the main objective is to simulate LULC
changes using RS-GIS and hybrid transition CA-Markov
techniques which are applied to satellite imagery to monitor
past development dynamics and to predict future scenarios
affecting urban mobility and supporting infrastructure space in
the most evolving Nigerian mega-city of Lagos. In this study,
urbanization is monitored in Nigeria from two significant time-
steps (1984 and 2013) to the current research year in 2019. In
1983, the country’s return to civil rule returned activated

economic growth, which immediately birthed the era of high
urbanization due to the attractiveness of the city in 1984 (Blei
et al., 2018). For the first time in 2013, population indices hit an
urban population of 58.3 percent, bringing more Nigerians in
cities than in rural areas (Farrell, 2018). Furthermore, likely
scenarios for 2030 and 2050 milestones, decades of worst
population booms were predicted to better understand the
roles of land-use processes and necessity of sustainable
development in terms of planning and policy implementation.

METHODOLOGY

The methodology of this study is focused on LULC potential
change modeling and prediction of transport infrastructures in
the main Lagos are using arc-GIS 10.7 and hybrid cellular
automata-Markov (CA-Markov) in IDIRISI SELVA 17.0. A
number of pre-processing steps were performed on Landsat
imageries before applying LULC change detection algorithms,
including, image registration, geometric rectification,
atmospheric, radiometric and topographic corrections,
introduction of confusion matrix for change detection analysis
and evaluation of accuracies (Gašparović et al., 2019; Phiri et al.,
2020). The methodological steps involved in LULC modeling are
shown Figure 1.

FIGURE 1 | Methodology of simulation of urban LULC change modeling.
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The Study Area
Lagos is situated approximately at latitude 6° 27′N and longitude
3° 24′E in the south-west of Nigeria. It is both Nigerian
commercial and industrial headquarters. Lagos state covers an
area of about 3577.28 km-square, but the main Metropolitan
Lagos is about 1,171.28 km-square comprises 16 out of 20 Local
Government Areas (LGAs) as shown in (Figure 2). The current
estimated population is about 13.9 million and the urban
agglomeration density is about 6,871 residents per km-square
(UNDESA-PD, 2019). It is the most populous city in sub-Saharan
Africa (SSA) and currently ranking sixteenth largest city in the
world with the pinnacle of urban growth rate of about 5.8 percent
(Aliyu and Amadu, 2017).

Lagos is experiencing one of the fastest paces of urbanization
because of its economic and industrial importance spinning high
demand and devolution of land with resultant rapid LULC changes
over the past decades. The city is plagued by perennial traffic
congestion, safety issues and mobility frustration due to the nexus
of problems of heavy motorization and continuing traffic of people to
the city from all parts of Nigeria as well as neighboring countries, high
population density and inadequate infrastructure (Olajide et al., 2018).

Figure 3 shows the major transport infrastructure map of the
study area.

Data Source and Processing of Image
The US Geological Society Landsat1 image data—Thematic
Mapper (Landsat—5 TM), Enhanced Thematic Mapper
(Landsat—7 ETM) and Operational Land Imager (Landsat—8
OLI) used for the study was obtained respectively for 1984, 2013,
and 2019. Other ancillary data and infrastructures used for
verifying accuracy and referencing are the major maps for
roads, airports, rail lines obtained from Nigerian National
Space Research and Development Agency (NASRDA)2,
high—resolution Google Earth images and the coordinates of
physical landmarks based on field experience. Specific attributes
and descriptions of Landsat RS data resources used for Lagos
metropolis LULC change are listed in Table 1.

FIGURE 2 | Location map showing: (A) Nigeria (B) Lagos State (C) Metropolitan study area.

1https://earthexplorer.usgs.gov/
2https://nasrda.gov.ng
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A series of pre-processing steps, including atmospheric
correction, atmosphere and cloud shadow identification and
composite/fusion/metrics techniques were performed on
Landsat images prior to implementation of algorithms for
change detection (Chander et al., 2009). Data files were
extracted with less than 10 percent cloud coverage in tagged
image file format and imported to ERDAS IMAGINE 2014 as
raster imageries. The image is registered picture-to-picture and
re-samples at 30 × 30 metres spatial resolution based on a similar
projection method. Processing of digital images involves the
atmospheric correction, radiometry error, geometry, image gap
filling, the sub-setting field and band selection.

Cloud is a crucial obstacle for optical remote sensing in land
use dynamics, particularly in certain humid tropical areas. In
order to ensure the accuracy of cloud effects, geometric and
radiometric pre-corrected Landsat imagery from the USGS Earth
explorer with a linear factor for conversion to surface reflectance
is obtained at level 2 atmosphere. The Global Digital elevation
model (DEM) dataset of land areas at 30 m spatial resolution
postings used in elevation surface and topography analysis were
obtained from Advanced Space-borne Thermal Emission and
Reflection Radiometer (ASTER) repository at the USGS website

(http://earthexplorer.usgs.gov/). In May 2003, scan line corrector
(SLC) in Landsat—7 ETM satellite completely failed to
compensate for the forward motion of the satellite, creating
image scenes data gap scenario or “fill-no-data” status
particularly in heterogeneous scenes. Henceforth, it is
appropriate to fill gaps for Landsat 7 ETM + SLC-off. For this
study, dynamic data language IDL 7.0 gap-filling software was
used (https://glovis.usgs.gov/). Consequently, the “non-data”
areas needed three additional pictures: 1) an image anchor fills
2) an image taken prior to May 2003 and 3) the post-
anchor image.

