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While safety is the ultimate goal in designing Connected and Automated Vehicles (CAVs),
current automotive safety standards fail to explicitly define rules and regulations that ensure
the safety of CAVs or those interacting with such vehicles. This study investigates CAV
safety in mixed traffic environments with both human-driven and automated vehicles,
focusing particularly on rear-end collisions at intersections. The central hypothesis is that
the primary reason behind these crashes is the potential mismatch between CAVs’ braking
decisions and human drivers’ expectations. To test this hypothesis, various Artificial
Intelligence (AI) techniques, along with specialized statistical methods are adopted to
learn and model the braking behavior of human drivers at intersections and compare the
results to that of CAVs. Findings suggest systematical differences in CAVs’ and humans’
braking trajectories, revealing a mismatch between their braking patterns. Accordingly, a
Markovian decision modeling framework is adopted to design a novel CAV braking profile
that ensures 1) compatibility with human expectation, and 2) safe and comfortable
maneuvers by CAVs in mixed driving environments. The findings of this study are
expected to facilitate the development of higher levels of vehicle automation by
providing guidelines to prevent rear-end collisions caused by existing differences in
CAVs’ and humans’ braking strategies.
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INTRODUCTION

While safety is the ultimate goal in designing Connected and Automated Vehicles (CAVs), current
automotive safety standards fail to explicitly define rules and regulations that ensure the safety of
CAVs or those interacting with such vehicles. Even though some companies adhere to available
standards in their vehicles (e.g., GM/Cruise Automation considered ISO-26262 functional safety
standard in the vehicle design), the state-of-the-practice in CAV safety analysis is focused on actual
and simulated miles driven. All existing companies (even traditional automotive OEMs) asses their
safety records based on the total miles driven and the number of crashes and disengagement events
(i.e., any interference in the vehicle’s decision-making and/or maneuver by the safety driver). In a
recent study, however, Intel/Mobileye showed the infeasibility of such an approach and the need for
109 h of testing to reach human-level driving safety after each software/hardware update (Shalev-
Shwartz et al., 2017). Considering that CAV development goal is to form better than human drivers,
the overall testing time should be much higher to ensure reliable and safe driving-related decisions
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(Shalev-Shwartz et al., 2017). Moreover, most high-risk instances
are rare and might not occur during typical driving and testing
efforts. Unfortunately, the factors that potentially contribute to
such critical safety issues are not well-studied, and the current
measures of safety (i.e., miles driven and crashes/disengagement
events) do not provide any insight into the nature of those crashes
and near-crashes. Therefore, developing preventive measures and
design guidelines require an alternate approach.

The key factor in providing a reliable assessment of safety risks
in mixed traffic environments with both traditional vehicles and
CAVs is to identify the risk factors that contribute to crashes and
near-crashes involving CAVs and human-driven vehicles.
Understanding these underlying factors is critical to ensure
safety during the testing and deployment phases of the CAV
technology.

An existing hypothesis is that the primary reason behind
human-CAV crashes is a potential mismatch between CAVs’
braking patterns and the expectations of surrounding human
drivers (e.g., the 3-s stopping rule built-in to CAVs, vs. rolling
stops performed by human drivers). The primary motivation
toward formulating this hypothesis is a recently published
study by Waymo indicating that their CAVs are designed
based on defensive driving standards; however, human
drivers do not always follow/expect such behaviors (Waymo,
LLC, 2017). Such instances can lead to crashes/near-crashes; for
instance, from August 2016 to February 2017, 18 out of 26
crashes involving CAVs in California involved a CAV that was
rear-ended by a human driver at an intersection (State of
California Department of Motor Vehicles, 2017). As driving
uniformity is a significant factor in safety, a major challenge in
autonomous driving is to achieve human-like driving behavior
while staying within safety bounds (Kuderer et al., 2015; Zhu
et al., 2018; Xu et al., 2020).

Through investigating the above hypothesis, the present study
aims to bring critical knowledge from traffic analysis to develop a
systematic and scalable approach to assess the safety of CAVs as
an improvement to the state-of-the-practice in CAV safety
analysis in mixed environments. Investigating the feasibility of
developing a systematic evaluation approach, the present study
particularly focuses on the rear-end crashes at urban
intersections. According to the California Department of
Motor Vehicles, these crashes are the most common CAV
recorded crashes in California (Favarò et al., 2017; State of
California Department of Motor Vehicles, 2017). The findings
of this study are expected to facilitate the development of higher
levels of vehicle automation by providing guidelines to prevent
rear-end crashes caused by potential mismatches between CAVs
and humans’ braking strategies. Moreover, the findings of this
paper can lead to a fair assessment of the current state-of-the-art
in vehicle automation safety.

Accordingly, the focus of this study is threefold: 1) to learn
human drivers’ braking behavior when approaching an
intersection under different driving conditions, 2) to compare
humans’ braking behavior to that of CAVs under corresponding
conditions, and 3) to propose a deceleration profile for CAVs
comparable to human drivers’ braking pattern while ensuring
safety and efficiency of the braking maneuver.

The remainder of this paper is organized as follows: Section
Background presents a review of the previous studies. The data
collection process and data description are presented next
followed by a detailed description of the proposed
methodologies and modeling results to characterize humans’
and CAVs’ braking behaviors. Finally, the paper is concluded
with a summary of the findings and future research needs.

BACKGROUND

The majority of studies on developing a connected, automated
driving environment are based on the assumption that all vehicles
are equipped with required communication systems (Wei et al.,
2013; Pueboobpaphan et al., 2010). However, despite the rapid
development of CAVs, such an environment is not foreseen in the
near future. According to De La Fortelle et al. (2014), traditional
vehicles are predicted to predominate for decades. It is expected
that by 2030, nearly 50% of vehicles will still be operated by
human drivers. It is, therefore, of paramount importance to equip
CAVs with the required technologies that enable them to safely
and efficiently operate in mixed traffic environments with both
human actors and automated vehicles (Rahmati et al., 2020).
CAVs in such environments need to understand humans’ driving
behavior and also act in a way that is safe and yet expected by
surrounding human drivers. Any mismatch between humans’
and CAVs’ driving strategies can potentially lead to unsafe
driving instances (Wei et al., 2013). Thus, the key to achieving
a reliable and safe human-CAV collaboration is to understand
and characterize humans’ driving decisions and translate them
into CAVs’ decision logic (Rahmati and Talebpour 2017).

