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Since delivery robots share sidewalks with pedestrians, it may be beneficial to choose
paths for them that avoid zones with high pedestrian density. In this paper, we investigate a
robot-based last-mile delivery problem considering path flexibility given the presence of
zones with varying pedestrian level of service (LOS). Pedestrian LOS is a measure of
pedestrian flow density. We model this new problem with stochastic travel times and soft
customer time windows. The model includes an objective that reflects customer service
quality based on early and late arrivals. The heuristic solution approach uses the minimum
travel time paths from different LOS zones (path flexibility). We demonstrate that the
presence of pedestrian zones leads to alternative path choices in 30% of all cases. In
addition, we find that extended time windows may help increase service quality in zones
with high pedestrian density by up to 40%.
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1 INTRODUCTION

There are many challenges associated with last-mile delivery, the final step in the retail supply chain.
It is estimated that the last mile constitutes about half of all logistics costs for service providers
(McKinsey and Company, 2016). Partially, this is due to the number of failed deliveries, which leads
to additional delivery attempts and increased costs. In addition, the rapid growth of e-commerce has
increased the demand for delivery drivers (Sasso, 2018) and resulted in driver shortages. With the
spread of COVID−19, demand for last-mile delivery services has increased even further. Given these
factors, many logistics service providers are exploring alternative solutions for last-mile deliveries.

These solutions include, but are not limited to, cargo bikes, self-service parcel lockers, aerial
drones, ground based autonomous delivery robots, crowd shipping, and collection-and-delivery
points (Boysen et al., 2020; Janjevic et al., 2019). Some of these solutions are easier to implement than
the others. For instance, a wide implementation of electric autonomous vehicles would require
substantial investments in the road infrastructure to enable traffic management and coordination
(Hussain and Zeadally, 2018). For drone-based deliveries, it has been found that drone noise is more
annoying to people than noise emission by vehicles (Christian and Cabell, 2017). Furthermore, in the
US, the FAA requires an operator to keep a drone within eye shot while operating and prohibits
operating more than one drone at a time by one operator (FAA, 2018). In addition, there is a number
of privacy concerns regarding drone operations (Rice, 2019).

In contrast to the above options, the deployment of ground robots seems to be an appealing and
promisingmode of parcel transportation for last-mile deliveries in the near future. Several companies
like Starship (2020), Robby (2020), and Marble (2020) have developed their own versions of delivery
robots, which are currently evaluated in field tests. It is common that these delivery robots transport
exactly one package to a single customer within a pre-specified time window. The robot moves on the
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sidewalk at pedestrian speed. Equipped with GPS, cameras, and
several other detectors, a robot can operate in an autonomous
manner with potentially just one person supervising up to a
hundred of them (Sulleyman, 2017). In addition, it is estimated
that compared to conventional truck-based deliveries, robot-
based deliveries can save up to 90% of operational costs when
they are used in a two-tier structure where trucks consolidate
packages and deliver them to local robot hubs, where robots
undertake the last-mile delivery (Bakach et al., 2021). Generally,
people are quite welcoming of these robots, and they are even
willing to pay more for parcel deliveries if there is an option to
choose the time and location of the delivery (USPS, 2018), which
can be easily accommodated by robots. In addition, robots are
much smaller than traditional gasoline-powered delivery vans,
and their carbon footprint is negligible (Figliozzi, 2020).

The utilization of robots has been steadily increasing across
the world. Starship robots have covered over 200,000 km in 20
countries and more than 100 cities around the world, completing
over 20,000 grocery and package deliveries (IEEE, 2020). In
Milton Keynes, United Kingdom, Starship Technologies
launched a robot package delivery service. For a monthly $10
fee, a customer can receive a package delivered by robots from a
local static hub (BBC, 2018). With the spread of COVID−19, the
delivery app “Meituan Dianping” established contactless
deliveries of groceries via robots to customers in Beijing,
China (Hu, 2020). Most of the limited amount of academic
research on robots is focused on a dynamic-hub approach,
where a manned delivery vehicle transports robots and
releases them at various locations. In this paper, we focus on
the second tier of a two-tier delivery system. In particular, we
follow a static-hub approach, where robots travel back and forth
between a local hub and customers (see examples in Section 2).

Despite all of the advantages, robots also have several
disadvantages that may limit their widespread usage. Limited
battery capacity, low speeds, and the necessity of driving on
sidewalks are among them. Robots use cameras, radars, and
further equipment to navigate safely through a city. However,
due to the safety concerns, they must slow down or completely
stop in presence of objects, such as pedestrians, in close proximity
(Wong, 2017). While robots can help to save a significant amount
of labor cost, it is not clear how to best operate them in crowded
urban areas. Hence, in this paper, we investigate the impact of
congested pedestrian areas on the use of robots for last mile
deliveries. Unlike related work, which mostly focuses on
deterministic travel times, we explore the effect of stochastic
travel times caused by pedestrian level of service (LOS) zones on
robot-based deliveries. The LOS reflects the intensity of
congestion of traffic flows based on measures such as speed
and travel time, freedom to maneuver, traffic interruptions,
comfort and convenience (Burden, 2006).

In particular, we investigate the impact of pedestrian LOS
zones on an objective known from stochastic vehicle routing as
presented by Taş et al. (2013) that reflects customer service
quality based on early and late arrivals with known delivery
time windows. We assume that the location of the robot hub is
given, and all packages and robots are already stored within the
robot hub. Robots make multiple pendulum-type trips per day to

deliver packages to customers located in different pedestrian LOS
zones. These zones reflect different pedestrian intensities and
hence affect travel time distributions of robot travel time and the
path chosen to the customer. For instance, if there is a pedestrian
LOS zone with high pedestrian intensity between a hub and a
customer, it might be beneficial for the robot to take a detour to
limit exposure to that zone.

