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The implementation of connected and automated vehicles promises increased safety and
efficiency by leveraging advances in technology. With this new technology, some
vulnerabilities could lead to cyberattacks. Without a focus on cybersecurity, vehicles
may be attacked, reducing the efficiency and safety advantages promised through
technological advancement. This research performed an impact analysis on traffic
operations of cyberattacks on Vehicular Ad-Hoc Networks (VANET). A roadway traffic
and communications simulation was created using the Veins modeling platform that
incorporated V2X communication and could model Denial of Service (DoS) and Man in the
Middle (MITM) attacks on an urban street network. The number of compromised
intersections and attack success rate were varied to understand the impact of each
attack scenario. Each attack’s worst-case scenario resulted in an over 20% increase in
travel time delay per vehicle as the attack severity increased. Also, the attacks had a wide
variation in delay upon the transportation network, decreasing the travel time reliability and
the ability for road users to predict delay on their journey.
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INTRODUCTION

Connected and Automated Vehicles (CAV) are currently one of the main focuses of the
transportation research community, with many Original Equipment Manufacturers (OEM) and
technology companies seeking to deploy advanced vehicles into the consumer market sooner than
later. CAVs will be able to communicate with other vehicles through Vehicle-to-Vehicle (V2V)
communication and Road-Side Units (RSU) through Vehicle-to-Infrastructure (V2I)
communication. These two sources of communication will allow CAVs to have continuous
awareness and an updated map of the road landscape around them, alerting them to crashes or
congestion that may be occurring downstream (Intelligent Transportation Systems - ITS Program
Overview, 2021). The performance of these vehicles is widely believed to reduce crashes, deaths,
congestion, and emissions in the future. The National Highway Traffic Safety Administration
(NHTSA) reported that in 2018, 36,560 people were killed in motor vehicle crashes, and 94% of all
severe crashes resulted from human error; both statistics are expected to be significantly reduced by
the introduction of CAVs (National Highway Traffic Safety Administration, 2017). CAVs seek to
leverage technology to improve the safety and efficiency of the transportation network—generally
restricted by human error. The introduction of this emerging technology presents a new challenge to
vehicles in cyberattacks.

This paper focuses on the impact of Denial of Service (DoS) attacks and Man in the Middle
(MITM) attacks on traffic operations. Al-kahtani, (2012) described a DoS attack as a malicious node
sending dummy messages that can overwhelm the system, jamming any further communications,
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thus preventing critical and necessary messages from being sent
to other nodes on the communication network. This same study
described a MITM attack as a malicious node eavesdropping on
messages sent between other vehicles or infrastructure; the node
injects a malicious message into the communication network (Al-
kahtani, 2012). These two attacks were selected as they are two
relatively understood and well-known attacks that can
significantly impact the transportation network (Kelarestaghi
et al., 2019). Understanding these cyberattacks’ impact on the
transportation network is important to designing and
constructing a more resilient transportation system. Successful
cyberattacks can nullify the benefits promised by the emergence
of CAVs and introduce safety and delay impacts for
transportation users.

This research aims to quantify the efficiency impact of
cyberattacks in a connected vehicle environment. Using
OMNeT++, nineteen scenarios were modeled—including one
base scenario with no attack. Scenarios for DoS and MITM
attacks were developed by increasing attack success rates and
the number of infected RSUs. The possible scenarios developed
contained either one, six, or twelve infected RSUs with a 25, 50, or
75% chance of attack success. The travel time delay for each
scenario was calculated by comparing the travel time per vehicle
against the base scenario. This analysis includes numerical
comparisons of the travel time delay for each scenario and
T-tests and Chi-squared tests, comparing the means and
variance of the delays.

The remainder of this paper will detail previous research
pertinent to this research, discuss the research’s methodology,
present the results from the simulations, discuss the importance
of the results, and draw conclusions from the study. The
methodology contains an outline for the simulation setup,
running the simulation, and analysis.

LITERATURE REVIEW

A comprehensive literature review was conducted with a
multidisciplinary lens to gain a perspective of research that
has been conducted in different fields. The fields covered in
the literature review included electrical engineering, computer
science, and transportation engineering. A preliminary literature
review showed a lack of multidisciplinary research in the state of
the art, which required a separate examination of each field’s state
of the art. The goal of the literature review was to identify research
that is needed on the topic of cybersecurity of transportation
infrastructure and vehicles.

CAVS and Cyberattacks
While CAVs are still an emerging technology, automated vehicles
have been studied robustly for several decades, with the first
“modern” automated vehicle being developed in Germany at the
tail end of the 20th century (Davidson and Spinoulas, 2015).
Automated vehicle research and competition increased in the
United States at the beginning of the 21st century due to the
United States Defense Advanced Research Project Agency
(DARPA) Grand and Urban Challenge, where universities,

vehicle manufacturers, and other companies deployed
automated vehicle technology that is now attempting to be
deployed to the consumer market (Davidson and Spinoulas,
2015).

Companies such as Audi, Mercedes-Benz, and Google
currently have rigorously tested prototypes (Lavasani et al.,
2016). As of September 2020, Google’s (now Alphabet)
automated vehicle program, Waymo, has driven more than 20
millionmiles on public roads with self-driving-enabled vehicles at
level four automation (Waymo, 2020). The Society of Automotive
Engineers (SAE) has developed Standard J0316, defining the six
levels of automation in vehicles, with zero being no automation
and level five being full automation (SAE International, 2018).