The review of the previous research studies reveals several
papers that have focused on modeling humans’ driving behavior
under different driving conditions. It has been shown that a better
understanding of different driving behaviors allows for more
appropriate safety policies, and possibly leads to greater
effectiveness in reducing traffic incidents (Luo and Guo 2006;
Rudenko et al., 2020). In light of this, Dabiri and Abbas (2018)
aimed at modeling drivers’ car-following behavior based on the
Gradient Boosting of Regression Tree (GBRT) technique. The
proposed model has been trained by trajectory-based features,
including vehicles’ relative location, speed, and acceleration. The
test results indicated a promising performance of the GBRT
algorithm in modeling the motion characteristics of two
successive vehicles. Similarly, Yang et al. (2017)) conducted a
study on the recognition of different driving behaviors for a
simulated car-following scenario. Using K-means and Support
Vector Machine (SVM) classifiers, five groups of driving behavior
were categorized using driving data. In another study, Wang et al.
(2018) also used hiddenMarkovModels (HMMs) combined with
Gaussian mixture models to predict the tendency of a driver to
brake in a car-following platform.

Several studies have also focused on understanding and
modeling humans’ driving decisions at intersections. A
significant portion of driving behavior analysis at intersections
has alluded to modeling drivers’ direction choices. Amsalu et al.
(2015), for example, investigated the actions taken by drivers at
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intersections using a hybrid-state system (HSS), where the
decisions of the driver and vehicle dynamics are modeled as
discrete-state and continuous-state systems, respectively. A
multi-class SVM model was then proposed to predict drivers’
intentions. In another study, Aoude et al. (2012) developed
algorithms to classify drivers’ behavior at intersections as
either compliant or violating using SVM and HMMs
techniques. Some researchers have also studied drivers’
intention and decision-making when approaching a yellow
indication. For example, Elhenawy et al. (2015) have used AI
techniques including adaptive boosting (Ada-boost), Artificial
Neural Networks (ANNs), and SVMs to model drivers’ stop/go
behavior at the yellow indication. In another study, Hoehener
et al. (2015) investigated drivers’ dilemma when the traffic light
changes to yellow. Using an ANN model based on Gaussian
process theory, they introduced an upper bound for the crossing
probability in the proposed situation.

While modeling humans’ driving behavior has been the
subject of several studies, only a few have focused on
incorporating such behavior into CAVs’ decision making to
alleviate the potential mismatch in humans’ and CAVs’
driving behaviors. More promising in this regard is a study by
Kuderer et al. (2015), who have developed a reinforcement
learning process to model individual driving behavior based
on the observed driving style of each individual. The model is
then used to compute trajectories online during autonomous
driving tasks. In another study, Hao et al. (2016) implemented a
car-following model for CAVs that imitates the car-following
behavior of a human driver. The proposed fuzzy logic-based
model is validated using NGSIM data, and the results indicated an
acceptable similarity between the actual and simulated
trajectories of the follower vehicle. In a recent study, Emuna
et al. (2020) have introduced a model-free, deep reinforcement
learning approach for autonomous driving in mixed
environments that is able to imitate the behavior of an expert
human driver. Human-like driving patterns were generated and
evaluated by simulating a static obstacle avoidance task on a two-
way highway. In a recent field experiment, Rahmati et al.
investigated humans’ car-following behavior in interaction
with surrounding human-driven and automated vehicles
(Rahmati et al., 2019). Results indicated that humans feel
more comfortable following an automated vehicle and tend to
drive closer to their leader even though they were not aware if it is
a human-driven or automated vehicle. In another study,
Naumann et al. (2020) have studied the utilization of different
cost function structures to imitate humans’ behavior under
different driving scenarios. They have then proposed an
inverse reinforcement learning algorithm to learn the
optimum cost function weights based on the observed human
behavior in three different scenarios.

The above list is by no means a comprehensive one, and there
are many studies that have focused on modeling the interactions
between CAVs and human drivers. However, while crash records
indicate the importance of such analysis to ensure safe CAV
operation at intersections, a review of previous studies indicates
that only a limited number of research efforts have investigated
the need for cooperative human-CAV braking when approaching

an intersection. The majority of the studies on CAVs’ driving
pattern analysis at intersections have focused on predicting
drivers’ decisions regarding which direction to go (Dresner
and Stone 2007; Rahmati and Talebpour 2017; Qian et al.,
2014; Talebpour et al., 2015). Focusing on CAVs’ most
frequent crashes (i.e., being rear-ended by human drivers
when stopping at intersections), the present study aims at
approximating the braking behavior of human drivers at
intersections and proposing a safe and human-like braking
profile for CAVs. Considering that the braking decisions can
be influenced by the existence of a proceeding vehicle, it is
necessary to distinguish the associated braking profiles under
the following driving conditions: 1) if the target vehicle is the first
in line to stop (free-flow braking behavior), and 2) if there are
other vehicles between the target vehicle and the stop line (car-
following braking behavior). The proposed models are expected
to alleviate the mismatch between human drivers’ expectations
and CAVs’ decision making, and potentially prevent CAVs from
being rear-ended in mixed driving environments. This study is an
initial step toward developing a systematic guideline for vehicle
automation safety via providing insights into the nature of most
frequent CAV crashes.

DATA

Drivers’ speed pattern has been known as one of the main
descriptors used to understand and model humans’ driving
behavior under different traffic conditions (Eboli et al., 2017).
Drivers’ speed choices are linked to their characteristics and speed
variations are often treated as an indicator of the driving
behavior. Today, thanks to the technologies like the high-
precision kinematic Global Positioning System (GPS), speed
patterns can be accurately analyzed to identify different
driving behavior. Inspired by previous research, the present
study has designed an experiment to collect data on humans’
real-world braking patterns at urban intersections. For the
purpose of the study, human drivers’ instantaneous speeds are
recorded when stopping at an intersection. The associated speed
patterns are then used to analyze humans’ braking decisions
under car-following and free-flow driving conditions. The
following section explains the data collection experiment.

To record the required data, a field test is conducted using an
autonomous Chevrolet Bolt EV. Data is collected on four
different days and by eight drivers that were asked to drive
the vehicle through a pre-specified test track at Texas A&M
University System RELLIS Campus in Bryan, Texas. Drivers
consisted of two female and six male college students between
the ages of 20–35 and all had a valid driver’s license. The speed
limit on the test route was 30 mph. There were multiple stop signs
behind which drivers stopped, and their trajectory data were
recorded using a high-precision GPS/IMU system installed on the
vehicle.