An image manual registration that used Landsat 5TM 1984) as
master control points to synchronize images from various satellite
images from the same scene was carried out as a spatial transition.
The matching of image scene involving stacking the control
points with other satellite pictures (Landsat-7 ETM and
Landsat-OLI) is compared with referenced auxiliary data. The
average error of transformation-matched points (RMSE � 0.18
pixels) at 30 m resolution produced a good iteration as it satisfied
RMSE <0.5 pixels in literature (Sheng et al., 2008).

Due to its importance in identifying the anthropogenic and
ecological effects of human activities, predictive modeling of

FIGURE 3 | Major transport network map in Lagos.

TABLE 1 | Description of Landsat data resources used for analysis in Lagos metropolis.

Imagery date Sensor Satellite Path Rows Spatial resolution
(m)

Spectra bands

25/07/1984 TM Landsat 5 191 055, 056 30 7
15/03/2013 ETM+ Landsat 7 191 055, 056 30 7
02/10/2019 OLI Landsat 8 191 055, 056 30 8
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LULC change is an increasingly growing research area. The
factors transforming LULC changes, including urbanization,
water and biological cycles, biodiversity, anthropogenic and
ecological processes, exert significant effects on global change.
The ecological footprint of human over-exploitation and over-
dependence on the Earth’s resources is increasing due to
increasing anthropogenic influences, including urbanization,
oil and mineral explorations, deforestation, industrialization,
intensive agriculture, and overgrazing. The contribution of
natural phenomena, including extreme climate events,
earthquakes and tsunamis, solar and cosmic radiations to
changes in global and LULC transformations is also
prominent. Scientists have established an international LULC
organization linked to the International Geosphere Biosphere
Program (IGBP) and the International Human Dimensions of
Global Change Program (IHDGCP), both formed in 1987, in
view of the strategic significance of global change (Halmy et al.,
2015).

Several different modeling techniques were applied in the
study of LULC transformation, land use conversion and the
debates were dominated by the stochastic assessment of where
potential changes might occur by understanding the factors
driving them (Srivastava et al., 2012; Halmy et al., 2015).
Predictive LULC modeling techniques are computer
implemented algorithms for ease of speed, accuracy and
handling large data and are classified into optimization,
stochastic, empirical–statistical and dynamic or process-based
techniques (Lambin et al., 2000). Cellular automata (CA) features
within the category of discrete time and space dynamic system-
based algorithm which obeys the specific rules of the uniformly
spaced grids.

In particular, CA is most preferred for LULC modeling
because of its illustrative capability to depict a complex system
based on a collection of sets of rules and states used for dynamic
transition prediction and detection of both spatial-temporal
dimensions. For the study of the various complex phases of
land use transition problems at different spatial and temporal
multi-scales, Markov chain analysis (MCA) is applicable as a
stochastic modeling technique based on the premise that if an
earlier physical state is known, the next state can be calculated.
Since neither of the two models can fulfill the need for effective
prediction, a hybrid CA-Markov algorithm was compiled and
implemented in IDRISI SELVA software as a veritable tool for
spatial modeling, simulation and prediction with visual
qualitative and quantitative scales (Aburas et al., 2016).

LULC Classification
The reliability of different LULC mapping implementation
algorithms is important to the dynamic change prediction
modeler as LULC transformation tracking is precision-driven
in both qualitative and quantitative dimensions. Researchers have
applied the following land use classification algorithms—artificial
neural networks (AAN), genetic algorithms, support vector
machine (SVM), decision tree (DT), random forest (RF),
FUZZY ART-MAP, Mahalanobis distance (MD) and
maximum likelihood classifier (MLC) with Kappa accuracies
greater than 84% (Talukdar et al., 2020). MLC is commonly

adopted due to its fast parametric convergence as many other
classifiers require time to optimize (Keuchel et al., 2003). MLC
presupposes that the data are normally distributed and estimates
a high probability that a certain pixel belongs to the correct
category it is classified into. Also, the algorithm has been chosen
because of its higher likelihood to quantify minority classes into
their specific category of pixel spectral, without being overfilled or
subsumed by major classes during sampling image training.

The distribution maps have been grouped into the four LULC
groups, including their spatial area, based on the features
specifically seen in the remote sensing imageries, (e.g., shape,
size, hue, and texture etc.). A well-established approach of
supervised maximum likelihood classification (MLC) was
employed to produce the respective land use groups and to
assess the urban spatial expansion, including transport
evolution. The classification of the Landsat imagery was
performed using ARC-GIS 10.7 software based on supervised
classification of maximum likelihood where each pixel was
categorized into one of the following classes: transport
infrastructure, built-up areas, vegetation and water
respectively. To carry spatial and temporal shift predictions, a
post-classification, transformation detection was carried out
using IDRISI Selva 17 pro software. The process involves
“from-to” perception details of two classified images to arrive
at pixel-based change information comparison (Otuoze et al.,
2021b). Here, classified images of two different time-shifts, (i.e.
1984–2013) using cross-tabulation to assess the spatial
quantitative dimensions are assessed.

Accuracy Assessment
To assess the overall accuracy of the classification, a confusion
matrix was created, and accuracy assessment consists of
accuracy of the producer, user, overall accuracy and kappa
value. Cohen’s Kappa value is a measure of agreement of two
raters which gives a comparison between the predefined
ratings of the producer and that of the user. Some
researchers have emphasized the necessity to perform
accuracy assessments for individual classification if the data
set is to be used for the study of change detection and for
classification accuracy as the test will account for all ambiguity
matrix elements including diagonal elements (Halmy et al.,
2015). According to (Weng, 2010) and (Yusuf et al., 2014), the
minimum level of accuracy assessment acceptable should be at
least 85 percent when defining LULC categories in remote
sensing results while model reliability checks with Kappa
values of 80% minimum is adjudged to be reasonably good.