This paper provides the following contributions

1) Based on the objective of Taş et al. (2013), we develop a
mathematical model for the robot-based last-mile routing
problem (RBLMRP) with stochastic travel times and
pedestrian LOS zones. We maximize customer service
quality, which is a metric based on early and late arrivals.

2) Based on established LOS classifications, we model
distributions of robot travel times in urban areas.

3) We adapt path finding and routing heuristics to consider the
impact of pedestrian LOS zones on robot traffic.

4) For different pedestrian intensities in LOS zones, we
investigate their effect on chosen paths, route plans and
customer service quality. This involves the selection from
multiple paths between hub and customer, which we call path
flexibility. We show that path flexibility is crucial for LOS
zones with high pedestrian intensity.

5) We show that extended customer time windows can improve
customer service quality by up to 40%.

We provide an overview of related literature in Section 2. In
Section 3, we define our problem and present a mixed integer
formulation, along with a discussion of issues related to stochastic
travel times and objective function evaluation. In Section 4, we
present our solution approach. In Section 5, we describe our data
sets and computational results. Finally, in Section 6, we provide
conclusions and discuss directions for future research.

2 LITERATURE REVIEW

In recent years, the amount of research on new technologies for
last-mile deliveries has been growing fast. Emerging concepts are
discussed by Speranza (2018), Behnke (2019), Hu et al. (2019)
and Boysen et al. (2020). We discuss literature related to robot-
based deliveries below. The stochastic nature of travel times in
our problem is also related to the stochastic vehicle routing
problem with time windows. Thus, we review some of the
relevant literature in this field as well.

2.1 Robot-Based Deliveries
Given the large number of publications for last-mile deliveries,
the amount of literature on autonomous robot-based deliveries is
still quite limited. All existing literature assumes that robots
undertake short last-mile deliveries and can be classified into
using a dynamic hub or a static hub. With dynamic hubs, robots
are released from a mobile hub, such as a delivery truck, but with
static hubs, they are released from a local depot.

Dynamic hub concept. Boysen et al. (2018) investigate a
problem that consists of one truck, a set of robots, several
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depots, and a number of drop-off points. The authors consider
deterministic travel times with hard customer time windows. In
their problem, a truck loaded with parcels and robots moves
between drop-off points, where robots are released to conduct
last-mile deliveries and then travel to local depots. If the truck
runs out of robots, it visits the nearest local depot to pick them up
again. Each customer has a delivery deadline. To minimize the
number of late deliveries, they combine a multi-start local search
heuristic and a mixed-integer program. In results considering up
to 40 customers, the model with robots and decentralized drop-
off points yields a lower average lateness than an alternative
where trucks wait for robots. Ostermeier et al. (2021) consider a
combination of a truck, robots, and robot depots, as well as two
types of drop-off locations: drop-off points, where a truck releases
robots, and robot depots, where it is possible to either release
robots from a truck or pick up a robot. Once a delivery has been
completed, robots return to a robot depot. A key difference from
Boysen et al. (2018) is that in the latter, the robot fleet is more
limited. The objective is to minimize combined costs of travel
time and distance for the truck and robots along with service costs
related to late deliveries. The authors indicate that their approach
can reduce costs by up to two thirds compared to the classic truck
delivery model. Jennings and Figliozzi (2019) propose a different
system: a truck drops off robots for the last mile and instead of
continuing its operations, the truck waits for robots to return. The
authors apply continuous approximation to estimate the savings
that robots can achieve in terms of delivery time and to estimate
the number of robots required. They conclude that robots may be
more efficient than conventional delivery approaches when the
average delivery time per customer is high or when the customer
density increases. Simoni et al. (2020) consider a traveling
salesman problem with robots and deterministic travel times.
One key difference is that the robots have several compartments
and can serve multiple customers after leaving a truck. The
objective function is to minimize operational costs. The
authors develop a dynamic programming approach which can
solve instances with up to 100 customers.

Static hub concept. In this paper, we implement a variant of
the static hub concept. Poeting et al. (2019) consider a
combination of truck routing and static hubs for robot
deliveries. In their approach, only a small percent (0–3%) of
parcels is delivered by robots directly from robot hubs, which
house only one robot. The majority of parcels are delivered by a
truck, and the authors focus on the creation of a tour such that
customer time windows and hub opening hours are met.
Numerical results indicate that such small levels of robot
usage have almost no effect on the vehicle tour length. The
authors use deterministic travel times with hard customer time
windows.

A model developed by Bakach et al. (2021) explores the cost
effectiveness of robot-based deliveries compared to conventional
truck-based deliveries. A two-tier delivery model is proposed. In
the first tier, a truck delivers parcels from a big depot to small local
robot hubs, in which a predefined number of robots is
maintained. In the second tier, robots make pendulum tours
to deliver parcels to customers with and without time windows.
The authors propose a mixed integer program to define the

minimum number and locations of local hubs and use
deterministic travel times with hard customer time windows.
In the next step, robots are assigned to customers such that the
total travel cost is minimized. The results show that cost is
reduced up to 90% compared to conventional delivery
methods, mainly due to savings of labor cost. Sonneberg et al.
(2019) consider a location-routing problem that utilizes robots to
service customers with time windows. Given the multi-
compartment nature of the robots, contrasting the layout of
current robots promoted by Starship and other companies as
used in this paper, several customers can be served by the same
robot which drastically decreases the total distance traveled and
the number of robots required as compared to the scenario when
a robot carries only one parcel. The authors propose a mixed
integer program which is used to solve a small case with 10
customers. Similar to the other papers, the authors use
deterministic travel times with hard customer time windows.