Real-world experience suggests that the existence of a
proceeding vehicle often affects drivers’ breaking profile before
reaching a full stop. Accordingly, each stopping scenario in this
field experiment is labeled as either car-following or free-flow
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driving condition based on the presence of any proceeding vehicle
between the target vehicle and the stop line of the intersection.
Figure 1 illustrates a schematic of the data collection scenarios.

The final dataset contains the time, location, and
instantaneous speeds of the target vehicle (and its leader in
car-following scenarios) measured in increments of 0.1 s. A
total of 213 observations (each representing a stopping
scenario at an intersection) were collected, among which 62
braking scenarios were recorded under the car-following
condition, and the remaining 151 stops were associated with
the free-flow condition. Once different braking scenarios were
identified, the braking pattern 10 s before reaching a full stop was
extracted for each scenario. The final database, therefore, includes
vehicles’ speed data 10 s before reaching a complete stop along
with the associated driving condition for each of the 213 braking
scenarios. The collected data (raw and processed) is available
through the University of Illinois at Urbana-Champaign website
(smartctlab.web.illinois.edu).

METHODOLOGY AND RESULTS

As alluded to, the focus of the present study is to investigate
CAVs’ rear-end collisions at intersections in mixed traffic
environments. The hypothesis set forth to justify these crashes
is the potential mismatch between the braking pattern of humans
and that of CAVs. The first step in testing this hypothesis is then
to understand and model humans’ braking behavior when
stopping at intersections in urban settings. Potential
differences in humans’ decision making under different
driving scenarios should also be taken into account when
preparing CAVs to operate in mixed traffic environments.

Real-world experience suggests that the existence of a
proceeding vehicle often affects drivers’ breaking profile before
reaching a full stop. In light of this, the following section is
dedicated to learning and capturing potential differences in
humans’ braking decisions under two scenarios; 1) free-flow
and 2) car-following driving conditions.

Humans’ Braking Behavior
The present study utilizes supervised learning techniques to
classify humans’ deceleration patterns based on the potential
differences in their braking decisions (speed profiles) under each
driving scenario. A relatively high classification accuracy would
lend support to the existence of distinguishable differences in
drivers’ free-flow and car-following braking strategies, which,
therefore, should be learned and translated into CAVs’ decision-
making logic.

Figure 2 illustrates an example of drivers’ speed pattern over
the 10-s period before reaching a full stop for the two classes of
braking scenarios. Note that in order to avoid clutter, only four
samples (two stopping scenarios for each class) are indicated in
the figure. It can be observed that despite the overall decreasing
pattern in both scenarios, the car-following braking profile
consists of consecutive deceleration and acceleration
maneuvers during the 10-s interval, while braking under the
free-flow condition follows a smoother pattern. A lower average
speed is also observable for car-following scenarios compared to
the free-flow braking profiles.

Two approaches are adopted to analyze the associated speed
time series under each driving condition. The first approach is
dedicated to extracting features from the time series and using
them with normal supervised learning techniques. The second
approach, on the other hand, directly uses the speed time series to
investigate potential differences using series-specific classifiers.

Summarized Time Series Classification
In this method, the provided speed time series are summarized
into variables that can properly capture the associated braking
pattern under the car-following or free-flow driving conditions.
The idea is to reduce the dimensionality of the data while
retaining its key features. Accordingly, the more relevant
features selected, the better the algorithm learns and thus can
generate more realistic results. After investigating multiple
descriptors, the speed time series are summarized by vehicles’
average speed, maximum acceleration/deceleration rate, and
minimum acceleration/deceleration rate. The importance of
these descriptors in modeling driving behaviors has also been

FIGURE 1 | Schematic of the data collection scenarios: (A) free flow, and
(B) car-following conditions.

FIGURE 2 | Speed patterns under two different driving conditions.
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pointed out in previous studies (Eboli et al., 2017; Dabiri and
Abbas 2018). The selected variables are then used to train models
that classify humans’ braking patterns under free-flow and car-
following conditions. Eq. 1 represents a general formulation of
the proposed classifiers.

y � f (Umean, amin, amax), (1)

where y is a binary variable equal to 1 for car-following and 0 for
the free-flow condition; and Umean, amin, and amax, respectively,
denote the average speed, minimum acceleration/deceleration
rate, and maximum acceleration/deceleration rate of the
vehicle during the 10-s interval before reaching the full stop.

To better analyze human drivers’ braking decisions under car-
following and free-flow conditions, two AI techniques are
adopted:

Multi-Layer Perceptron: MLP (or Artificial Neural Network-
ANN) is a supervised learning algorithm consisting of at least
three layers of nodes that learn a non-linear function for
classification or regression. The main difference between the
MLP algorithm and logistic regression is the existence of a few
non-linear layers between the input and output layers, called
hidden layers. Learning occurs through backpropagation, where
the connecting weights on the network get updated based on the
error between the resulted and expected outcome for each input.

Figure 3 illustrates the structure of the proposed ANN model
for classifying human drivers’ braking behavior. The input layer
consists of three nodes for vehicle’s average speed, maximum
acceleration/deceleration rate, and minimum acceleration/
deceleration rate, as well as a bias node (i.e. a trainable
constant value). The output layer is a single node for the class
of braking behavior. To determine the structure of the model, a
grid search algorithm is developed to tune model
hyperparameters based on the performance of the classifier,
while avoiding overfitting. Accordingly, several models are
created using all possible combinations of model parameters
selected from a manually specified subset, and the set of
parameter values corresponding to the model with minimum
classification error is selected. Based on the results, an ANN
model with one hidden layer including three nodes and a bias
node is designed for the purpose of this study. Also, “Relu” and

“Sigmoid” activation functions are considered for the hidden and
output layers, respectively.

Support Vector Machine: SVM is another well-known
supervised learning algorithm used for classification and
regression analysis and outlier detection. SVM is, in essence, a
linear model that can solve linear and non-linear classifiaction
problems. The key idea of the algorithm is to generate a line that
separates the training data into classes such that the line’s distance
to the closest data point in each class is maximized. When the
classes are not linearly separable, the algorithm transforms the
data into a higher-dimensional space and formally defines a
separative hyperplane to classify the new examples. This
transformation is handled using a set of mathematical
functions defined as the kernel. After developing a grid search
algorithm to evaluate the performance of the model under
different kernel functions, the RBF kernel is selected for the
proposed SVM classifier.

Given the set of features extracted from the speed profiles
during the braking maneuver, along with the corresponding
driving condition at each scenario, the ANN and SVM models
are trained to learn drivers’ braking behaviors and classify them
into the car-following and free-flow categories. The classifiers are
then compared based on their performance in capturing potential
differences in drivers’ braking patterns at intersections.