Connected and automated vehicles are currently being
researched, developed, and tested but have not been deployed
in the consumer market. Litman, (2020) claimed that automated
vehicles would be available at the end of the 2020s, but they will
only benefit the affluent population; most people will not receive
the benefits until possibly 2060 (Litman, 2020). Using a model
based on the implementation of previous emerging technologies,
Lavasani et al. (2016) concluded that if automated vehicles are
available in 2025, it will take 10 years (2035) for eight million
vehicles to be in the market and 35 years (2060) for the market to
become fully saturated with these vehicles. However, more
Advanced Driver Assistance Systems (ADAS) are being
deployed every year in the commercial market, moving today’s
vehicles close to fully automated vehicles.

In the future, vehicles will communicate with each other and
roadside infrastructure through a communication network
known as a vehicular ad-hoc network (VANET). In a VANET,
vehicles are treated as nodes on the system, and roadside
infrastructure is fixed. Vehicles use On-Board Units (OBU) to
send messages to other vehicles and Road Side Units (RSU), on
the infrastructure side, with all communication using wireless
connections based on IEEE 802.11p radio frequencies (Al-Sultan
et al., 2014). Communication between vehicles on the road and
in-place infrastructure allows for advanced warningmessages and
safety messages to be sent throughout the network, theoretically
reducing crashes and congestion.

CAVs are also vulnerable to hacking and cyberattacks.
Anticipating and defending against these attacks is important
as there is an obvious endangerment to human life if these attacks
are successful. To help ensure safety against cyberattacks, Al-
kahtani, (2012) and Kelarestaghi et al. (2019) named five main
security requirements: availability, authentication, integrity,
confidentiality, non-repudiation, and privacy.

DoS and MITM attacks are the two attacks modeled in this
research. While these attacks can fall into multiple categories
(Kelarestaghi et al., 2019), in this research, the DoS attacks seek to
disrupt the communication network’s availability while the
MITM attack compromises authentication. A DoS attack can
be broadly described as limiting a user’s access to the VANET
(Sumra et al., 2011). The three main techniques for executing this
attack are occupying the communication network’s resources by
overloading it with random signals, jamming the network with
large amounts of messages, and dropping packets sent on the
network (Sumra et al., 2011; Ahmad and Adnane, 2016). The last
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method is modeled in this research, preventing important
messages from being received by the desired destination. DoS
attacks are likely to occur with a high impact (Ahmad and
Adnane, 2016) and can be performed without detection from
the victims (Biswas et al., 2012). The attack’s relative ease and
high impact make it an important research topic moving forward.

MITM attacks function differently and can be effectively
described as an attacker intercepting a message sent between
two nodes in the system (Al-kahtani, 2012). Once a message is
compromised, an attacker can do four main things: delay the
message sending, drop it, modify it, or record the message
(Ahmad et al., 2018). This research models the attack as a
delay attack, impacting the timing of important operational
messages for vehicles. MITM attacks have been categorized as
possible with a moderate impact (Ahmad and Adnane, 2016).
These attacks are generally considered less severe than DoS
attacks, but their numerous consequences have made them a
popular research topic.

Cybersecurity in Transportation
Engineering
The existing research surrounding this topic is split between
examining the impact of the attacks on VANET communications
and its implications on high-level MOEs. The other research
focuses more on the effects of an attack on more traditional, yet
focused, transportation MOEs. This research falls short in
investigating the transportation aspect. The research presented
below describes previous conclusions while showing the
knowledge gaps.

Intelligent Transportation Systems (ITS) and autonomy are
not new topics within transportation engineering. ITS has been
implemented for years, and modern cars are equipped with
driver-assist functions like lane-keeping assist and cooperative
adaptive cruise control (CACC). Even with these topics being well
researched, little in-depth research has been done to quantify
cybersecurity risks. Ganin et al. (2019) modeled resilience by
quantifying the travel time delay associated with disruptions to
ITS links and nodes (smart intersections and smart segments).
The study found that travel time delay was increased by nearly
20% by disruptions at ITS-controlled intersections (Ganin et al.,
2019). The results demonstrated that even a low-level connected
transportation network that only incorporates ITS is vulnerable
to disruptions due to attacks, resulting in significant travel time
delays within the transportation system. Amoozadeh et al. (2015)
demonstrated the impacts of message falsification and radio
jamming attacks on a CACC enabled vehicle platoon. The
attacks proved that compromising CACC in vehicle platoons
reduces acceptable gaps between vehicles (efficiency) and reduces
each vehicle’s speed in the platoon (Amoozadeh et al., 2015).
These two studies stand to show that not-so-distant infrastructure
and technology are susceptible to cyberattacks, attacks that have
significant implications on transportation safety and operations.

Ahmad et al. (2018) tested the effects of MITM attacks on
VANETs, seeking to quantify the different impact concentrations
of malicious nodes had on the VANET’s behavior. The results
showed that delayed, dropped, and tampered messages

significantly hampered the communication network’s ability to
efficiently and effectively transmit message packets between
vehicles and RSUs (Ahmad et al., 2018). As a result of
hampered network communication abilities, the researchers
reported that the attack would compromise transportation
safety and operations. A similar study performed by Grover
et al. (2013) demonstrated the impact of a position forging
attack on the VANET’s packet transmission and quantified the
effect on average vehicle speed. This study also showed that this
attack against the VANET resulted in packet transmission
interference, dropped packets, and significantly reduced
average vehicle speed (Grover et al., 2013). While these two
studies somewhat demonstrated how cyberattacks could
impact transportation safety and operations, they focused
more on VANET operations.