Ideas considered in this paper differ significantly from the
existing literature. First, none of the papers above consider
stochastic travel times for robots. Second, all geographies
considered in the existing robot literature are homogeneous,
so robots move at a predefined speed and follow predefined
paths, while we consider path flexibility. To the best of our
knowledge, this paper is the first one that addresses these two
points.

2.2 Vehicle Routing Problem and Traffic
Congestion
There is a large body of research on the vehicle routing problem
with stochastic travel times, which is related to our problem, since
travel times of robots are stochastic due to varying presence of
obstacles. We refer the reader to Rajabi-Bahaabadi et al. (2019)
for an overview of existing research on conventional stochastic
vehicle routing problems. Among other approaches, stochastic
travel times have been modeled with Gamma distributions
(Russell and Urban, 2008; Ehmke et al., 2015), and they are
important for accurate congestion modeling.

In recent years, modeling of congestion in vehicle routing
problems has been an important topic. Contrasting our approach,
the most common approach to modeling congestion is via time-
dependent travel times that are deterministic (Kok et al., 2012;
Ehmke et al., 2012). Related to the zone idea of this paper, Zhang
et al. (2019) demonstrate that congestion zones have significant
impact on vehicle path selection and that there is a clear benefit in
considering congestion zones in routing. However, they also
follow a deterministic approach.

To model traffic congestion in zones, traffic engineers describe
the utilization of traffic infrastructure using a level of service
(LOS) concept. Burden (2006) analyzes the intensity of pedestrian
traffic based on pedestrian flow rate and sidewalk space, using
categories from LOS “A” indicating free flow and low intensity of
pedestrian traffic to LOS “E” indicating severe congestion and
high intensity of pedestrian traffic. This approach offers a
straightforward way to distinguish between different scenarios
of pedestrian traffic intensity. We will use this concept to define
different travel time distributions for robot path selection.
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Taş et al. (2013) consider a VRP with stochastic travel times
and soft customer time windows. They develop a model using
Gamma-distributed travel times and propose a solution
procedure based on a tabu search algorithm. In our paper, we
adopt and modify their objective function as well as their solution
approach. We create a heuristic for flexible path selection that
considers pedestrian LOS across two zones. In addition, we
implement a shifting procedure to allow robots to wait in the
robot hub in between parcel deliveries.

3 PROBLEM DEFINITION AND MODEL
FORMULATION

In the following, we define the RBLMRP and present a
mathematical model incorporating stochastic travel times. We
describe how customer arrival times are modeled and how
Gamma distributions are used to reflect different pedestrian
intensities in LOS zones.

3.1 Problem Definition
In the RBLMRP, we assume that robots operate from a local
hub that contains all robots and packages to be delivered to
customers over a certain time period, such as a day. We also
assume that the robot hub has the technology to put the right
package into each robot. Given this technology and the
potential challenges to find locations for such hubs, we
assume the hub is static, and the location is given. The
objective is to maximize the customer service quality
associated with package deliveries based on the expected
early and late arrivals. This objective does not include
routing cost, since this is negligible in the context of
automated operations (Bakach et al., 2021).

Let C � (1, . . . , m) be the set of potential customers and R �
(1, . . . , n) be the set of robots. Each customer is located within a
particular pedestrian LOS zone. Each customer has an
associated service time s > 0 and time window (lc, uc), lc ≥ 0,
uc ≥ 0. If a robot arrives to a customer prior to the early time
window or after the late time window, a penalty is incurred. A
route here is a sequence of trips (robot hub–customer–robot
hub) performed by a robot using sidewalks. Since the number of
robots coincides with the number of created routes, we use the
two terms interchangeably. Each pendulum tour consists of two
arcs (robot hub–customer, customer–robot hub), and the arcs
have a distance dc associated with them. For simplicity, we
assume that the battery of a robot is replaced after every
pendulum tour. We assume that robots are limited to one
package per delivery, and each customer receives only one
package.

The RBLMRP is modeled mathematically in Section 3.2. The
varying intensity of pedestrian traffic as reflected through LOS
zones is modelled with Gamma-distributed travel times. These
are described in detail in Section 3.3. Since robots may travel
across multiple zones to make customer deliveries, travel times
may involve combinations of Gamma distributions. This is
described in detail in Section 3.4.

3.2 Model Formulation
We formulate the mathematical model of the problem as follows:

xr
c � 1 : if robot r � 1, . . . , n serves customer c where c ∈ C

0 : otherwise
{

zrcj �
1 : if customer j immediately follows customer c

for robot r � 1, . . . , n;where c, j ∈ C, c ≠ j
0 : otherwise

⎧⎪⎨⎪⎩
yr
c �

1 : if customer c is first for robot r � 1, . . . , n;
where c ∈ C

0 : otherwise

⎧⎪⎨⎪⎩
min ∑n

r�1
∑
c∈C

Dr
c X( ) +∑n

r�1
∑
c∈C

Er
c X( ) (1)

Subject to:

∑n
r�1

xr
c � 1 for c ∈ C (2)

∑
j∈C

yr
j ≤ 1 for r � 1, . . . , n (3)

∑
c∈C,c≠j

zrcj + yr
j � xr

j for r � 1, . . . , n; j ∈ C (4)

xr
c ∈ 0, 1{ } for r � 1, . . . , n; c ∈ C (5)

yr
c ∈ 0, 1{ } for r � 1, . . . , n; c ∈ C (6)

zrcj ∈ 0, 1{ } for r � 1, . . . , n; c, j ∈ C, c ≠ j (7)

Following the objective as presented by Taş et al. (2013), the
objective function Eq. 1 minimizes two components associated
with the customer service quality of robot deliveries: Er

c(x) and
Dr

c(x). These components represent expected earliness and
expected delay at customer c served by robot r. The
corresponding costs can be interpreted as costs of customer
dissatisfaction that occur when delivering outside the service
time window. A detailed formalization of these components is
provided in Section 3.3. Constraints Eqs 2–4 ensure that all
customers are served by a robot in a particular sequence. Note
that Constraints Eq. 3 also allow for some robots to remain at the
hub and not be used. Constraints Eqs 5–7 define the domain of
the variables.