Table 1 presents the model evaluation results based on the
precision and recall values, as well as the F1 scores as a tradeoff
between these two measures (note that the MLPClassifier from

FIGURE 3 | Structure of the proposed ANN classifier.

TABLE 1 | Classifying Humans’ Free-flow and Car-following Braking Behavior
using Summarized Time Series: (A) ANN, and (B) SVM.

Precision Recall F1-score

(A) ANN classifier
Free-flow 0.97 0.94 0.96
Car-following 0.94 0.97 0.95
Average 0.96 0.95 0.95

(B) SVM classifier
Free-flow 0.94 0.89 0.92
Car-following 0.87 0.93 0.90
Average 0.91 0.91 0.91
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“Scikit-learn platform” and the SVC package in Python were used
to train and test the proposed ANN and SVM classifiers,
respectively).

To better illustrate and compare the performance of the
adopted classifiers, the Receiver Operating Characteristics
(ROC) curves are also plotted for the proposed ANN and
SVM models (Figure 4). ROC curves are used to visualize
model performance by plotting the associated true-positive
rate as a function of the false-positive rate. The Area Under
the Curve (AUC) indicates how well the model classifies each
category, where larger AUC values indicate a higher classification
accuracy.

The analysis of the results presented in Figure 4 and Table 1
provides evidence on humans’ different braking patterns under
the free-flow and car-flowing driving scenarios. Indeed, the high
F1-score values of 0.95 and 0.91 for the ANN and SVM models,
respectively, indicate that the proposed AI techniques can
effectively learn and distinguish differences in humans’
braking behavior under each driving scenario, suggesting that
humans have different braking strategies when approaching an
intersection under free-flow and car-flowing driving conditions.

Univariate Time Series Classification
Reducing the dimensionality of the time series data using its key
features creates an approximate representation of the speed
profiles which may not provide enough insights into the
nature of potential differences in humans braking behavior. To
further investigate human drivers’ braking decisions when
approaching intersections under different conditions, time
series-specific classifiers are adopted where the associated
speed patterns are directly passed to the models. The present
study utilizes the “sktime” Python toolbox developed for machine
learning with time series and panel data (Löning et al., 2019).
Three different classifiers are selected for this study:

1) K-Nearest-Neighbor (KNN) algorithm; a commonly used
distance-based time series classifier that uses the dynamic
time wrapping method to measure similarities between time
series (Löning et al., 2019).

2) Time Series Forest Classifier (TSF); a variation of the standard
random forest algorithm that uses randomized time series
segmentation and feature selection based on a combination of
entropy gain and distance to the nearest feature value (Deng
et al., 2013).

3) Proximity Forests (PF); an ensemble of randomized proximity
trees that branch on another exemplar time series based on
their similarities (Lucas et al., 2019). The distance measure at
each node is randomly selected from 11 distance measures
including the Euclidian Distance and different Dynamic Time
Wrapping methods.

Table 2 presents the classification results for the speed profiles
under free-flow and car-following scenarios using the
aforementioned classifiers. It can be observed that the
proposed classifiers provide slightly lower performance
compared to the proposed ANN and SVM structures in the
previous section. Nevertheless, all three classifiers have resulted in
a high F1-score value of at least 0.8.

The analyses indeed lend support to the premise that human
drivers implement different braking maneuvers depending on
the existence of a proceeding vehicle. Such findings justify
dedicated braking rules in CAVs’ decision logic under free-
flow and car-following driving conditions to ensure safe and
human-like braking maneuvers by CAVs in mixed traffic
environments.

On the next step toward investigating the hypothesis of the
mismatch between humans’ and CAVs’ deceleration profile at
intersections, the CAV braking pattern is simulated using the
state of practice in vehicle automation safety guidelines. Resulted
profiles are then compared to those of humans under
corresponding driving conditions. It should be noted that the
proposed ANN classifier in the previous section is selected for the
rest of the analysis as it results in slightly higher accuracy in
classifying different braking patterns.

TABLE 2 | Classifying Humans’ Free-flow and Car-following Braking Behavior
using Univariate Time Series Classifiers: (A) KNN, (B) TSF, and (C) PF
Classifiers.

Precision Recall F1-score

(A) KNN classifier
Free-flow 0.67 0.73 0.70
Car-following 0.88 0.85 0.87
Average 0.78 0.80 0.80

(B) TSF classifier
Free-flow 0.73 1.00 0.85
Car-following 1.00 0.85 0.92
Average 0.87 0.93 0.89

(C) PF classifier
Free-flow 0.69 1.00 0.81
Car-following 1.00 0.82 0.90
Average 0.85 0.91 0.86

FIGURE 4 | Receiver Operating Characteristics (ROC) curves for the
ANN and SVM models.
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Connected and Automated Vehicles’
Braking Behavior
In this section, CAVs’ braking behavior under free-flow and car-
following conditions are first simulated using the proposed models in
the literature. Then, potential differences in humans’ andCAVs’braking
decisions are investigated under corresponding driving scenarios.

Connected and Automated Vehicle Braking Under
Free-Flow Conditions
Safety, efficiency, and comfort play significant roles in
defining CAV braking rules at urban intersections. Under a
free-flow condition where there is no other preceding vehicle, CAVs
can choose comfortable and efficient deceleration rates and follow a
smooth braking maneuver until reaching a full stop. High
deceleration rates can result in dangerous situations for both the
CAV and its potential followers, while small decelerations fail to
meet system efficiency requirements. Accordingly, a constant
deceleration rate of 1.5 m/s2 (∼5 ft/s2) is selected as CAVs’
braking rule under free-flow driving conditions. This
deceleration rate accommodates smooth and comfortable
braking maneuvers by the vehicle, as suggested in (Wu et al.,
2009). A braking profile is thus simulated for CAVs using
1.5 m/s2 (∼5 ft/s2) constant deceleration when approaching an
intersection under the free-flow driving condition.

Connected and Automated Vehicle Braking Under
Car-Following Conditions
CAVs’ car-following behavior has been the subject of several
studies during the past decades. A promising study in this regard
is the deterministic acceleration model developed by Talebpour
and Mahmassani (2016). They have developed a comprehensive
microscopic simulation framework that uses different models to
capture the interactive behavior between human drivers and CAVs,
considering different levels of connectivity. The present study adopts
a similar approach to simulate the braking decisions made by CAVs
at intersections under car-following driving conditions.