Two studies were found that quantified the impact of
cyberattacks against CAVs in terms of transportation MOEs.
Ekedebe et al. (2015) studied the effect of a jamming DoS attack
on a transportation network following a crash and the subsequent
traffic backup. Similarly, Garip et al. (2015) demonstrated how a
vehicular botnet could impact roadway traffic operations and
travel times.

These studies focused their research on vehicle traffic network
operations. However, neither presented detailed, quantifiable
impacts on safety. Ekedebe et al. (2015) set up a simulation
where upstream traffic was slowed/stopped due to a crash. A
jamming DoS attack was implemented on downstream vehicles,
ranging from 0 to 100% communication jam. These
communications jamming attacks aimed to hamper the
compromised vehicles’ ability to reroute around the traffic jam
dynamically. The study showed that more vehicles remained on
the jammed route as the attack reduced communications,
resulting in even more travel time delay, increased travel
times, increased emissions, and decreased average speed for
the compromised vehicles (Ekedebe et al., 2015). Garip et al.
(2015) used a different tactic to lure compromised vehicles onto
already congested street segments, using a bot network to send
falsified messages. Using different concentrations of bots,
researchers demonstrated that this attack could trick vehicles
into thinking a route was clear when the road was already
congested with vehicle traffic and other compromised vehicles
(Garip et al., 2015). These message falsification attacks resulted in
a drastic increase in trip time, travel time delay, and congestion
while significantly reducing the average speed of vehicles in the
network (Garip et al., 2015).

As shown above, the research connecting cybersecurity and
transportation operations and safety exist, but there are many
knowledge gaps. These knowledge gaps shaped the research
detailed throughout this paper, producing the goal of
quantifying the impact of cyberattacks in transportation. This
research will measure the efficiency impact to the transportation
network following DoS and MITM attacks on RSUs in a
connected vehicle environment to achieve this goal. The
attacks focus on attacking the transportation network as it
operates normally - understanding attacks that could occur at
any time. The research performed also provides a numerical
baseline for impact on the network from cyberattacks. Finally, the
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research also aimed to connect the impact of cyberattacks on
VANETs on the transportation network itself.

METHODOLOGY

The following sections summarize the methodology to develop
and implement the simulation and the data analysis that
followed. The full details of this process can be found in
McManus, (2021). Developing the simulation began with
establishing clear assumptions for the model. Once the
simulation environment was set, the base model was
created. This base model represents a CAV environment
with no cyberattacks. The attack models and attack
response models were then developed to simulate
cyberattacks. Following the development of the attacks, the
analysis methodology is laid out to detail the methods and
significance of data analysis methods used.

Simulation Assumptions
The simulation model’s development incorporated many
aspects of emerging technologies that are not yet 100%
understood in implementation. The list of assumptions
made are listed below:

• Attacks could be carried out as the model does not
incorporate countermeasures. Manually adjusting the
attack success rate and the number of infected RSUs
allowed for a controlled attack environment and could be
changed using effectiveness rates of postulated
countermeasures.

• Crash avoidance technologies such as radar and lidar were
not incorporated into the simulation. These technologies
could serve as redundancies in future CAVs, but they were
not modeled in the simulation. It was also assumed that the
CAV was a level 5, with no driver intervention. These two
assumptions led to the conservative, worst-case attack
results in the simulation scenarios.

• Vehicles would navigate the intersection following a crash at
a very slow speed to account for the extra maneuvering and
cautiousness needed to navigate an area where a crash
occurred. This assumption allowed for a uniform
collision response versus a more stochastic distribution
seen in the maneuvering around collisions in the real world.

• The delay speed, delay time, and recovery times were
constant throughout the simulation. These assumptions
modeled the results of a vehicle network traffic delay
versus simulating the actual traffic flow theory and
conditions. This also allowed scenarios to be compared
to each other.

• The base scenario assumed no cyberattacks and perfect
CAV operations. This resulted in no crashes in the base
scenario.

• The vehicle volume was assumed and kept constant, while
the routing was randomized before the simulation was run
and kept consistent throughout the simulation.

Simulation Development
The simulation was developed using a connected urban
environment; a Manhattan grid was used to represent an
urban street network and is easily scalable. The generic street
grid was selected to provide maximum control of vehicle
interaction and demonstrate a proof of concept for the
simulation itself. It also provides a uniform emphasis on all
intersections, creating a more uniform and distributed traffic
flow at a network level. The grid contains six vertical streets and
three horizontals, creating 18 total intersections 800 m apart.
There is a north-south emphasis with all six vertical streets
representing major vehicle traffic generators, while only the
middle east-west route is a major generator. The two other
east-west roads contain one-third of the traffic generation,
emphasizing vehicular traffic conflicts within the street
network, not at the corners. Each approach to an intersection
is a single lane in each direction that accommodates all three
turning movements (left, through, right). In future iterations, the
street network and traffic volume could be adapted to fit a real-
world network with validated traffic counts.

The Veins simulation software package was chosen to model
the connected vehicle environment. The Veins software was
prevalent in previous studies and tested cyberattacks on
VANETs. It is an open-sourced software that contains a
network simulator (OMNeT++) (What is OMNeT++?, 2021)
and a microscopic traffic simulator (SUMO) (Lopez et al., 2018).
Veins pairs these two simulators and runs and communicates in
parallel. This architecture allows for the simulation of a connected
vehicle environment (Sommer et al., 2011).

The routing for the vehicles was created using SUMO’s
iterative script that optimized the simulation using the shortest
distance for each vehicle (Lopez et al., 2018). This was paired with
an extension that randomized the vehicles’ arrival times to the
street network, creating non-uniform vehicle arrivals. This
vehicle routing optimization was used for each scenario,
creating uniform vehicle traffic flow. Each origin produced an
equal number of trips destined for each other boundary node in
the simulation.