Despite the simplicity of the model formulation, several
challenges arise. First, the evaluation of the objective function
requires multiple steps. For every customer, we must determine
what path a robot is going to take, and this path determination in
the context with different pedestrian LOS zones is a non-trivial
problem itself. Path flexibility is important since different paths
affect the value of the objective function. Second, the
consideration of stochastic travel times adds an additional
layer of complexity to the ordering of the customers.

3.3 Modeling Stochastic Travel Times
In our approach, we impose Gamma distributions on the travel
times between hubs and customer locations. For the sake of
clarity, let us consider the modeling of stochastic travel times for a
given route r as follows. We assume that the random time needed
to travel one unit of distance on an arc T is Gamma-distributed
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with shape parameter α and scale parameter λ. In the following,
we only vary the shape parameter α and fix the scale parameter λ.
This allows us to combine different Gamma distributions for
paths in different zones. To this end, suppose Tc is the time
needed to travel to customer c from the hub. Since α and λ are
parameters associated with T, Tc is Gamma-distributed with
parameters αcdc and λ obtained by scaling T with respect to
the distance dc between customer c and hub. The mean and
variance of Tc are calculated as follows:

E Tc[ ] � αcλdc (8)

Var Tc( ) � αcλ
2dc (9)

By considering travel times with corresponding mean Eq. 8
and variance Eq. 9, we can obtain the expected arrival times Yc for
every customer c. Adapting the approach of Taş et al. (2013),
when arriving at a given customer c, the robot has already
serviced prior customers in the route, represented through set
Ac with customers 1 to c−1, and has returned to the robot hub.
The mean and variance of arrival time Yc depends on the previous
travel and arrival times and can be derived as follows for a given
customer c:

E Y1[ ] � E T1[ ] (10)

Var Y1( ) � Var T1( ) (11)

E Y2[ ] � E Y1[ ] + E T1[ ] + E T2[ ] (12)

Var Y2( ) � Var Y1( ) + Var T1( ) + Var T2( ) (13)

. . .
E Yc[ ] � E Yc−1[ ] + E Tc−1[ ] + E Tc[ ] (14)

Var Yc( ) � Var Yc−1( ) + Var Tc−1( ) + Var Tc( ) (15)

where Eqs 10, 11 are mean and variance of the arrival time to the
first customer on the route, Eqs 12, 13 are mean and variance of
the arrival time to a second customer, and Eqs 14, 15 are mean
and variance for arrival at customer c−1 which reflects the
recursion. Now, Gamma-distributed arrival times Yc have the
following shape (α) and scale (λ) parameters:

αc � 2 ∑
l∈Ac

αldl + αcdc (16)

λc � λ. (17)

In the form of Taş et al. (2013), the expected delay and
expected earliness at customer c in a route can be computed as:

Dc X( ) � αcλc 1 − Γαc+1,λc lc( )( ) − lc 1 − Γαc ,λc lc( )( ) (18)

Ec X( ) � ecΓαc ,λc ec( ) − αcλrcΓαc+1,λc ec( ) (19)

where αc and λc are parameters that depend on the zone the robot
travels through and ec and lc are early and late time windows for
the customer c. We also adopt the approach from Taş et al. (2013)
to service time; we shift the customer time windows to the left by
the amount of cumulative service time.

3.4 Combining Travel Time Distributions
When a robot travels from the hub to a customer location, it may
be possible that hub and customer are located in different zones
characterized by different pedestrian LOS and thus follow

Gamma distributions with different parameters. In this case,
the path the robot travels consists of two parts, and it needs
to be defined how the different parameters of the Gamma
distributions are combined to derive expected travel and
arrival times at customers.

More formally, assume there are two non-overlapping
pedestrian LOS zones (z1, z2), and robot r travels a distance of
dz1 in Zone 1 and a distance of dz2 in Zone 2 to reach the customer
c. Similar to the previous section, we assume that the travel times
Tz1 in Zone 1 and Tz2 in Zone 2 are proportional to the unit of
distances traveled in z1 and z2, respectively. Furthermore, these
travel times are Gamma-distributed with shape parameter αz1 and
αz2 as well as scale parameter λ. Following the approach outlined
in the previous section, we obtain Tz1

c and Tz2
c , representing the

time needed to cover parts of the arc located in zones z1 and z2,
Gamma-distributed with parameters (αz1dz1, λ) and (αz2dz2, λ).

Using the well-known properties of independent Gamma-
distributed random variables, we can combine Tz1

c and Tz2
c in

order to create Tz
c , which represent Gamma-distributed travel

times for the entire path. This works as follows. Assume we have
dn1 units of distance to be traveled in Zone z1 and Zone z2,
respectively. From Eqs 8, 9 we obtain:

E Tz1
c[ ] � αz1λdn1

E Tz2
c[ ] � αz2λdn2

(20)

and

Var Tz1
c[ ] � αz1λ

2dn1

Var Tz2
c[ ] � αz2λ

2dn2.
(21)

Finally, based on the total distance to be traveled, dn1 + dn2, we
can derive Tz

c being Gamma-distributed with shape parameter
αz1dn1 + αz2dn2 and scale parameter λ with

E Tz
c[ ] � αz1dn1 + αz2dn2( )λ (22)

Var Tz
c[ ] � αz1dn1 + αz2dn2( )λ2. (23)

The analogous procedure can be applied for the return trip
from the customer to the hub, completing the pendulum tour.