In their study, Talebpour and Mahmassani modeled CAVs
car-following behavior by determining the maximum safe speed
for the follower based on two main assumptions:

1) Autonomous vehicles can only monitor the vehicles in their
sensor detection range. Thus, the speed of the follower CAV
should be low enough to be able to reach a full stop in case of
confronting a stopped vehicle immediately out of the
boundary of the sensor detection range.

2) If the CAV is following another vehicle detected by its sensors,
it should be able to reach a full stop if the leader decides to stop
with the maximum deceleration rate.

Considering a platoon of vehicles, the safe speed profile for the
follower CAV can then be modeled using the following equations:

Δxn � (xn−1 − xn − ln−1) + vn−1τ + v2n
2adeccn

,

Δx � min{SensorDetection Range,Δxn},
vmax �

��������
−2adecci Δx

√
, (2)

where vmax is the maximum safe speed, xn is the location of
vehicle n (follower CAV), ln−1 is the length of vehicle n − 1
(leader), vn−1 represents the speed of the leader, τ is the reaction
time of vehicle n, and adeccn represents the maximum deceleration
rate for vehicle n.

The acceleration rate of the CAV at every decision points is
then computed using the following equation (Shalev-Shwartz
et al., 2017):

adn(t) � kaan−1(t − τ) + kv(vn−1(t − τ) − vn(t − τ))
+kd(Sn(t − τ) − Sref ),

Sref � max{Smin, Ssystem, Ssafe},
Ssafe � v2n−1

2
( 1
adeccn

− 1

adeccn−1
),

Ssystem � vnτ,

(3)

where adn(t) represents the acceleration rate of vehicle n, Sn is the
spacing between the vehicles, Smin is the minimum distance that is
set to 2.0 m in this study, and ka, kv , and kd aremodel parameters to
be estimated. Finally, the implemented acceleration in CAV
navigation systems can be computed as:

an(t) � min(adn(t), kvmax − vn(t)) (4)

where k is the model parameter to be estimated. Using the
deterministic acceleration model represented by Eq. 4, a
braking profile is simulated for CAVs under car-following
driving conditions. Note that the following parameter values
are selected for the purpose of this study: k � 0.1, ka � 1.0,
kv � 0.58, and kd � 1.0.

Comparing Humans’ and Connected and
Automated Vehicles’ Braking Behaviors
After simulating CAV’s driving behaviors under free-flow
and car-following scenarios, a similar ANN architecture with
the same input information is adopted to investigate
potential differences in braking maneuvers executed by
human drivers and CAVs under the same driving
conditions. The proposed ANN framework is trained to
capture potential differences in humans’ and CAVs’
braking patterns under a specific driving condition, and
then classify an unseen test braking pattern to belong to a
human driver or a CAV. A high classification accuracy can
then illustrate a significant difference in the braking decisions
made by humans and CAVs under similar driving conditions.
Table 3 presents the classification results for each of the free-
flow and car-following driving conditions.

Analysis of the results presented in Table 3 indicates that the
proposed ANN model is able to accurately classify test braking
patterns into human and CAV categories based on the differences
in their profiles. Substantially high F1-score values for both the
car-following (F1-score � 0.96) and free-flow scenarios (F1-score
� 1.0) suggest significant differences in humans’ and CAVs’
braking decisions under the same driving conditions, which
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can then be captured and learned via common AI techniques.
These findings would lend support to the idea that CAVs do not
brake the way humans do and expect. Such mismatch in humans’
and CAVs’ braking patterns can lead to high-risk situations in
mixed traffic environments and happen to be a potential reason
for CAVs’ rear-end collisions at urban intersections. Indeed,
existing CAV braking rules may result in unexpected braking
decisions from humans’ perspective and potentially cause CAVs
to be hit by a follower human-driven vehicle. These findings
justify the need for a human-like and yet safe CAV braking profile
that ensures appropriate human-CAV cooperation when
stopping at interactions in mixed environments. The rest of
the sections deals with designing a novel decision modeling
framework for CAV braking that meets these criteria.

Designing a Connected and Automated
Vehicle Braking Profile
This section aims at generating a safe braking pattern for CAVs
based on the observed behavior of human drivers under free-flow
and car-following driving conditions. Different deterministic and
stochastic modeling frameworks have been adopted to model
humans’ driving behavior in different scenarios. The major
challenge posed by most deterministic approaches is centered
around capturing the existing uncertainties in humans’ decision-
making (Sadigh et al., 2014). Stochastic techniques, on the other
hand, are known for their ability to capture the heterogeneity in
individual agents and, therefore, can better reflect humans’ real-
world behavior.

Markov Decision Process (MDP) is one of the well-known
stochastic frameworks employed for decision modeling in
uncertain domains. MDPs are powerful analytical tools that allow
agents to determine the ideal behavior within an environment. A
quick literature review indicates multiple applications of MDPs for
modeling driver behavior under different traffic scenarios (Morris
and Trivedi 2008; Sathyanarayana et al., 2008; Berndt andDietmayer
2009; Osipychev et al., 2015; Chae et al., 2017). The present study
puts forward an MDP-based modeling framework to design a safe
and human-like braking profile for CAVs in mixed traffic
environments. The solution of the proposed MDP model can be
implemented in the form of a look-up table that can satisfy real-time
requirements of autonomous driving without high computational
complexities.

Markov Decision Process
Identifying the optimum decision in uncertain domains is amajor
challenge in probabilistic modeling. MDP is a random process
used to optimize a sequential decision-making problem by
maximizing agents’ total rewards (Russell and Peter 2016). A
common MDP is defined by:

1) States, St ; represent the condition of the system at time t.
2) Actions, As ; a set of possible action at state s ∈ St , where

executing each action can result in either the same or a
different state (s′ ∈ St+1). The Markov property asserts that
the future state of a process depends only on the current state,
overlooking the future and past states (Gagniuc 2017).

3) Transition probability, T(St , St+1, at) � P(St+1|St , at); the
probability that action as in state s ∈ St results in state s′ ∈ St+1.

4) Rewards, R(s, a); represents the long-term reward received
when transferring from state s ∈ St to states s′ ∈ St+1 as the
result of executing action as.

The goal of the MDP process is to determine actions that
maximize the cumulative rewards over the whole process. MDP
solution is often represented by a policy, π : St → At , that specify
the optimum action that an agent should take at each state in
order to maximize its overall payoff.