Base Model Development
The simulation begins with vehicles and RSUs performing
initialization functions that establish communication channels,
unique PSIDs, and setting counters to zero. The initialization also
establishes the connection between OMNeT++ and SUMO
through their parallel communication channel, the Traffic
Control Interface (TraCI) (TraCI - SUMO Documentation,
2021). Eighteen total RSUs were used within the simulation,
one at each intersection. Each RSU had a communication radius
of 350 m and assigned reservations and directed vehicle traffic
through its intersection. Intersection reservations used a similar
“weaving” technique discussed in (Fajardo et al., 2011), using
time reservations as a limiting factor instead of a spatial
technique. Reservations for approaching vehicles were handled
using the First-In-First-Out queueing. The RSUs were not given
additional dynamic routing or other traffic efficiency abilities.

Once initialization is completed, each RSU creates a self-
message sent every half second. After it receives its message,
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the RSU sends out a service message beacon. These beacons are
sent on IEEE 802.11p channel 178, reserved for control messages
(Eichler, 2007).

Once the vehicle enters the radius, it receives this beacon,
which acts as a “hello” message the first time around. Upon
receiving the message, the vehicle will note the RSU’s
identification PSID. It will also check the reservations sent by
the RSU; since it is the first interaction, the vehicle will not receive
a reservation. Once the vehicle realizes there is no reservation
from the RSU in the message, it sends back a message to request a
reservation.

The RSU receives the vehicle’s request, containing important
information like PSID, speed, distance, routing, fastest arrival
time, and direction. Using these pieces of information, the RSU
checks for any conflicting reservations along the pathing route of
the vehicle. The intersection contains sixteen critical points that
outline the path of any turning movement from any direction.
The RSU calculates the time it would take the approaching vehicle
to pass through each of the critical points on its route. Then, using
these calculations, it checks if any conflicting reservations are
already made. If there are conflicting reservations at any point,
the most conservative number is taken, and the safe time is added
to all the critical points on the car’s path. The RSU notes these
times to be used in later reservations and notes the vehicle’s
quickest safe arrival time, paired with the vehicle’s PSID. If a
delayed intersection entry is required, additional time will be
added to ensure safe passage as redundancy for all turning
movements. This process is done iteratively for each vehicle
message received, based on the vehicles’ distance to the
intersection. Once done, the time and PSID vector are sent
out to the vehicles.

Upon receiving the reservation time from the RSU, the vehicle
checks existing reservations and finds its reservation based on the
PSID attached to the reservation. The vehicle will take the
reservation time and calculate whether the reservation requires
the vehicle to accelerate or decelerate before the intersection to
accommodate any delay. If a delay is required, the vehicle will
calculate the speed it needs to maintain and adjust immediately to
that speed. It will also calculate the time until the vehicle needs to
accelerate or decelerate to reach its route speed as it enters the
intersection.

After clearing an intersection at its allotted time, the vehicle
will accelerate back to the simulation max speed. The vehicle will
not communicate with an RSU until it reaches the
communication radius of the next intersection. Upon reaching
the next communication radius, the vehicle will note that it is at a
new intersection and must make a new reservation. This process
is repeated for all vehicles until they reach their destination.

Attack Model Development
This research simulated the impacts of MITM and DoS attacks on
a connected vehicle environment. These two attacks were selected
as their methodology is relatively understood, and they have been
categorized as likely attacks with significant impacts in previous
literature. The attacks were modeled to show their impacts, not
the attack methods themselves. It was assumed that a malicious
actor was able to perform these attacks, the modeling of the attack

itself was not in the scope of this research. It was also assumed
that the attacker could successfully manipulate the messages to
achieve their end goal of decreased transportation network
operations.

Two variables were added to the simulation that controlled the
likelihood of success of each attack. This variable was manually
adjusted for each attack scenario. A large amount of control was
provided when simulating the attacks using the two manual
variables, attack success rate and the number of infected RSUs.
This level of control is a tradeoff as it models what happens after a
successful attack has occurred instead of when modeling the
attack itself. The two variables allow the simulation to emulate the
process of an attack by modeling its success rate and its
dissemination through the communication network.

A DoS attack that drops vehicle reservation messages was
modeled in this simulation. The vehicle will receive an RSU’s
initial message and, if the attack is successful, the vehicle will
never respond and drop its self-message, ending the reservation
process. The attack skips the reservation process but tricks the
vehicle into believing it has received a legitimate reservation.
Given the time and space, the impacted vehicle will enter the
intersection with no reservation but slow to avoid a crash, if
possible, within the vehicle following model. The vehicle’s
behavior is based on the Krauss car-following method (Krauß,
1998).

The MITM attack simulates an intercepted message that
delays a vehicle’s acceleration/deceleration self-message to
reach the intersection on time. The delay integer is randomly
selected between two and 5 seconds, drastically impacting the
timing of the intersection operations. Since the vehicle follows a
legitimate reservation, it cannot slow down to avoid an
impending collision like a DoS vehicle. Both attacks are
expected to produce crashes at the impacted intersections
during the simulation.