4 SOLUTION APPROACH

To investigate the impact of different pedestrian LOS zones on
the routes for robots, we implement a heuristic involving the use
of Tabu Search. Our solution approach requires three steps. First,
we determine the minimum expected time path between the
robot hub and each customer. We discuss this in Section 4.1.
Second, we construct an initial solution and improve it with a
Tabu Search algorithm, as described in Section 4.2. We further
improve the solution with our shifting procedure described in
Section 4.3.

4.1 Selection of Minimum Expected Travel
Time Paths
Due to the stochastic nature of travel times, the minimum-
distance path may not be the one with the lowest expected
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travel time. Our heuristic chooses the path to a customer with the
lowest expected travel time, since it has the greatest chance of
meeting the customer’s early time window. Hence, depending on
where the hub and customer are located, we need to investigate up
to four path candidates. To demonstrate the selection of
minimum expected time paths, let us consider the following
example with two zones: P, the “outer zone”, characterized by
a pedestrian LOS with low intensity (i.e., not many pedestrians on
sidewalks), andQ, the “inner zone”, characterized by a pedestrian
LOS with high intensity (i.e. many pedestrians on sidewalks).
There are the following three cases.

In the first case, portrayed in Figure 1, customer a is located in
P, and the minimum-distance path from the hub to the customer
lies entirely in P. In this case, the minimum-distance path is also
the minimum expected time path. This path has a length da and
Gamma distributed travel times T∼Γ(αPda, λ).

In the second case, portrayed in Figure 2, customer b is located
in Q. Now, we must consider four path candidates, which are
created and evaluated as follows:

1) Step 1: Find the location of four zone entry points for Q to
reach b. Assuming a grid based city network, we consider only
points that are located directly “north”, “east”, “west” and
“south” of the customer location. We call paths that uses the
“north” entry point a Type-1 path, the “east” entry point a
“Type-2” path, the “west” entry point a “Type-3” path and the
“south” entry point a “Type-4” path.

2) Step 2: Obtain the distance and expected travel time from the
hub to each entry point and from each entry point to the
customer. In more detail, since there are four path candidates,
we have eight distances. Distances dP1 and dQ1 correspond to P
and Q parts of Path 1 in Figure 2. Similarly, dPi , i ∈ {2, . . . , 4},
and dQi , i ∈ {2, . . . , 4}, are distances for the partial paths 2, 3,
and 4. Using the approach outlined in Section 3.4, we can
combine these partial paths and obtain travel time
distributions for each of them:
Ti ∼ Γ(αPdPi + αQdQi , λ), i ∈ {1, . . . , 4}. Note that the values
αP and αQ depend on zone-specific pedestrian LOS.

3) Step 3: Using Eq. 22, we obtain expected travel times for each
of the four paths: E[Ti] � (αPdPi + αQdQi )λ, i ∈ {1, . . . , 4}.

4) Step 4: Select the path with the minimum expected travel time
min E (Ti), i ∈ (1, . . . , 4).

In the third case, as visualized in Figure 3, customer c is
located on the opposite side of the high-intensity Zone Q. In this
case, there are potentially two paths to choose from: Path 1, which
is shortest in terms of distance and partially lies inside zone Q,
and Path 2, that is also shortest in terms of distance for paths that
avoid crossing zone Q. The procedure for determining the path
with the minimum expected travel time for this configuration is
similar to the one described above.

Note that the selection of minimum expected time paths does
not guarantee the minimization of the objective function of the
RBLMRP, since minimum expected time paths could create
additional earliness which may reduce service quality. Hence,
we might want to delay the departure from the hub. A
corresponding shifting procedure allowing for strategic waiting

will be presented in Section 4.3. However, when we performed
experiments involving path enumeration, in more than 90% of
the instances, the minimum expected travel time paths were the
paths selected in the optimal solution.

FIGURE 1 | Case 1: Customer a located in low-intensity Zone P.

FIGURE 2 | Case 2: Customer b located in high-intensity Zone Q.
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4.2 Creation of Initial Solution and Tabu
Search
Using the procedure described in the previous section, an initial
solution is constructed with an insertion heuristic. Our insertion
heuristic is based on Solomon (1987) and works as follows. At
each iteration of the algorithm, a new customer c ∈ C is assigned
to a route r ∈ R that causes the smallest increase in our objective
function. For every customer c ∈ C that has not yet been inserted,
for every route r ∈ R, every possible insertion position into a route
is considered. Then, the best insertion place for a customer c is the
one that minimizes the increase in the total value of the objective
function. We repeat insertion until all customers have been
inserted.

Once we have an initial solution, Tabu Search can be used to
improve it. Tabu Search is a well-known metaheuristic method
designed to escape local optima. This method was first introduced
by Reeves (1993) and has been used to solve many problems,
especially vehicle routing problems. The version we use is based
on the algorithm by Taş et al. (2013), and we have modified it with
respect to the structure and characteristics of our problem,
especially with regard to inclusion of pedestrian LOS zones
and path selection. The major difference in our Tabu Search
and the one in Taş et al. (2013) is that we optimize the robot
departure time to minimize our objective. This feature is
described in Section 4.3.

At each iteration of the Tabu Search, the algorithm selects a
non-Tabu solution from a neighborhood of the current solution
which is stored in the candidate list and has a superior value of the
objective function relative to the current solution. In case such a
solution is not present in the candidate list, the one with the

smallest value of the objective function is selected instead. The
algorithm runs for a maximum of h iterations or until the solution
has not been updated for the last l iterations, where l < h.

Once the new solution is selected, a neighboring solution of
the current solution is constructed and added to the candidate list.
The neighborhood f(X) of a current solution X is constructed via
randomly performing one of the following relocation operators
on two randomly selected different customers as follows:

1) Vertex Reassignment. Remove the first selected customer (c2 )
from its current position on a route and insert it into the
position after the second selected customer on its route (c4 ),
e.g., X � {X1, X2}, X1 � (hub, c1, c2 , c3),
X2 � (hub, c4 , c5, c6) → X1 � (hub, c1, c3), X2 �
(hub, c4 , c2 , c5, c6).