A full “ground truth” pixel by pixel map is not feasible; it is
critical that adequate selection or sampling pixels are given to
ensure that a classification is robustly assessed. Suitable
methodology of sampling must be used to respond to
statistical reliability. According to (Jensen and Lulla, 1987), the
optimum amount of reference pixel necessary for the precision
assessment depends on the required minimum level of accuracy;
for example, moderate to good accuracy requires 80–85% Kappa
index of agreement (KIA). It was ensured that least 204-pixel
points taken based on stratified random sampling method, (e.g.
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Eq. 1) were considered to increase the percentage of accuracy
assessment (Abd El-Kawy et al., 2011).

N � z2 p p p qp

ε2
� 4 p p p q ∼

ε2
� 22 p 85 p 15

52
� 204 (1)

where N � Total number of sampled pixel points; p � Expected
accuracy (%); qp � 100 − p; z � 2 (standard normal deviate of 1.96
for 95% confidence level); ε � allowable error (usually 5–10%).

The total sample was further delineated by thematic classification
into at least 30 pixels per LULC class in order to prevent any form of
bias. To attain a minimum 85% accuracy; 20 minimum pixel points
per land-use class and 20 pixels per referenced LULC class for 90%
accuracy of classification were recommended (Van Genderen and
Lock, 1977). Out of the 204 sample sites chosen, 122 pixel points (60
percent) were used for training based on the key image recognition
and validated on a basis of 82-pixel points (40% reference points)
with Kappa reliability assessments. The general patterns in LULC
maps showed an evolving rate of various LULC classes within the
period of analysis.

As previously described, four categories of LULC classes which
includes transport Infrastructure, built-up areas, vegetation and
water could be delineated perhaps, due to the geography and
climate of the area. While user accuracy describes the probability
that a pixel will actually represent a class on the ground on the
image, product accuracy defines the likelihood that a pixel or
region is classified correctly (Pontius Jr and Millones, 2011). The
empirical definition of Kappa statistics is given in Equation 2, a
value above 0.8 indicates a strong-to-perfect agreement or
precision between two maps (Liping et al., 2018). The Kappa
tests were for 1984, 2013, and 2019 images were estimated to
determine the predictive quality of input data.

K � Po − Pe

1 − Pe
, (2)

where Po is the is the number of times that the rating thresholds
have relative agreements. Pe is the hypothetical probability of
agreement by chance.

Markov chain Transition Analysis
Markov chain model (MCM) was developed by (Ulam, 1962) for
solving stochastic processes and land use modeling. MCM has also
been used for LULC modeling and simulation changes and patterns.
Researchers have applied MCM in dynamic systems for predicting
LULC future state based on the preceding state (Jianping et al., 2005;
Li et al., 2018). The Markov chain process could be defined as a
systematic process of changing state sets, S � s0, s1, s2, s3, . . . , st .
The transition potential likelihood of land use conversion from one
state to another depends on a sequential discrete time scale such that
transition probability matrix into a particular state is given by Eq. 3.

St+1 � Pij p St , (3)

Pij �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P11 P12

P21 P22

/ /
/ /

P1m

P2m

« «
« «

1 1
1 1

«
«

Pm1 Pm2 / / Pmm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (4)

where St and St+1 denote state of land use at time steps t and t + 1
respectively. Pij is the transition probability matrix for change
state i to j.

According to Guan et al. (2008), Eq. 4 can converge under
three conditions: 1) first, that ∑ Pij � 1 ; and 0≤ Pij ≤ 1. 2)
Secondly, the hypothesis that the probabilities for the
transition should remain unchanged. 3) The third condition is
the valid assumption that Markov chain is a transient system
under a first order model where the latter state is consequent
upon the former. In the current study, temporal state probability
(Pn) implemented in IDRISI Selva version 17 in the current study
involves solution to primary matrix (P(0)) and transition matrix
(Pij). In this case, maps of the Markov chain model for 1984 and
2013 were used to generate changes in the transition matrix for
the duration of 29 years. Furthermore, the process is repeated on
the 2013 and 2019 map for potential land use to extract changes
in the transition matrix following Eq. 5.

Pn � P(n−1)Pij � P(0)Pn
ij. (5)

Markov stochastic process theory can be used to measure the
state transition probabilities from initial state to nth state, as well
as a stable state based on the transient phase time series as T+1
and the initial duration as T. Therefore, the relationship provides
Markov’s transition probability for nth state in Eq. 6.

P(n)
ij � ∑m−1

k

P(n−1)
ik P(n−1)

kj . (6)

CA-Markov chain Model and Prediction
Cellular Automata has many conceptual applications to land
use modifications, spatial modeling and land use prediction.
It is demonstrated by a grid space called raster that
characterizes or describes the cell neighborhood structure.
As a function of the location and sequent time stages of the
neighboring cells, it’s a number of transition policies to
determine the state transitions for each cell space at the
same time to adjust its structure and configuration. This
fundamental property of CA implies that LULC changes
can be clarified by the current state and changes in
adjacent cells for any area (cells) (Mishra and Rai, 2016).