After a collision occurs, the RSU is immediately notified,
notes the time of the collision, and clears all reservations. Any
vehicle within the communication radius immediately slows to
a delay speed of 2.24 m/s. This delay speed was selected to
introduce delay in the transportation network, emulating a
light vehicle flow throughout the delay time. Vehicles must
maintain this speed throughout the 5-min delay period. The
delay period was used to demonstrate a measurable delay
following a crash. Simulating crashes in a wholly CAV
environment is difficult since it is unknown what a crash
would look like in a fully automated environment. The
significantly reduced traffic flow produces a delay similar to
a partially blocked intersection, producing resultant delay
while still allowing minimal traffic flow. The 5-min delay
period was significant given the simulation period. At any
time during the delay period, if a vehicle is within 75 m of the
intersection, it can make a proper reservation. This process
assumes that vehicles will navigate the intersection following
the collision at an extremely limited rate. This delay model was
designed to simulate a slow-moving queue following a collision
at the intersection.

Following the 5-min delay, a 5-min recovery period exists.
During both periods, vehicles making reservations are immune
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to cyberattacks to prevent cascading crashes in the simulation.
The delay period provides adequate time for the intersection to
recover to free-flow speeds without the threat of an attack.
Once the delay period ends, the RSU sends a message to all
vehicles in the queue, indicating they can make reservations
again. The RSU receives these messages, sorts them by distance
to the intersection, then makes reservations for the first ten
vehicles in the queue. Reservations are made in ten vehicle
intervals to ensure the vehicles closest to the intersection can
make reservations first. This process preserves the First-In-
First-Out queueing used by the intersection. The reservations
made during recovery are based on the fastest available arrival
time, allowing vehicles to accelerate and the transportation
network recovery. This process is repeated until vehicular
traffic flow recovers back to normal. The recovery process
mimics traffic flow theory following a delay. Cyberattacks can
begin again following the recovery period.

Simulation Parameters
The following simulation parameters were established for the
simulation:

• 1,500 s run time (20-minute simulation + 5-minute
warmup).

• Five simulations were performed per scenario.
• 13.4 m/s maximum simulation speed.
• Five-minute delay time + 5-min recovery time.
• Nineteen attack scenarios—grouped into seven attack
scenario groups (Supplementary Table 1)

RESULTS AND DISCUSSION

The following section details the analysis methodology, the
results produced by the simulation, and the analysis
performed using the method described above. The results
focus on the operational impact from each scenario and how
the different severities of attack impact the vehicles. The
analysis includes quantifying the effects of each scenario
on operations and statistical analysis using T-tests and
Chi-Squared tests. Next, the two attacks are compared to
determine differences and similarities in their impacts on the
transportation network’s efficiency.

Measures of Effectiveness
The main measure of effectiveness (MOE) used to study the
impact of cyberattacks on vehicle traffic flow was the travel
time delay introduced to the system. The travel time delay was
calculated using the average time spent in the simulation per
vehicle for each scenario run compared to the base scenario.
Travel time delay is one of the main MOEs used in traffic
analysis and indicates how vehicle traffic behaves in the
simulation. Average travel speed per vehicle was also
calculated and used in a visual format to provide a clear
picture of travel speeds for each vehicle throughout the
simulation.

Analysis Methodology
The analysis for this research focused on the average travel time
delay per vehicle per simulation. The statistical analysis contained
T-tests and Chi-squared tests for each scenario compared against
the base scenario. The T-tests compared the means of each
scenario against the mean of the base. The test used a 95%
confidence interval to determine statistical significance. Chi-
squared tests quantified the variance of each scenario
compared to the base. Using the 95% confidence interval, if
the test came back above that threshold, the test scenario had
a variance outside the expected range relative to the base. The
numerical analysis quantified the percent change of each scenario
compared to the base. This calculation allowed the scenarios to be
compared with the two attacks themselves.

Understanding the variance of the delay is important as traffic
events like crashes and congestion occur more frequently with
highly variable traffic flow. The Chi-squared test is used to
determine if the variance falls outside of an expected range
based on the base scenario. This would mean that the
simulation runs within a scenario produced a wide range of
travel time delay results. A wide variety of results could
significantly impact travel time. High levels of variance also
result in a less reliable transportation network.

The final analysis technique, calculating the percent change
from the base to each scenario, represents a quantifiable
difference in the results from each scenario. The percent
change is an easily understood metric of impact representing
the magnitude of the attack’s travel time delay. The results can
draw conclusions and correlations between attack severity and
resulting travel time delay. They can also be used to scale the
impact to a more realistic period—taking the results from a small-
scale test and applying them to larger networks, especially during
the peak hours of demand.

Denial of Service Attack Analysis
The first calculations were performed to test the variance for each
scenario. T-tests and Chi-Squared tests were also conducted for
all scenarios using average simulation time per scenario, each
being compared to the base scenario results. The results of these
tests are shown below in Table 1.

Table 1 shows that: 1) Every scenario produced a significantly
smaller test result than the 95% confidence interval threshold of

TABLE 1 | DoS statistical analysis.

Scenario Variance t-test results Chi2 test results

Base 0.06 -- --
1 0.74 3.4 E-05 0.962
2 0.01 5.7 E-09 0.924
3 3.23 1.2 E-03 0.953
4 19.15 1.3 E-04 0.013
5 36.12 2.5 E-04 0.002
6 4.40 1.2 E-06 2.01 E-05
7 30.07 3.3 E-05 7.51 E-08
8 48.68 3.1 E-05 2.50 E-13
9 25.82 7.5 E-06 2.73 E-14
Average 16.80 1.8 E-04 0.317
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0.05. This test shows no overlap between the results of the
different scenarios compared to the base scenario. 2) The
variance increases significantly after scenario 3, except for
scenario 6.