2) Vertex Swap. Exchange the position of two selected customers on
their routes (c2 and c4 ), e.g.,X � {X1,X2},X1 � (hub, c1, c2 , c3),
X2 � (hub, c4 , c5, c6) → X1 � (hub, c1, c4 , c3), X2 �
(hub, c2 , c5, c6).

Note that vertex reassignment can possibly reduce the number
of routes and, consequently, the required number of robots
activated at the hub.

4.3 Shifting Departure Times to Allow for
Strategic Waiting
Once a new candidate solution is created, we perform a shifting
procedure on this solution, allowing for strategic waiting of robots
at the hub. This is done to improve the balance of earliness and
lateness in the objective function. Recall that the path chosen is
the one with the minimum expected travel time, so a delay at the
hubmay improve the objective. In this procedure, we examine the
best delay, in multiples ofMminutes, for the first customer on the
route that optimizes the service quality for the entire route. Note
that this yields an approximation of the optimal shift only. In
evaluating the service quality associated with this shift, if the
departure time for a customer c is shifted by a value of kcM, kc > 0,
then the arrival time for all the subsequent customers will also be
shifted by the same value. We repeat this process for the
remaining customers on the first route, and then repeat this
process for additional routes. The procedure outlined below is
different from the one performed in Taş et al. (2013), who
perform only one shift before the vehicle leaves the depot.

Algorithm 1. Shifting procedure

To illustrate the shifting mechanism, consider the following
example. Assume a robot has to service the customers c1, c2, c3 in
the given order. Next, assume that after performing the shifting
procedure for c1, i.e., shifting all customers starting with c1 by k,

FIGURE 3 | Case 3: Customer c located opposite of high-intensity
zone Q.
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by evaluating the resulting solutions, we found that k ∈ (1, . . . , 12)
represents the best shifting in terms of the objective function is
k1M. So, the arrival times for customers become shifted by k1M.
Further assume that a similar procedure for c2 results in k2M
being the best shifting, so, the arrival time for customer c2 and c3
are now (k1 + k2)M later than in the original version of the
solution. Repeating this for c3 yields the following shifts in arrival
times for all customers: k1M for c1, (k1 + k2)M for c2 and (k1 + k2 +
k3)M for c3.

5 COMPUTATIONAL RESULTS

In the following section, we introduce the design of our
computational experiments and discuss our results. We are
particularly interested in the impact of the pedestrian LOS
zones on path selection and objective function values.

5.1 Design of Experiments
Our delivery area is represented by a 2p2 km square with
100*100 m blocks. Following the description of our problem in
Section 4, we divide the delivery area into two pedestrian LOS
zones P and Q, where Q represents a high-intensity LOS zone
located in the inner zone as depicted in Figure 1. The customer
locations are randomly distributed at the corner points of the
blocks. In our experiments, we use Manhattan distances between
all of the nodes, which reflect sidewalk usage of robots.

We consider two sizes of instances: small instances with 20
customers and large instances with 50 customers. We also
consider two different customer densities in the inner zone:
for sparse instances, 33% of the customers are located inside
Q; for dense instances, 67% are located inside Q. This creates
four different types of instances. For each, we create 10
random customer locations per instance, resulting in 40
different instances. Then, for each instance, we assign two
variants of customer time windows. First, we consider one-
hour time windows (8–9; 9–10 . . . 14–15, 15–16) for all
customers, and second, one-hour time windows for
customers located in P and two-hour time windows (8–10;
10–12; 12–14; 14–16) for customers located in Q. The latter
instances will be used to help us understand if wider time
windows in high-intensity pedestrian LOS zones can help us
achieve better service quality values (i.e., less earliness and
lateness).

To investigate the effect of potentially higher pedestrian-
intensity levels in the inner zone, we consider the following
scenarios, which represent several travel time distributions per
unit of distance in Q and follow the LOS categories as presented
by Burden (2006):

1) Free Flow (low intensity). This defines our base case. It
corresponds to the situation when the pedestrian LOS in Q
is the same as in P and there is no pedestrian-induced
congestion on the sidewalk. Travel times per unit distance
are Gamma distributed with the following shape and scale
coefficients: T∼Γ(1, 1), representing LOS “A” as described by
Burden (2006).

2) Congested Zone (average intensity). In this scenario, a
higher number of pedestrians are observed in Q compared
to P, which leads to an average-intensity LOS zone Q. Travel
times per unit distance in Q are Gamma distributed with the
following shape and scale coefficients: T∼Γ(2, 1), representing
LOS “C” as described by Burden (2006). Travel times in P are
the same as in the Free Flow scenario.

3) Stop-and-Go Zone (high intensity). A very high number of
pedestrians is observed in Q compared to P. Travel times per
unit of distance in Q are Gamma distributed with the
following shape and scale coefficients: T∼Γ(4, 1),
representing LOS “E” as described by Burden (2006).
Travel times in P are the same as in the Free Flow scenario.

Note that we use the Free Flow scenario as benchmark for all
our metrics. We do not compare to a fleet of conventional trucks
since Bakach et al. (2021) already show the superiority of robot
fleets on last mile deliveries in a two-tier system without LOS
zones. To keep computational results comparable across the
experiments, we activate the same number of robots for every
data set: three robots for the small instances and seven robots for
the large instances. Following current industry standard as
discussed in Bakach et al. (2021), robots are assumed to move
with a speed of 3 km/h. For the Tabu Search algorithm, we use the
following parameters: maximum number of iterations h � 200,
maximum number of iterations without solution improvements l
� 30, shifting multiple M � 5 min. Instances with 20 customers
required up to 30 min, and 50 customers instances could be
solved within 4 hours run time. The algorithm was coded in
Python.