Although, a Markov chain model might have good
categorical transfer probabilities, but there is a lack of
spatially referred overall performance and distribution
parameters for land use application (Arsanjani et al., 2013).
The addition of CA to a Markov model results in the
possibility of spatial transitions taking place over a period
of time in a specific location. In different terms, Geo-
referenced and spatial changes from the Markov Chain
model are then made by using cellular automata giving rise
to the hybrid model—CA-Markov model (Parsaie, 2016). The
CA-Markov model implemented in IDIRIS SELVA is
equipped to develop a spatial weighting on specific areas
that are roughly the same as existing land use, making it
very reliable in spatial-temporal dynamics and quantitative
estimation of LULC change modeling (Wang et al., 2018).
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The outputs of Markov chain analysis are used by the CA-
Markov model, specifically the transition area file, to apply a
contiguity filter or matrix that enables other land-use
characteristics to be created from time to time (Basse et al.,
2014). The transport infrastructure areas and other land use
transition in Lagos can be estimated using the Markov
simulation model S(n) in Eq. 7 based on the initial state
matrix (S0) and nth phase transition probability (P(n)).

S(n) � S(n − 1) × P(1) � S(0) × P(n). (7)

RESULTS

LULC Transition Maps
The retrospective pattern of the LULC transition is shown by the
spatial-temporal changes from 1984–2019 in Figure 4. Table 2
shows LULC change the city recorded in the respective time steps
(1984–2013 and 2013–2019). The margins of LULC transition
gains from 1984–2013 showed increments of 103 km-square
(8.1%) and 106 km-square (8.3%) for transport infrastructure
and built-up area respectively marked the momentous land
conversion birthed economic growth within the period. By the
same time period, vegetation and water recorded losses of
−115 km-square (−9.1%) and −93 km-square (−7.3%)
respectively. The next time step of 2013–2019 recorded that
transport infrastructure and built-up area had another
increment of 95 km-square (7.5%) and 70 km-square (5.5%)
respectively, while vegetation and water suffered a further
LULC regression of −103 km-square (−8.1%) and −62 km-
square (−4.9%) respectively.

Validating Model Accuracy
Validation involves checking the reliability of agreement between
the actual and predicted LULC classified image maps using the
Kappa Index of Agreement (KIA). Models generated in 1984 and
2013 were validated by the predicted and actual 2019 analysis
period using VALIDATE module in the analysis tools. For the
current study, the spatial-temporal and visual analysis of the
Landsat data and a visual analysis accomplished satisfactory
accuracy in the four dimensions considered—producer, user,
overall and Kappa accuracies.

• Producer accuracy (PA) is the ratio of the pixels correctly
classified samples in a particular delineated class category to
the row total number of referenced pixel samples in the
class. Alternatively, it estimates the number of the ground
image observed features omitted on the predicted classified
maps. That is, PA � (100 − omission error)%.

• User accuracy (UA) removes commission error from
classification by measuring the ratio of the pixels correctly
classified samples in a particular delineated class category to
the column total number of referenced pixel samples in that
class. Alternatively, the UA is a measure of the margin of the
wrong classification between the referenced ground images
and the predicted images, otherwise called commission error.
That is, UA � (100 − commission error)%.

• Overall accuracy (OA) is the ratio of the total number of
correctly classified pixel samples in the main cells of
diagonal matrix to the total number of pixel samples

• Kappa statistics (KS) check the classification accuracy by
measuring the level of agreement remote sensed data and
reference ground truth imageries.

FIGURE 4 | Spatial-temporal changes of LULC classes from 1984 to 2019.

TABLE 2 | Statistics of LULC areas in Lagos from 1984 to 2019.

Year LULC
class

1984 2013 2019

Area (km2) Percent Area (km2) Percent Area (km2) Percent

Transport infrastructure 337 26.6 440 34.7 535 42.2
Built up areas 211 16.7 317 25.0 387 30.5
Vegetation 365 28.8 250 19.7 147 11.6
Water 354 27.9 261 20.6 199 15.7
Total 1,267 100 1,268 100 1,268 100
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On the correctly classified LULC map, a confusion matrix
measures the recognizable land-use areas simulated as a row
matrix, the field reference images being the column matrix, and
the pixel sample points as the diagonalmatrix cells.Table 3 shows that
the various accuracy assessments for the Landsat images of the three
temporal times series. The classification attained overall accuracies
ranging from 87% 1984)–92% (2019) respectively, while Kappa
indices of agreement values of 85% 1984)–89% (2019) respectively
indicated satisfactory validation for the classified LULC imageries.

The degree of agreement between the simulated areas and the
ground reference map is a measure of reliability on which both
the qualitative and quantitative dimensions of the estimation of
the Markov chain transition probability of future scenarios in
Lagos could be scaled. The values guarantee that minimal errors
were encountered, thus, the prediction model could give
accurately specify location and quantity. The Kappa statistics
for 1984, 2013, and 2019 are evidence of good to perfect
calibration model for conducting transition analysis for
2030–2050 and agrees with 80% minimum recommended in
literature sources (Weng, 2010; Liping et al., 2018).