The results of the Chi-Squared tests confirm this as only
Scenarios 1, 2, and three produced higher test results than the
95% confidence interval threshold. This relationship is significant
as it shows that a higher number of infected RSUs and an
increased likelihood of success impact the outcome’s variance.
It can also be inferred that the number of infected RSUs has a
higher impact on the variance of the results than the likelihood of
attack. There is no clear trend among the scenario groupings that
shows the likelihood of attack impacts the variance.

From the variation calculations, it is clear how a widespread
attack can introduce a high level of chaos into the transportation
network. Decision-makers must understand these variance
calculations to mitigate future attacks and build a robust
connected vehicle environment.

The next series of calculations were performed to quantify the
actual impact of the DoS attacks on vehicle travel time. As
mentioned previously, the travel time delay added to each
vehicle in the simulation is the most meaningful measure of
an attack’s impact on the transportation network. Table 2 shows
each scenario’s average simulation time per vehicle and provides

simple comparisons to the base scenario to show the relative
impact of each attack.

The takeaway from the above calculations is a clear impact
threshold once six or more RSUs are infected. From scenario
three to scenario 4, there is a 22-s increase in travel time delay,
and the delay gets increasingly higher with each of the
successive scenarios. The worst-case scenario (scenario 9)
presents an over twenty percent increase from the baseline
scenario. A twenty percent loss of efficiency for the
transportation network is considerable - especially if the
attack were to be conducted during peak hours. On a
microscopic level, vehicles that have been delayed at the
compromised intersections would feel a considerably more
significant amount of travel time delay. The delay introduced
to them was enough to impact the network’s efficiency
drastically. Figure 1 provides a graphical representation of
the correlation between compromised RSUs and the average
simulation time per vehicle.

The exponential curve demonstrates a heavy correlation
between the number of infected RSUs and travel time (R2 =
0.95). The high correlation shows that as the attack scenarios
get more severe, their impact on the transportation network
delay also increases exponentially. These results directly
support the conclusions drawn from the variance

TABLE 2 | DoS scenarios - relative travel time delay.

Scenario Avg. Crashes Avg.
Sim time/Vehicle (s)

Change from base scenario
(s)

% Change from base
Scenario

Base 0 325.9 -- --
1 2 332.2 6.3 1.9%
2 2 333.6 7.7 2.4%
3 2 332.4 6.5 2.0%
4 8 354.5 28.5 8.8%
5 10 358.8 32.8 10.1%
6 10 367.8 41.9 12.9%
7 15 376.0 50.1 15.4%
8 18 390.8 64.8 19.9%
9 21 393.2 67.2 20.6%
Average 10 359.9 34.0 10.4%

FIGURE 1 | DoS Infected RSUs vs Travel Time. FIGURE 2 | Infected RSUs’ impact on average throughput—DoS.

Frontiers in Future Transportation | www.frontiersin.org January 2022 | Volume 3 | Article 7926497

McManus and Heaslip Cyberattacks and CAV Operations Efficiency

https://www.frontiersin.org/journals/future-transportation
www.frontiersin.org
https://www.frontiersin.org/journals/future-transportation#articles


calculations that as the severity and number of compromised
RSUs increase, the consequences become increasingly
challenging to manage. One takeaway from the data
analysis is that limiting the initial damage of a DoS attack
is one of the most crucial steps in maintaining the
transportations network’s integrity in a compromised setting.

Another important aspect of transportation network efficiency
is throughput—how many vehicles are making it through the
simulation during each scenario. Figure 2 presents the overall
trend in vehicle throughput for each attack severity.

The figure confirms a strong correlation between increased
scenario severity and decreased operational performance (R2 =
0.91). It can also be seen that scenarios 1–3 remain relatively
consistent in terms of throughput. In contrast, the others
consistently suffer, indicating that a threshold for increasingly
poor operational performance exists for the subsequent scenarios.
The space between each data point for scenarios with more than
one infected RSU further highlights the increase in variance as
attack severity increases.

As mentioned previously, the impact of a DoS attack’s
effectiveness has not yet been explored. Logically, it would be
expected that for each scenario grouping, an attack’s
consequences would be worse for each increase in attack
success rate. Table 3 investigates this assumption by
comparing average simulation time per vehicle and average
crashes for each scenario compared to the previous scenario.

Table 3 above further corroborates that as an attack scenario
worsens (more RSUs or a higher chance of success), the attack’s
impact is more pronounced on the transportation network.While

the overall trend is true, there is no consistent increase in impact
for each increase in intensity. The impact tends to be more severe,
but the increase in severity appears random. It is also important to
note that the percent increase for the individual MOEs are not
comparable, as they are in different units and have different
magnitudes of impact. An increase in two crashes is statistically
more significant than an increase in 2 seconds of travel time.

Table 4 shows that the number of infected RSUs has a higher
impact on vehicle traffic operations than the likelihood of success
of the respective scenarios. Crashes rise with the increase of
infected RSUs. In turn, as crashes rise, as does travel time delay
within the street network. A scenario with six infected RSUs
operating at a seventy-five percent attack rate will have less
impact on the system than a scenario with twelve infected
intersections operating at a twenty-five percent attack rate.
The impact of each scenario group can be seen in Figure 3,
which plots the average velocity per vehicle per timestep
over time.

Figure 3 shows two significant dips in scenario groups 2 and 3,
further emphasizing that the damage to the transportation
network compounds seriously as attack severity increases. The
two scenario groups feel the impacts from the attack throughout
the simulation as they can never fully recover to normal
operations.