5.2 Results
First, we present the results for instances where all customers
have one-hour time windows. Then, we present the results with
extended time windows.

5.2.1 Summary of Results One-Hour Time Windows
A summary of results is provided in Table 1. Results are
aggregated according to the considered travel time scenario
(“Free Flow” vs. “Congested Zone” vs. “Stop-and-Go Zone”).
We present the average objective function values (obj), the
average percentage increase of the objective function compared
to the Free-Flow scenario (% obj Δ), the average total distance
traveled by all robots (km), the average total distance traveled in
the inner zone (Q Dist) and the outer zone (P Dist) if applicable,
the average percentage of distance traveled in the inner (%Q km)
and the outer (%P km) zones, the average expected total travel
times in hours (time), the average expected travel time in the
inner (Q time) and outer (P time) zones, and the average
percentage of expected travel time in the inner (%Q time) and
the outer (%P time) zones.

There are several important observations. For all instances, the
objective values increase significantly from Free-Flow to Stop-
and-Go scenarios. This is mainly due to increasing scale values of
the Gamma distribution, which lead to higher (and more
realistic) expected travel times and travel time variations in
the congested and stop-and-go scenarios. With small instances
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of 20 customers, there is more than a 400% increase for the dense
instances and over 200% for sparse instances. This indicates a
dramatic loss in service quality associated with Stop-and-Go
Zones, especially when the majority of customers are located
in the pedestrian zone. With an increase in the number of
customers and resulting economy of scale, the percentage
objective function increase is not quite as pronounced with 50
customers and is at most 95% for dense instances. The absolute
changes in the objective, though, are even larger with the large 50
customer instances. Across the set of experiments, the increase in
the objective function highlights the importance of considering
pedestrian LOS on earliness and lateness for both the Congested

Zone and Stop-and-Go scenarios. This indicates it is very
important for companies to consider LOS in their service
design and service promises.

Next, we will examine the percentage of distance traveled
inside the zones. With slightly less than 20% of total distance
traveled inQ in case of the Congested-Zone scenario, the number
drops to 11% (Stop-and-Go dense) and even to 5.9% in case of
sparse instances for the Stop-and-Go Zone with 20 customers.
These drops are similar for 50 customer instances. These values
indicate that the paths selected are indeed ones that tend to avoid
Q in the more congested scenarios, indicating the importance of
considering pedestrian traffic in the route planning for robots.

TABLE 1 | Summary results.

Scenario obj % Obj
Δ

km Q
Dist

%Q km P
Dist

%P km Time Q
Time

%Q
time

P
Time

%P
time

20 Customers

Sparse instances
Free Flow 56.2 — 49.3 — — — — 16.4 — — — —

Congested Zone 96.9 72.5 50.9 8.1 16.0 42.8 84.0 19.7 5.4 27.5 14.3 72.5
Stop-and-Go Zone 185.5 230.2 58.0 3.4 5.9 54.6 94.1 22.8 4.6 20.0 18.2 80.0

Dense instances

Free Flow 39.0 — 48.7 — — — — 16.2 — — — —

Congested Zone 52.1 33.6 50.2 9.7 19.4 40.5 80.6 20.0 6.5 32.5 13.5 67.5
Stop-and-Go Zone 203.8 422.7 56.4 6.2 11.0 50.1 89.0 25.2 8.5 33.7 16.7 66.3

50 Customers

Sparse instances

Free Flow 235.6 — 123.9 — — — — 41.3 — — — —

Congested Zone 309.2 31.3 128.0 16.4 12.8 111.6 87.2 48.1 10.9 22.6 37.2 77.3
Stop-and-Go Zone 432.5 83.6 141.2 7.9 5.6 133.3 94.4 54.9 10.5 19.1 44.4 80.9

Dense instances

Free Flow 313.2 — 116.3 — — — — 38.8 — — — —

Congested Zone 438.4 40.0 122.0 23.8 19.5 98.1 80.5 48.7 16.0 32.9 32.7 67.1
Stop-and-Go Zone 610.2 94.8 137.7 14.9 10.8 122.8 89.2 60.8 19.9 32.7 40.9 67.3

TABLE 2 | Distribution of selected paths to in-zone customers.

% Of
Type-1 paths

% Of
Type-2 paths

% Of
Type-3 paths

% Of
Type-4 paths

Δ km
to free
flow

Sparse instances

Congested Zone, 20 cust 88.6 7.1 4.3 0.0 1.6
Stop-and-Go Zone, 20 cust 65.7 10.0 8.6 15.7 8.7
Congested Zone, 50 cust 88.2 5.9 5.9 0.0 4.1
Stop-and-Go Zone, 50 cust 68.2 9.4 8.3 14.1 17.3

Dense instances

Congested Zone, 20 cust 88.5 6.2 5.3 0.00 1.5
Stop-and-Go Zone, 20 cust 70.0 10.0 8.5 11.5 7.7
Congested Zone, 50 cust 87.3 7.3 5.4 0.00 5.7
Stop-and-Go Zone, 50 cust 67.6 10.0 7.6 14.8 21.4
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We also investigate the changes in the selected path type
and the related distances. Recall that we defined the different
path candidates in Section 4.1, with Type-1–Type-4 paths
depicted in Figure 2. A summary of results is provided in
Table 2. The results reflect that the majority of the paths
selected are Type-1 paths, which are the distance-shortest
paths. However, the precise percentage is heavily influenced
by the scenario. For example, in the case of the Congested
Zone, Type-1 paths are selected at only around 88% of the
time, leading to an increased distance of 1.5–1.6 km for 20
customers and 4.1–5.7 km for 50 customers on average; for the
Stop-and-Go Zone, the number is even smaller at around 67%,
leading to an increased distance of 7.7–8.7 km for 20 customers
and 17.3–21.4 km for 50 customers on average. This indicates a
change to paths that may travel a longer distance to avoid the
LOS zones. This is an important tradeoff for companies to
consider.