Application of CA-Markov chain Model
Initial State
MCA is a probability experiment which estimates and transfers
probability matrix of the expected LULC changes. The second
aspect is the conditional probability images of the predicted time
series (2030 and 2050) respectively. Table 4 shows the initial original
state matrix [S (0)] which is integrated into mutually changing land
use areas defined by Eq. 8 based on 1984 LULC classes—transport
infrastructure, built-up area, vegetation and water respectively

S(0) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
transport infrastructure

built − up area
vegetation
water

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
337
211
365
354

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦(unit : km2). (8)

The Transition State Probability Matrix
Tables 5 and 6 display the summaries of the various likelihood of
LULC transition probability matrices for the time
steps—(1984–2013) and (2013–2019) respectively. For
examples, the probabilities for transport infrastructure in 1984
remaining transport infrastructure in 2013 is 52.08%, while
vegetation in 1984 becoming transport infrastructure in 2013
is 35.16%. In the second period (2013–2019), Markov transition
probabilities of changes from vegetation in 2013 to transport
infrastructures and the built-up area in 2019 are 19.00 and 24.35%
respectively. Other land-use classes’ probabilities are lower and
have less likelihood in the transition dynamics.

Not only is the efficiency of the visible change and shifting
faces of the transport region week, but the rapid urbanization and
population growth cannot keep pace with it. Nigerian cities are
dependent on road transport with menacingly poor life cycle and
maintenance issues besetting many urban transport facilities (Ojo
et al., 2018; Otuoze et al., 2021b). The study has established the
major constraint posed by transport infrastructure problems to
competitiveness, growth and development of the Nigerian cities.
Implementation of land-use integration, modeling, calibration
and spatial statistics could allow piloting of a comparative system
for evaluating good practice, quality and commitment to good
ethics in the development and management of transport
infrastructure.

Markov Land-Use Prediction (MLP)
Table 7 shows the various area statistics showing changes in
LULC based on 2030 and 2050 predictions. The transition area
for LULC changes in Table 7 shows that transport infrastructure
space will increase from 535 km2 in 2019 to 628 km2 in 2030 and
to 692 km2 in 2050. Also, built-up area will grow from 387 km2 in
2019 to 501 km2 in 2030 and then, to 535 km2 in 2050. Based on
the analysis of spatial trends, land use conversion trends are
expected to deplete vegetation and water catchment to recede

TABLE 3 | LULC maps for accuracy assessment.

Land use
type

1984 2013 2019

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

Transport infrastructure 84 82 88 90 89 95
Built-up areas 79 83 91 88 94 92
Vegetation 87 85 89 87 91 89
Water 83 89 82 90 93 96
Overall accuracy 87 90 92
Kappa coefficient 85 88 89

TABLE 4 | Areas of initial state transition matrix for 29years —1984 to 2013.(km2)

From 1984 To 2013

Transport land Built-up area Vegetation Water Area total

Transport land 175.5096 110.9741 38.2495 12.2668 337
Built-up areas 60.7469 141.3278 8.9253 0.0000 211
Vegetation 128.3340 116.1795 120.4865 0.0000 365
Water 28.3908 22.1250 0.0000 303.4842 354
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from 147 km2 and 199 km2 in 2019 respectively to 15 km2 and
25 km2 in 2050 due to over-exploitation triggered by demand and
could exacerbate the unsustainable urban situation of the city.

DISCUSSION

Classified LULC Imageries
Figures 5–7 display land-use classification maps generated for the
1984, 2013, and 2019 time series in Lagos respectively. The
continuously growing urban agglomeration in Lagos spatially
transformed the transport and urban landscapes as evident in the
land area gains in the respective time series. Transport growth and
influence of rapid urban chain increased the significant gains in the
two land use classes 1984–2019 and are largely the transition gainers
of receding green vegetation and water catchments. It can be
observed that LULC gain in both transport infrastructure and
built-up area are evidences of increasing urbanization trend as
new ventures into land reclamation, sand filling of lagoons,
floating islands and other water bodies were triggered by
increasing land demand and conversion. For example, the most
prominent case of urban chain projects triggered by dire land
demand in Lagos is the ambitious Victoria Garden City (VGC),

built entirely on the reclaimed sea and lagoon land, rendering the city
vulnerable to constant weather events and the preeminence of
existential flooding threats.

The spatial-temporal changes in the urban environment are due
to higher natural population growth factors, (i.e. higher
fertility and low mortality rates), migration and the city’s
regional economic and industrial strategic influences. The
magnitude of these individual factors’ contributions is
debatable; however, among researchers, there is a
preponderance of views in favor of natural population as
the dominant driver of urban spatial evolution (Bloch et al.,
2015; Ojo and Ojewale, 2019). As Nigeria began the early
accelerated phase of urban transition, natural population and
urban migration accounting for 48 and 37% respectively, are
the major contributors to the evolutionary phase of urban
demographic statistics while 15% of rural areas are reclassified
into towns and urban centers (Fox et al., 2018).

Nigeria has regional dimensions to its demography and urban
process–the conurbations of northern countries show higher
fertility rates and lower rural-urban migration propensity, while
the southern states exhibit the reverse. Farrell (2018) concluded that
urban natural population growth factors represent about 60% of the
exponentially rising share of the overall urban agglomeration in the

TABLE 5 | Transition probability matrix of LULC changes from 1984 to 2013.

From 1984: LULC class
change

To 2013

Transport infrastructure Built-up area Vegetation Water

Transport infrastructure 0.5208 0.3293 0.1135 0.0364
Built-up area 0.2879 0.6698 0.0423 0.0000
Vegetation 0.3516 0.3183 0.3301 0.0000
Water 0.0802 0.0625 0.0000 0.8573

TABLE 6 | Transition probability matrix of LULC changes from 2013 to 2019.