A common approach used to solve an MDP problem is the
value iteration algorithm. The method defines a value function
q(s, a) to measure how rewarding an action is in a particular
state. Eq. 5 represents the value function defined at any state
under policy π (Sutton and Barto 2018):

qπ(s, a)^Eπ[Gt |St � s,At � a] � Eπ
⎡⎣∑∞

k�0
ckRt+k+1|St � s,At � a⎤⎦,

(5)

where c is a discount factor that asserts the priority of the
immediate action rewards over future rewards and is set to 0.9
for this study. The optimal policy, denoted by (πp), is then the
policy that generates the maximum expected value. In other
words, the optimum policy at each state denotes the agent’s
best action for which the optimal value function will be achieved.
The optimal action-value function (qp), also known as the
Bellman optimality equation, is defined as follows (Sutton and
Barto 2018):

q*(s, a)^max
π

qπ(s, a) � Σs′rp(s′, r|s, a)[r + cmax
a′

q*(s′, a′)] (6)

The Bellman optimality equation results in a unique solution.
Each state has a Bellman equation with an unknown utility. An
MDP problem with n states will thus result in n nonlinear
equations with n unknowns. Literature suggests several
approaches to solve the Bellman optimality equation
(Christopher 1992; Russell and Peter 2016). The value
iteration approach is one of the well-known methods which
starts with some initial values for each state and updates them
based on Eq. 5. The process continues until all state values reach a
steady number. The assigned allowable error between successive

TABLE 3 |Classifying humans’ and CAVs’ braking behavior under different driving
conditions using the ANN classifier.

Precision Recall F1-score

(A) Car-following
CAVs 0.95 0.95 0.95
Humans 0.97 0.97 0.97
Average 0.96 0.96 0.96

(B) Free-flow
CAVs 1.00 1.00 1.00
Humans 1.00 1.00 1.00
Average 1.00 1.00 1.00
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values defines the stopping criteria. The final values are then set as
the optimal decisions proposed by the Markov process. Note that
utilizing the aforementioned method requires knowledge about
transition probabilities. Accordingly, this study utilizes empirical
data to estimate these probabilities. While other methods exist that
can solve the Markov process without knowing the transition
probabilities and/or reward [e.g., Q-Learning (Huang and Haskell
2017; Shah and Vivek 2018)], these methods require much larger
datasets that is not available to the researchers. Accordingly,
this study assumes that the calculated transition probability
distributions represent the actual transition probabilities. Since
this study is considered a proof-of-concept for the brake profile
design problem, such an assumption can be considered reasonable.

Considering the problem of designing a CAV braking profile
in MDP terminology, the autonomous braking system should
select an appropriate braking action in each state such that the
resulting braking profile meets surrounding human drivers’
expectations without sacrificing safety. States in such systems
should reflect the factors that affect CAV braking under
corresponding driving conditions. The following sections
provide a detailed description of the proposed MDP model for
designing a braking profile for CAVs in mixed environments.

Connected and Automated Vehicle Braking Profile
Under Free-Flow Driving Condition
Table 4 summarizes the structure of the proposed MDP model
for designing a CAV braking profile under free-flow driving
condition. The following describes the components of the
MDP problem in more details.

States: Real-world observations suggest that when there is no
other car between the target vehicle and the upcoming
intersection, the vehicle speed plays a major role in driver’s
braking decisions. Accordingly, in designing a CAV braking
profile under free-flow driving conditions using an MDP
structure, states are defined to be the speed of the target vehicle.

Analyzing the collected vehicle trajectories under free-flow
driving conditions, vehicle speeds are divided into groups (bins)
based on the initial speed of the vehicle 10 s before reaching a full
stop. Considering that the initial speeds in the dataset range from
7 to 17 m/s, five bins are generated with the interval of 2 m/s.
Then, at each bin, vehicle speeds are categorized into 17 states,
where speeds in range (s-1, s] fall into state “s” (s � 1, 2, 17 m/s).

Actions: Actions of the system are defined as the different
acceleration/deceleration rates that might be selected by the
vehicle at each state. Based on the collected dataset, available
actions at each state encompass 34 acceleration/deceleration
rates, equally-spaced in the range [−3 m/s2, 3 m/s2]. The
proposed range also includes the maximum comfortable
acceleration/deceleration rate suggested in the literature
(Wu et al., 2009). Note that the states and actions of the
system are defined such that any recorded speed value is
covered by exactly one state in the implemented MDP
structure.

Transition Probability: As alluded to, the main
contribution of the present study is to design a CAV
braking profile that is compatible with human
expectations. To meet this objective, the transition
probabilities between the states in the proposed MDP
problem are estimated based on human drivers’ real-world
braking decisions. Accordingly, the probability of changing
from one speed state to another is calculated for human
drivers using the collected dataset. These probabilities are
then set to be the corresponding transition probabilities in
the MDP model. The procedure can ensure human-like
accelerations/deceleration maneuvers in the solution
profile generated by the proposed Markov decision
modeling framework for modeling CAV braking in mixed
environments.

Rewards: The final step in defining the MDP structure is to
formulate a reward system that in each state favors the actions
which result in more satisfactory conditions. The satisfaction
criterion is defined based on the present state (speed) of the agent
as well as the convenience level of the acceleration/deceleration
maneuver. The ultimate goal is then to guide the agent toward the
terminal state, i.e., reaching the speed of zero at the intersection.
The penalty for each state is, therefore, proportional to the
distance from the terminal state. On the other hand, the
associated reward of each action depends on its deviation
from the comfortable deceleration rate (acomfort). In this study,
the upper limit of the comfortable deceleration rate and the lower
limit of the dangerous deceleration rate (adangerous) are considered
to be 2 m/s2 and 6 m/s2, respectively. Based on the above
discussion, the proposed reward function R(s, a) for action a
at state s is computed according to equation 7, where

TABLE 4 | Proposed MDP structure to design a CAV braking profile under free-flow driving condition.

Description

States (s) Speed of the target vehicle
Actions (a) Acceleration/deceleration rate
Transition probability The corresponding probability of changing from one speed state to another in human data
Rewards (R(s, a)) ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Rmax − (acomfort − a)
log(Rmax )

log(acomfort−adangerous ) for a< acomfort

Rmax( a
acomfort

)1
3

for a≥ acomfort

where acomfort and acomfort are upper limit of the comfortable deceleration rate and the lower limit of the dangerous

deceleration rate, respectively; and Rmax � 10p(1
s)0.1
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Rmax � 10p(1/s)0.1. Figure 5 indicates the reward distribution for
a sample terminal state.

R(s, a) �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Rmax − (acomfort − a) log(Rmax )

log(acomfort−adangerous), for a< acomfort ,

Rmax( a
acomfort

)1
3

, for a≥ acomfort .