Results for Type-4 paths exhibit a most interesting result. In
the case of the Congested Zone scenario, these paths are never
selected; however, in the case of the Stop-and-Go Zone scenario,
they are selected at the highest rate compared to all other paths
excluding Type-1 paths across all instance types. The explanation
might be the following: despite increasing expected travel times
(and variance) in the Congested Zone scenario, it might still be
worth taking a path that has a significant portion of it lying in Q.
However, when pedestrian intensity rises significantly, at some
point, it becomes beneficial to avoid Q as much as possible.
Companies need to understand these “breakpoints” for the
customers they serve.

A visual example is provided in Figure 4. In Figure 4A, we
observe the situation for the Free-flow LOS. Since the pedestrian
intensity across the whole square is the same, there is no
differentiation between zones, and paths of Type 1 are always
selected. In Figure 4B, a congested Zone scenario is introduced.
As a result, the paths selected to serve the customers that are close
to zone edges change, however, the impact of the zone is not
significant enough to alter all paths. In Figure 4C, a Stop-and-Go
Zone instance is depicted. It can be seen that the Stop-and-Go

pedestrian traffic leads to changing paths avoiding robot presence
inside the zone.

5.2.2 Results With Extended Time Windows
We present the results with extended time windows for
Congested and Stop-and-Go scenarios in Table 3. In this

FIGURE 4 | Paths Demonstrating the Impact of Different Zones: (A) Free Flow, (B) Congested Zone, (C) Stop-and-Go Zone.

TABLE 3 | Objective function comparisons between 1-hour time windows and
extended inner zone time windows.

Scenario Obj % Obj Δ

20 customers

Sparse instances

Free Flow 56.2 —

Congested Zone 96.9 —

Congested Zone with larger tws 44.7 −53.8%
Stop-and-Go Zone 185.5 —

Stop-and-Go Zone with larger tws 124.1 −33.1%

Dense instances

Free Flow 39.0 —

Congested Zone 52.1 —

Congested Zone with larger tws 17.1 −67.3%
Stop-and-Go Zone 203.8 —

Stop-and-Go Zone with larger tws 122.8 −39.8%

50 customers

Sparse instances

Free Flow 235.6 —

Congested Zone 309.2 —

Congested Zone with larger tws 225.9 −26.9%
Stop-and-Go Zone 432.5 —

Stop-and-Go Zone with larger tws 329.4 −23.8%

Dense instances

Free Flow 313.2 —

Congested Zone 438.4 —

Congested Zone with larger tws 230.2 −47.5%
Stop-and-Go Zone 610.2 —

Stop-and-Go Zone with larger tws 409.3 −32.9%
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experiment, we intend to see if larger time windows reduce the
increase in objective functions seen in the previous section.

Computational results show a consistent pattern of smaller
objective values for the instances with the 2-hour time windows.
On average, objective function values are around 20–65% smaller
compared to 1-hour time windows across all instances with larger
reductions for the Congested Zone scenarios. In fact, across all four
instance types, the service quality, as measured by the objective is
better for the congested zone with larger time windows than for the
free flow zone with the 1 hour time window (e.g. 44.7 < 56.2). These
results indicate that larger customer time windows may improve
customer satisfaction in terms of reducing earliness and lateness
where there is high pedestrian density. It is important for companies
to evaluate whether their customers would be willing to accept the
wider time window promise given it is more likely to be achieved
on time.

6 CONCLUSIONS AND FUTURE WORK

In this research, we have investigated the impact of zones with
high pedestrian intensity on customer service levels for last-mile
deliveries with ground-based robots in the presence of stochastic
travel times and soft customer time windows. We have shown
that the existence of zones with different pedestrian LOS can
significantly alter the path selection process and affect the
customer service level. Our results demonstrate the impact of
different levels of the presence of pedestrians for ground-based
robot deliveries. We present results with changes in the objective
of over 400%. We also show high-intensity zones impact the
optimal path from the hub to the customer. This situation is more
pronounced for Stop-and-Go Zone scenario where Type-4 paths
are being chosen despite the fact they are never preferred for other
instances. In addition, we show that if customers are willing to
expand expected delivery time windows, the resulting customer
service level might increase significantly by up to 40%. All of these
results reveal important trade offs for companies to consider
when examining the use of robots in urban environments.

There are plenty of future avenues for this research. First, we
would like to extend our path finding and routing methodology in
the direction of matheuristics and/or exact models, which would
improve the quality of the solutions determined in this paper and
more directly address the complex objective function of balancing

earliness and lateness in a stochastic environment. In this context,
we would also like to consider algorithmic and implementation
improvements to decrease the computation time for larger data
sets. Second, we would like to investigate the impact of the
multiple zones on the routing of ground-based robots in
conjunction with multiple routes as presented by Bakach et al.
(2021). It would be interesting to consider several possible robot
hub locations in order to explore which customers should be
served from which hub in light of the pedestrian zones. Also, we
would like to investigate the generalizability of our approach in
real-world networks. Third, in many cases, pedestrian LOS are
time-dependent, with peak and off peak pedestrian levels. We
would like to look at different ways to model this time
dependency to explore how it can potentially impact ground-
based robots, including ways of modelling travel times beyond
expected values as presented in this paper. Fourth, we would like
the consider the possibilities of dynamic hub location for daily
optimization of this influential decision. Finally, integration of
robot-based deliveries within omni-channel environments and
into managing customer acceptance decisions might be
worthwhile to make sure delivery capacity is appropriate for
demand.
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