From 2013: LULC class
change

To 2019

Transport infrastructure Built-up area Vegetation Water

Transport infrastructure 0.5017 0.3331 0.0448 0.0364
Built-up area 0.3012 0.6330 0.0567 0.0091
Vegetation 0.1900 0.2435 0.5666 0.0000
Water 0.1083 0.0226 0.0756 0.7935

TABLE 7 | Transition area statistics of predicted LULC areas in 2030 and 2050.

LULC
class

2019 2030 2050 Change 2019–2030 Change 2019–2050

Area
(km2)

(%) Area
(km2)

(%) Area
(km2)

(%) Area
(km2)

(%) Area
(km2)

(%)

Transport
area

535 42.2 628.0 49.5 692.0 54.6 93 7.3 157 12.4

Built-up area 387 30.5 501.0 39.5 535.0 42.2 144 9.0 148 11.7
Vegetation 147 11.6 55.00 4.3 15.0 1.2 −92 −7.3 −132 −10.4
Water 199 15.7 85.00 6.7 25.0 2.0 −114 −9 −174 −13.7
Total 1,268 100 1,269 100 1,267 100 – – – –
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FIGURE 5 | Classified LULC map of Lagos Metropolis in 1984.

FIGURE 6 | Classified LULC map of Lagos Metropolis in 2013.
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developing countries, whereas rural-urban drift and reclassification
represent the remainder.

While favorable natural demographic statistics are the driving
force behind urbanization, there is also a strong causal relationship
between the recent migration surge and the long-running
insurgency war and other security crises. Nigeria is currently
beset by instability, including Boko Haram and ISWAP Islamist
insurgencies, banditry, and the herders-farmers crisis, all of which
have worsened the country’s segregated socioeconomic structure,
increased poverty and has offset the dynamics of urban migration
chains. According to Farrell (2018, p. 288), “increasing insecurity in
the northeast due to the emergence of Boko Haram has also been
linked to the recent intensification of rural to urban migration.”
The number of internally displaced people (IDPs) in war-torn
Northern Nigeria has risen to 3.3 million (Olanrewaju et al., 2019).

The International Organization for Migration (IOM) documented
1,491,706 internally displaced persons (IDPs) living in critical
conditions in displacement camps across the affected state’s urban
fringes and the remaining swelling urbanization (Itumo andNwefuru,
2016). Insecurity has hampered rural reclassification which would
have stemmed down urbanization migration tides based on equitable
share of socioeconomic development and infrastructure allocation.
Critical infrastructure and social amenities have been lost to the
insurgency and many rural communities within the restive northern
regions of Nigeria have been uprooted.

The cities continue to be the facto economy even as the country’s
indigenous economies are underperforming or rather tanking in
some sectors due to lowproductivity, industrial decline, infrastructure
failure, unemployment, inequitable growth and development, and a
lack of social inclusion. The economic viability of the city amid this

chaos creates an attraction for urban migration, the annual
population rise of Lagos stands at about 5.8% (Aliyu and Amadu,
2017). Over the last few decades, Nigeria’s urban population and
spatial expansion have steadily increased, while socio-demographic,
economic, and security indicators in rural settings have dwindled. A
similar correlation between high urbanization rates and economic
growth has been identified by researchers to be responsible for gaps in
urban planning and basic infrastructures including transport facilities
in many Sub-Saharan African cities (Njoh, 2008; Otuoze et al.,
2021a). This inequitable development continues to cause a
significant threat to the urban dwellers who navigate the daily
traffic congestion and crumbling transport infrastructure.

Urban development continues to produce a manifest poor
relationship between transport, land use and travel habits that
cause mobility and congestion problems within and outside Lagos
metropolitan areas. There is a causal connection between
unsustainable urban growth and the problem of accessibility in
Lagos due to the leading role of the city as national economic and
industrial hub. Also, post-colonial Land Use Act 1978)
minimized government authority and lent local lease holders,
private individuals and informal players unhinged power of
influence, the variables that resulted in weak land
management, sub-optimal development planning, and mosaics
of urban sprawls and slums with persistent mobility issues
(Oluwatayo et al., 2019; Kanyepe et al., 2021).

Land-Use Prediction by Markov chain
The previous Kappa statistics validation enables another soft
prediction to classify the grid cell level position and growth of

FIGURE 7 | Classified LULC map of Lagos Metropolis in 2019.
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future LULC potential changes further from 2019–2030 and 2050
respectively (Figures 8, 9). After calibration and validation,
Markov land-use prediction (MLP) is used to forecast future

growth and evolution of land use dynamics. The measures after
calibration and validation include the so-called Markov land-use
prediction (MLP). The steps include the definition,

FIGURE 8 | Predicted LULC map in 2030.

FIGURE 9 | Predicted LULC map in 2050.
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standardization and aggregation of specified criteria in IDRISI
Selva 17.0 decision wizard module map the LULC transition
shifts.

These increasing trends of urbanization and the transport
infrastructure area will exert proportional demand for the
transport system, expanding including roads, railways, bridges,
jetties, airfields, parking place and other terminal facilities,
sustainable travel corridors and recreational parks. The various
classes of LULC transition gains and losses encountered by
different land use changes were analyzed and the gains and
losses as well as the net changes are shown in Figure 10. The
predict demands in land area for transport will rise from 535 km2

in 2019 to 698 km2 in 2050 while built environment would have
from 387 km2in 2019 to 535 km2 in 2050. Land consumption
being the main factor of urban growth chains has shown evidence
that vegetation and reclamation from lagoons are the main
sources of these land conversions. For example, vegetation
lands would have been depleted from 147 km2 in 2019 to
15 km2 in 2050.