(7)

With the states, actions, transition probabilities, and reward
system described above, an MDP structure is developed and
optimized using the value iteration procedure with stopping
criteria of 0.001 for change in q values. Note that other
stopping criteria (e.g., no change in action at each decision
point) might result in a different outcome. Exploring such
differences are, however, beyond the scope of this paper as
this paper serves as a proof-of-concept for the CAV brake
profile design. The resulted best policy provided the optimum
action (acceleration/deceleration rate) that can be adopted by
CAVs at each speed state when approaching an intersection.
Based on these findings, a decision framework is designed for
CAVs braking under free-flow driving conditions in mixed
environments such that: 1) it follows the guideline for safe and
comfortable braking maneuvers at intersections, and 2) favors
human-like braking decisions observed in real-world contexts.

Figure 6 illustrates a sample CAV free-flow braking profile
generated by the proposedMDP structure for the initial speed bin
(15–17] m/s, along with a sample free-flow braking profile
executed by a human driver in the dataset. Visual analysis
indicates smooth braking maneuvers along with promising
similarities between the two braking patterns, which can, in
turn, alleviate the existing mismatch between the way humans
and CAVs stop at intersections.

To further evaluate the proposed MDP structure, specialized
statistical methods are also adopted to compare the observed
deceleration trajectories of human drivers and the corresponding
CAV braking profile. In light of this, simulated and actual speed
time series are separately analyzed using the Auto-Regressive
Integrated Moving Average (ARIMA) model. ARIMA is one of
the most common tools in analyzing time series data used to

understand various aspects and the inherent nature of time series.
The model explains a given time series based on the idea that the
information in past values of the series is sufficient to predict
future points. The null hypothesis set forth here is that there is no
statistically significant difference between the ARIMA models
fitted to the observed and simulated braking profiles.

Three distinct terms are used to characterize an ARIMAmodel
and determine the required number of model parameters to
account for the auto-regressive, integrated, and moving
average components. A grid search algorithm is developed to
select optimal values of these terms based on the Akaike
Information Criterion (AIC). Table 5 presents the ARIMA
modeling results fitted to the human and CAV braking
profiles illustrated in Figure 6.

Referring to the coefficient tables, it can be observed that the
estimated values of the corresponding model parameters are
fairly close to each other. From a statistical perspective, the
estimated parameter values for the ARIMA model of the
simulated CAV profile (ar.L1.D and ar.L2.D) fall into the
associated 95% confidence interval of the corresponding
parameters in the ARIMA model of humans. In other words,
there is no evidence of statistically significant differences between
the time series models constructed to describe the given human
and CAV braking patterns, being 95% confident. These findings
suggest that the proposed MDP structure is capable of generating
a safe human-like braking profile for CAVs’ real-time operation
in mixed traffic environments.

Connected and Automated Vehicle Braking Profile
Under Car-Following Driving Condition
Table 6 summarizes the structure of the proposed MDP model
for designing a CAV braking profile under the car-following
driving condition. The following describes the components of the
MDP problem in more details.

States: In the previous section, vehicles’ speed was considered
as the main factor affecting drivers’ braking decisions under the
free-flow driving condition. For the car-following scenario,
however, drivers’ decisions hinges on several dominant factors,
including the speed of the target and leader vehicles as well as

FIGURE 5 | Reward distribution for actions at the terminal state. FIGURE 6 |Humans’ and the proposed CAV braking profiles under free-
flow driving condition.
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their relative distance. Therefore, it is crucial to consider these
factors when defining the current state of the agent in the
proposed MDP model for CAVs’ braking in car-following
scenarios. Considering the speed data recorded 10 s before
reaching a full stop, vehicle speeds (for both follower and
leader vehicles) are categorized into 17 states (similar to the
categories defined for the free-flow condition). The observed
distances between the leader and follower vehicles in the data
are also categorized into 29 states, where distances between (d-1,
d] fall into category “d.” The final state is then defined as a vector
of the follower vehicle’s speed, the leader vehicle’s speed, and the
relative distance between the leader and follower.

Actions: Similar to the previous section, actions are defined as
the possible acceleration/deceleration rates that might be selected
by the target CAV at each state. Analyzing the collected data on
human braking, available actions to the driver in the proposed
MDP problem include 34 acceleration/deceleration rates equally-
spaced in range [−3, 3] (m/s2).

Transition Probability: Similar to the free-flow scenario, the
recorded data on human drivers’ braking decisions in real-world
contexts is used to estimate the transition probabilities between
the states to ensure a human-like deceleration profile.

Rewards: For the car-following scenario, rewards are
formulated based on the deviation of the relative distance
between vehicles from the safe braking distance at any given
state. The inputs of the reward function include the current
state of the follower vehicle, along with the braking action of
the leader vehicle at that state. The latter is predicted using the
best braking profile generated by the proposed MDP model for
free-follow braking. As suggested by Luo et al. (Luo et al.,
2011), the safe distance dsafe between vehicles is defined as the
distance that assures the safety of the braking maneuver by
preventing rear-end vehicle collisions and is computed using
the following equation:

dsafe �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Vf tr +
(Vf −Vl)tb

2
+ v2f
2af

− v2l
2al

+dfinal, forVf ≥Vl

Vf (tr + tb)+
2VlVf −2v2f − v2l

2al
+ v2f
2al

+Vltb
2

+dfinal forVf <Vl

(8)

where Vf , Vl , af , and al denote the follower and leader vehicles’
speed and acceleration/deceleration rates, respectively; tr and
tb are drivers’ reaction and braking times which are
approximately [0.8–1.0] and [0.1–0.2] seconds, respectively;
and dfinal is the required safe distance when vehicles stop
(usually [2–5] meters).

Actions that result in shorter distances than dsafe will get
high penalties in the proposed MDP structure. To avoid harsh
braking maneuvers, actions leading to longer distances are also
subject to penalties. In contrast, those that keep the two
vehicles at a reasonable safe distance will receive higher
rewards. Considering the above criteria, the reward function
associated with action a at a given state s is formulated as
follows;

R(s, a) � 0.1 * dsafe − (dsafe − d(s, a))2 (9)

where d(s, a) is the resulted distance between the vehicles if
action a is taken by the follower CAV. This function perfectly
assigns penalties and rewards to the follower vehicle’s actions
keeping the braking maneuver within a safe as well as comfortable
deceleration range.

Similar to the free-flow scenario and considering the proposed
states, actions, transition probabilities, and reward structure, an
MDP model is developed and optimized using the value iteration
procedure with the stopping criteria of 0.001 for change in q
values. The resulted best policy then identifies the optimum

TABLE 5 | ARIMA model results for (A) human, and (B) simulated CAV braking profiles under free-following driving condition.