Overall, a few main points have emerged from the DoS attack
scenario data analysis. The first point is that a clear impact
threshold exists between scenarios 0–three and scenarios 3–9.
Put into words, as a DoS attack is more widespread throughout
the transportation network, the more pronounced and severe its
impacts become. This is a predictable result as more infected
RSUs result in more crashes, increasing travel time delay. The
primary mitigation strategy for a DoS attack is to limit its initial
effectiveness to prevent a widespread network attack. It was also
clear that the variance of results increases significantly as the
attack scenarios grow more severe. The impact of one infected
RSU is relatively easy to plan resilience concepts against, but as
the attack severity increases, this becomesmore difficult. The high
variance makes specific resilience concepts challenging to
implement as the attack’s impact can vary so much with each
attack. The variance also impacts the reliability of the
transportation network for those who depend on it. Finally, it
was found that both likelihoods of success and scenario groupings
impact the severity of the results. Scenario grouping is a better
indicator of severity as a more widespread attack is inherently

TABLE 3 | DoS results compared by scenario.

Scenario Average crashes Avg.
Sim time/Vehicle (s)

% Change from
Previous Scenario

Base 0 325.9 --
1 2 332.2 1.9%
2 2 333.6 0.4%
3 2 332.4 -0.4%
4 8 354.5 6.6%
5 10 358.8 1.2%
6 10 367.8 2.5%
7 15 376.0 2.2%
8 18 390.8 3.9%
9 21 393.2 0.6%
Average 10 359.9 2.1%

TABLE 4 | DoS results compared by scenario group.

Scenario grouping Average crashes Avg.
Sim time/Vehicle (s)

% Change from
Previous Scenario

Base 0 325.9 --
Scenarios 2 332.7 2.1%
1–3
Scenarios 9 360.4 8.3%

4–6
Scenarios 18 386.6 7.3%

7–9
Average 10 359.9 5.9%
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worse on the system, regardless of an attack’s likelihood of
success.

MITM Attack Analysis
Like the DoS data analysis, the first step in analyzing MITM
attack results was to analyze the variance and other statistical
calculations of the results produced from each scenario. Table 5
shows the variance, t-test results, and Chi-Squared test results.

The T-tests were calculated to be under the 95% confidence
threshold for all scenarios, showing that the results would never
overlap with the base scenario.

The Chi-Squared value for Scenarios 10, 11, and 12 came back
above the threshold. This means that these are the only scenarios
that decision-makers could be confident in forecasting the
resulting impact on the transportation network. The results
could vary drastically for the other attacks, making resilience
planning extremely difficult. The general trend shows an increase
in variance as attack severity increases.

While the general trend for MITM attack variance generally
increases with increased attack severity, this analysis does not tell
the entire story. The increasing trend is characterized by relatively
low variance with extreme spikes from scenarios 13, 16, and 17. If
these three extreme cases are removed, the average variance is
only 3.80 per scenario (excluding the base scenario), a relatively
small variance given the inclusive average of 14.47.

MITM attacks appear to have a low variance in results, aside
from a small number of highly chaotic scenarios, which means

that the impacts of a MITM attack could be relatively easily
predicted and planned for. Any highly variable cases make the job
of decision-makers increasingly difficult when deciding on how to
mitigate against MITM cyberattacks actively. The possibility of
highly variable results broadens the scope of protecting the
transportation network against an attack and introduces a
level of chaos that should not be ignored. Suppose the extreme
situations are not correctly accounted for. In that case, a high-
impact attack could bypass any existing countermeasures and
significantly impact the transportation network—effectively
defeating any resiliency concepts introduced for the “average”
scenario.

While the variance is essential for understanding the
outcome of an attack, knowing how an attack will impact
the transportation network is also important. Table 6 notes the
average simulation time per vehicle in each MITM attack
scenario and compares the results against the base scenario.
Like the previous analysis, a clear impact threshold appears
after scenario 12, once the number of infected RSUs increases
from one to six. This threshold is expected as an increase in
infected RSUs directly relates to an increase in negative
impacts on the transportation network. After this threshold,
each successive scenario carries an increasingly more
significant impact on the travel time delay felt by the
average vehicle in the network. The worst-case occurs
during scenario 18 with an over twenty percent increase in
average travel time per vehicle with the delay. As previously
mentioned in the DoS section, an over twenty percent increase
in travel time could significantly impact the transportation
network during peak hours and in a larger scale environment.
The main takeaway from this analysis is that after scenario 12,
each attack scenario contributes more and more significant
travel time delays to the network.

Figure 4 presents a high linear correlation (R2 = 0.91) between
an attack’s severity and the impact the attack has on travel time.
This correlation further demonstrates the need to limit an attack’s
initial success, as a more widespread attack results in
exponentially more significant impacts on the transportation
network.

Average vehicle throughput is also an indicator of
transportation network performance under the different attack
scenarios. While vehicle throughput is not an indicator in the

FIGURE 3 | Vehicle speed per time step—DOS groups.

TABLE 5 | MITM statistical analysis.

Scenario Variance t-test results Chi2 test results

Base 0.06 -- --
10 8.77 1.0 E-02 0.955
11 0.29 2.0 E-06 0.978
12 3.21 1.3 E-03 0.959
13 31.11 4.4 E-04 0.025
14 10.75 2.2 E-05 0.002
15 1.09 2.9 E-08 4.9 E-05
16 26.47 4.1 E-05 3.8 E-06
17 46.80 4.4 E-05 9.8 E-11
18 1.73 1.2 E-08 2.1 E-15
Average 14.47 1.4 E-03 0.325
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simulation environment, it is still important to highlight network
efficiency trends from a macroscopic level.