By the same token, water catchments would have been
devolved or reduced from 199 km2 in 2019 to 25 km2 in 2050.
The pre-eminence of extreme weather-related events—flooding,
hurricane and inundation on critical infrastructure in coastal
cities including Lagos are sad realities of land reclamation. The
scale of urban transport resilience and the strength of resistance
are constantly shifting in the past decades due to disruptions and
must be adequately planned (Douglas et al., 2008). Although,
transport infrastructure and built-up areas are the two predicted
LULC change modeling winners, while other LULC classes are
expected to retreat; the prospect of delivering quality
transportation is doubtful as many Nigerian cities have been
beset by dilapidated and inadequate infrastructure. A more
holistic approach to solving the city’s ongoing transportation
problems will include a vision for improving both the quality and
quantity of transportation infrastructure, efficiency, traffic
demand management (TDM) and resilient thinking for future
urban challenges.

The future prospect of a possible spatial-temporal growth
measure for built-up areas may be more promising than for
transport networks, as government, with little to no private
involvement, is the sector’s key policy maker. In terms of
planning, visions, aspirations, priorities, jurisdictions and
management techniques, the legally binding roles of various
municipal authorities representing different jurisdictional
interests-federal, state and local authorities wholly morphed
into urban government - have created complex bureaucratic

bottlenecks (Atufu and Holt, 2018). Nigeria’s poor transport
systems—roads, bridges, airports and railway infrastructure
continued to decline due to the non-aligning policies of the
various levels of government, political whims and multi-level
corruption (Ojo et al., 2018).

The traditional infrastructure policy of Nigerian cities hardly
differentiated the needs assessments of any infrastructures
(transport, communication, water, housing, electricity, health,
etc.), leaving gaps in the development of some critical
infrastructure. Bureaucratic bottleneck, planning problems and
defective spatial analysis have remained part of the investment
portfolios and management of the transport sector, which was a
unit of the Lagos State Ministry of Works and Housing till 2019
when the section attained a full ministry status. Communities
around Lagos and the government are locked in a constant fight
for compensation for any damaged assets along the route
corridors of new transportation infrastructure projects due to
policy misalignment and a lack of genuine spatial evaluation.
Lagos’ current “aggregate” development policy ignores the long-
term consequences of spatial change patterns in land resources, as
well as how to accommodate future transportation infrastructure
spatial allocation. This research is intended to contribute to the
analysis of spatial transformation characteristics and future
planning analysis in a developing country urbanism.

A new Frontier of knowledge of the urban growth
phenomenon involving “disaggregate” spatial transition
potential change model has been applied to analyze spatial-
temporal demand of transport infrastructure, oppose to the
current lump-up “all-in aggregate” model used. Although the
research model is spatially explicit for predicting current and
future transport and LULC change scenarios, the scope of the
study is only limited to the extent of Lagos imagery data and the
ground truth references collected for analysis. Due to a lack of
data and knowledge, the roles of sprawling communities in the
urban, peri-urban and rural fringes in terms of connectivity,
accessibility and mobility, as well as the impacts of other regional
states, could not be captured. It is hoped that future research will
also highlight the impacts of urban sprawl and regional effects in
transport spatial transition study.

Suitability Quality of Transition Maps
ArcGIS applied to develop LULC classified images took account
of the urban peculiarities including important factors and
constraints driving the evolution. Further analysis was carried
out by importing into IDRISI wherein the CA-Markov chain

FIGURE 10 | (A) Gain and loss chart (B) net change chart.
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analysis uses Multi-Criteria Evaluation (MCE) to generate
decision rules in the form of suitability maps for determining
the feasibility and viability qualities of prediction. MCE provides
a predictive decision methodology that incorporates an element
of spatial contiguity, transition analysis and distribution in the
processing of the Markov chain. It is a multi-criteria evaluation
(MCE) and pre-requisite for prediction based on an aggregation
of various decision constraints into a single evaluation index
(Mishra and Rai, 2016).

The various constraints are criteria which limit LULC
appropriate expansion are expressed in Boolean maps where
suitable transition areas were set at one 1) while unsuitable
areas have their visual indicators set at zero (0). Boolean
overlays are used to minimize requirements for logical
statements of suitability and combine statements by logical
operators, i.e., union (OR) and intersection (AND). Factors
(criteria) and trade-offs are integrated into the modules to
construct suitability maps and to resolve multi-objective
decisions. In order to create a single evaluation index, different
factors (rules) and constraints were used (El-Hallaq and
Habboub, 2014). The steps involve developing identified
criteria, standards and aggregation. And finally, the decision

wizard module in IDRISI Selva 17.0 generates the suitability
maps. The closer a value is to zero, the less suitable the area
and vice-versa (Liping et al., 2018).

The research took cognizance of the range of variables or
criteria, including transportation networks, population density,
settlement, forest, urbanization, marketplace, economic and
business agglomerations, industries and agriculture etc.,
affecting the LULC transition rule. Construction of
infrastructure including transport and buildings and water
bodies is set as constraints and the Fuzzy function was applied
to evaluate the standard factors at various functions and control
levels combined with Weighted Linear Combination (WLC).
Factors or parameters are standardized into identical
numerical sets by means of weighted mean and are generated
from the AHP function in the WLC module. In order to extract a
suitability map of land use forms, the MCE module used factors,
constraints and weights, while suitability atlas was generated by
IDRISI Collection Editor. The suitability maps in Figures 11, 12
displayed the feasibility of CA-Markov transition prediction.
Furthermore, transition potential maps of 2030 and 2050 have
transition area indicators visibly far from one (1), which is evident
that LULC changes are generally unsuitable and unsustainable.