Parameter Coef. Std. Error z p > |z| 95% Conf. Int.

(A) Observed human braking profile
Const. −0.452 0.273 −1.656 0.098 [−0.986, 0.083]
ar.L1.D 1.463 0.227 6.431 0.000 [1.017, 1.909]
ar.L2.D −0.589 0.227 −2.600 0.009 [−1.033, −0.145]

(B) Simulated CAV braking profile
Const. −0.494 0.262 −1.888 0.059 [−1.007, 0.019]
ar.L1.D 1.467 0.156 9.383 0.000 [1.160, 1.773]
ar.L2.D −0.576 0.160 −3.589 0.000 [−0.891, −0.261]

TABLE 6 | Proposed MDP structure to design a CAV braking profile under car-following driving condition.

Description

States (s) Speed of the target vehicle
Actions (a) Acceleration/deceleration rate
Transition probability The corresponding probability of changing from one speed state to another in human data
Rewards (R(s, a)) R(s, a) � 0.1pdsafe − (dsafe − d(s, a))2

where, dsafe is the required distance between the vehicles to assure a safe braking maneuver by the follower; and d(s, a) is
the resulted distance between the vehicles if action a is taken by the follower CAV.
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braking actions (acceleration/deceleration rates) at each state
under a car-following driving scenario.

The MDP solution can be represented in the form of a look-up
table where an optimum action is suggested for each condition
(state) that the vehicle might experience. In a connected,
automated driving environment, CAVs can accurately
measure their own speed, the leader’s speed, and the
distance to the leader, and in turn, determine their current
state when approaching an intersection under a car-following
driving scenario. Corresponding optimum acceleration/
deceleration rate can then be selected based on the best
policy table provided by the MDP model. Similar to the
free-flow condition, a deceleration profile can then be
designed for CAV braking under car-following conditions
based on humans’ braking decisions in real-world context
while meeting safe and comfortable braking criteria.
Figure 7 illustrates a sample car-following braking profile
generated for CAVs, along with the real-world behavior of
the follower and leader vehicles extracted from the data. Initial
analysis of the results reveals promising similarities among the
proposed CAV braking profile and the actual deceleration
pattern of the corresponding human follower.

Similar to the free-flow condition, separate ARIMAmodels are
fitted to the human and CAV series illustrated in Figure 7 in
order to identify the best model to describe the characteristics
of each profile. Table 7 presents the associated results. Adopting
a 95% confidence level, it can be shown that there is no
statistically significant evidence to reject the null hypothesis
of using similar ARIMA models to describe the given human
and CAV braking profiles.

These findings indeed suggest that the proposed MDP
modeling framework can properly approximate the decision-
making procedure of human drivers when stopping at
intersections. Incorporating such a framework in CAV
navigation algorithms is therefore expected to relieve the
existing mismatch between humans’ and CAVs’ deceleration
patterns and potentially prevent the frequently-observed rear-
end crashes in mixed traffic environments.

CONCLUSION

While safety considerations play a crucial role in designing connected
and automated vehicles, current measures of safety do not provide
enough insight into the nature of CAV crashes. CAV safety analysis
and crash records during the testing phase indicate that CAVs are
frequently involved in rear-end collisions caused by human drivers
when stopping at intersections. Themismatch betweenCAVs’ defined
braking decisions and humans’ expectations is considered to be one of
the core hypotheses in justifying these crashes. To test this hypothesis,
the present study aims at modeling human drivers’ braking behavior
at intersections under different driving conditions and translate the
findings into CAVs’ decision logic.

Data is collected from human drivers’ braking behavior at
intersections using Texas A&M’s automated Chevy Bolt EV.
Artificial Intelligence techniques are then used to model and
predict drivers’ braking behavior under car-following and free-
flow driving conditions. Strong evidence on the difference in
braking patterns of human drivers under these driving
conditions, justified dedicated braking rules for CAV deceleration
under each scenario. In the next step, humans’ braking decisions are
compared to that of CAVs’ under corresponding driving conditions.
The results indicated notably large differences in humans’ and
CAVs’ braking patterns, confirming the need for designing a safe
braking pattern for CAVs that is more human-like.

Themain contribution of the present study is to propose a decision
modeling framework for CAV braking inmixed traffic environments.
To this end, a Markov Decision Process (MDP) is developed to
generate a braking profile based on human drivers’ real-world
behavior while incorporating the required criteria for a safe and
comfortable braking maneuver. States of the system reflect the factors
that affect drivers’ braking decisions at intersections, and actions are
defined as possible acceleration/deceleration rates that can be executed
by the target vehicle at each state. The transition probabilities for each
action are then computed using the frequency of the associated
acceleration/deceleration rate selected by human drivers in
corresponding conditions. Reward functions are also defined to
favor safe, efficient, and comfortable deceleration maneuvers.

The resulting best policy by the proposed MDP model
provides a human-like and yet safe braking profile for CAV
braking under each of the aforementioned driving conditions.
Simulation results in both conditions indicated a relatively high
performance of the designed CAV profile in approximating
humans’ braking decisions at intersections.

FIGURE 7 | Car-following braking profile generated from the
observations and MDP model.

TABLE 7 | ARIMA model results for (A) Human, and (B) Simulated CAV braking
profiles under car-following driving condition.

Parameter Coef. Std. Error z p > |z| 95% Conf.
Int.

(A) Observed human braking profile
Const. −0.657 0.440 −1.493 0.135 [−1.519, 0.205]
ar.L1.D 0.909 0.072 12.255 0.000 [0.767, 1.051]

(B) Simulated CAV braking profile
Const. −0.625 0.358 −1.743 0.081 [−1.328, 0.078]
ar.L1.D 0.879 0.082 10.721 0.000 [0.718, 1.040]
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The findings of this study are expected to facilitate the
development of higher levels of vehicle automation by
providing guidelines to prevent human-CAV rear-end
collisions that are caused by the potential mismatch between
CAVs’ braking behavior and humans’ expectations. Larger
datasets that cover a broader range of vehicle speeds and
relative distances are required to generalize the designed
braking profiles for CAVs in mixed traffic environments.
Further analysis using more data from human-driven vehicles
is also necessary to better capture the heterogeneity in individual
braking decisions. Modeling CAVs’ braking behavior under
different driving conditions, for example, a platoon of three or
more vehicles, different speed limits, and different weather
conditions are left for future studies.
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