FIGURE 11 | Transition potential map for 2030.

FIGURE 12 | Transition potential map for 2050.
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While it is obvious that Lagos city, like many cities in the
developing countries will experience future population and
urbanization booms, the imperative of improving transport
infrastructure, public transit services and non-motorized
commuting could reduce land conversion and rapid LULC
change. Urban areas in Lagos, as with many Nigerian cities
are constantly dotted with low-quality construction portfolios,
deteriorated and uncompleted transport infrastructure projects
due to inadequate funding, corruption and governmental
bureaucratic bottlenecks (Ojo et al., 2018; Olajide et al., 2018).
The study finds the imperative holistic and sustainable approach
reduce transport infrastructure gaps, multi-level policy and
planning synergy, modal enable provision of smart and
resilient infrastructure and transport demand management
(TDM) to make the city livable, accessible, economically viable
and to reduce perennial urban congestion.

CONCLUSION

The following deductions were made from the research:
The study has isolated the transition dynamics of urban

transport facility demand from the traditional aggregate urban
planning model which slowed the development of many critical
infrastructure and established a lack of congruence between
urban chain and declining transport systems in Lagos
metropolis. First, with combined approaches of remote
sensing, GIS and CA-Markov with Landsat TM/ETM+/OLI
satellite images, this study recorded growth in transport
infrastructure and built-up land use classes while LULC classes
for vegetation cover and water receded in 1984–2013—2019 time
series. For predicted future LULC changes in the city, repeated
trends of increasing gains in land use areas were recorded for both
transport and built-up areas while vegetation and water reduced
in the order of time steps from 1984 to 2013—2019.

The results of LULC classification produced Cohen’s Kappa
agreement statistics ranging from 85–89%, which are greater than
the minimum of 80% suggested in literature. The analysis shows a
clear picture of spatial-temporal growth disparities and
unsustainable location and quantitative LULC changes which
require policy reorientation and planning to handle urban
growth. The study forecasted that transport infrastructure
demand and land conversion will increase by 93 km2 (7.3%) in
2030 and 157 km2 (12.4%) in 2050. Similarly, built-up areas will
increase by 144 km2 (9.0%) and 148 km2 (11.7%) respectively in
the two prediction periods with increasing socio-demographics,
urban and peri-urban slums and frustration.

In the globalized world, the strategic socio-economic
offered in terms job opportunities, social amenities and
critical infrastructure have increased the attractiveness of
cities to all sections of human society. Urbanization
imposes anthropogenic chains on the natural world and is
arguably the key driver to the transformation of global land
use. LULC change shapes the dynamic process that changes
natural ecology, climate and environmental conditions, and is
a major challenge to biodiversity, water cycle and “flora and
fauna” of ecological environment. Poverty, lack of

infrastructure and economic opportunities and insecurity
as a result of the insurgency, banditry and kidnapping in
rural Nigeria have increased the scale of urban migration
(Abbass, 2012; Bulus et al., 2020).

The nexus of socioeconomic variables, climatic and
ecological constraints and security problems in the rural
areas have constituted “push-and-pull” factors motivating
urban migration. The drifts and sprees of migrants into the
main Nigeria urban hubs have not only impacted the
economy but have increased security and infrastructure
problems. According to the World-Bank (2016, p. 3),
“Stagnating agricultural productivity and substantial
conflict, particularly in the north, have spurred (urban)
migration, not urban jobs or services”.

Although, the forecast on increasing transport
infrastructure could ameliorate mobility frustration,
congestion and quality of life in the city; a sustained
increase in urbanization rate is likely to worsen the
problem. Lagos being a low-lying coastal city is facing a
pre-eminence of serious anthropogenic and ecological
problems including flooding if the current spate of land
reclamation continues unabated. The study contributes to
the evolutionary dynamics of transport space and offers a
means of tracking spatial and temporal dimensions in order
to reinforce the relationships between change in land use,
smart resilient cities and sustainable delivery of transport
services. It is suggested that the future may explore the
variables, causes, impacts and contributions made to the
evolutionary chains of urban transport space by socio-
demographic, economic and environmental factors to
achieve the goals of sustainable and accessible Lagos city.

The disaggregate model applied for the analysis of urban
transport chain process and the prediction is spatially explicit
and reliable for forecasting current and future urban scenarios.
However, due to a lack of continuous data on various rural and
urban demographics, as well as discrepancies in the history of
spatial transformation, the available choice involves an estimation
of urban growth indicators using national population and
urbanization indices. The urban population estimates in this
study’s time series (1984, 2013, and 3019) were either back
calculated or extrapolated using data for Nigeria’s three 3)
national census results from 1963, 1991, and 2006 respectively.

Due to chains of estimations and disaggregate into urban
growth components, it is difficult to completely vouchsafe the
accuracy of the estimates due to uncertainties in urban chain
trajectories, human factors and the likelihood of over-estimation
or under-estimation of the figures of the predicted time series.
The current indicators and projected outcomes point to
challenging future realities, the simulated spatial
transformation has negative consequences and repercussions
for urban environments, demographics, and the vast
population of city dwellers. The growth indicators will create
pressure in the economy, housing, employment, poverty
reduction strives, transport and other infrastructure, land
resources, security, crime and violence. It is expected that
future study will push the discourse and explore means to
further resolve these underlining problems.
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