Figure 5 shows a clear correlation between attack severity and
a decrease in average vehicle throughput with an R2 value equal to
0.90. The figure also demonstrates the threshold discussed
previously, with continued higher impacts and increased
severity after scenario 12, once more RSUs are infected. The

throughput data agrees with the travel time delay data in that the
transportation network is significantly impacted more as attack
severity increases.

Table 7 compares the percent change between scenario
groupings to determine the impact of increasing the severity.
The change between scenario groupings causes a more significant
change in the outcomes than simply switching between the
individual scenarios themselves (5.6% change vs 2.2%). This is
expected as introducing more infected RSUs into the network
results in more widespread disruption to vehicle traffic
operations. More so than increasing the likelihood of a
successful attack with a constant number of RSUs. To further
understand the impact of each scenario group, Figure 6 displays
the average vehicle speed for each time step in the simulation.

Figure 6 clearly shows the significance of scenario groups 5
and 6 on normal traffic operation during the simulation. There is
a significant dip in speed that bottoms out just after 600 s. The
plot shows the network recovering as speeds increase, but
scenario six never recovers due to how widespread the attacks are.

The overall conclusions from the MITM attack data analysis
are very similar to those made for DoS data analysis. One of the
main themes in terms of data analysis is that increasing the
number of RSUs has the most direct and significant impact on the
operations and safety of the transportation network. This impact
can be seen throughout the analysis in scenarios 13–18, where
performance steadily decreases with each iteration of attack
severity. One of the main points these attacks seem to diverge
in data analysis is their variance per scenario. MITM attacks had a
relatively low variance except for three scenarios with large spikes
in variance. While the lower variance would benefit planners and
decision-makers, the spikes in different scenarios present a
troubling problem. It appears that at least some scenarios,
seemingly without cause, can have higher variance—meaning
significantly different efficiency results from different trial runs
within a scenario.

Attack Comparison
It is important to compare the results of the attacks against each
other at a high level to make general conclusions. This analysis
will compare data already presented to show the similarities and
differences between the impact of the two attacks – consisting
primarily of average and summary data.

TABLE 6 | MITM attack scenarios - relative travel time delay.

Scenario Avg. Crashes Avg.
Sim time/Vehicle (s)

Change from base scenario
(s)

% Change from base
Scenario

Base 0 325.9 -- --
10 1 332.0 5.1 1.8%
11 2 331.4 5.4 1.7%
12 2 332.2 6.3 1.9%
13 7 352.2 26.4 8.1%
14 9 358.8 32.9 10.1%
15 9 366.4 40.4 12.4%
16 13 370.3 44.4 13.6%
17 18 384.2 58.3 17.9%
18 20 395.8 69.8 21.4%
Average 9 358.2 32.2 9.9%

FIGURE 4 | MITM Infected RSUs vs Travel Time.

FIGURE 5 | Average throughput per number of infected RSUs—MITM
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The average variance for each of the attacks will be compared
first. DoS attacks had an average variance of 16.80, and MITM
had an average of 14.47. The average variance for each attack is
considerable, but they achieved these averages differently. For the
DoS attacks, the variance increased as the attack scenarios became
more severe. On the other hand, MITM attacks achieved their
high variance through sporadic spikes in variance from three
main scenarios. Aside from these three attacks, the variance for
MITM attacks would have been considerably lower. However,
these attacks occurred, and the results must be accounted for.
Overall, the average variation did not change much from attack to
attack. In fact, for both attacks, only the scenarios with one
infected RSU achieved a Chi-Squared score within the 95%
confidence interval threshold. This shows that although their
path to high variance may be different, either way, the more
severe attack scenarios result in high variance.

Depending on the traffic volume, an attack can have a wide
range of impacts on the transportation network’s operations. A
crash during rush hour at a busy urban intersection will have a
considerably different impact than a crash in the middle of the
day on a side street. The main conclusion drawn from this
comparison is that a severe DoS attack and a severe MITM
attack are extremely hard to predict and plan for confidently.
Decision-makers must develop a resilience plan that takes the
unpredictable nature of the impact of these attacks into account.

The variance shows the wide range of effects the impact of
each attack could have. However, it is important to compare key
measures of effectiveness themselves with the simulation data.

Table 8 will compare the statistics for each of the related scenario
groups for each attack. The simulation time for each will also be
compared to the base scenario for reference.

The first trend is how similar the average result for each
scenario group and the overall average results are. The DoS
attacks have an average of 1.7 s more simulation time per
vehicle, resulting in a 0.5% more travel time delay than the
base scenario. This is an important finding as MITM attacks
are often less impactful than a DoS attack. The above findings find
very little difference between a well-executed severe DoS attack
and a well-executed severe MITM attack. A well-positioned
adversary could use various attacks to compromise the overall
network, and correctly picking which areas of the transportation
network to focus on could result in significant efficiency impacts
on the network. Figure 7 provides the average speed per vehicle
per timestep over simulation time for each scenario group. This
provides a visual representation of how operations are impacted
during the attack simulations.

Each of the attacks’ corresponding scenario groups (groups
1 and 4, 2 and 5, and 3 and 6) behave similarly. They
experience very similar dips and recovery in speed, with
one main exception. Scenario group 5 recovers to a much
higher speed on average than scenario group 2, with its peak
around 1,100 s. The figure also reiterates that scenario groups 1
and 4 behave similarly to the baseline scenario, especially the
other attack groups. This graph visually represents the
operational impacts of the widespread attacks shown in
scenarios 2, 3, 5, and 6. These groups have significantly

TABLE 7 | MITM results compared by scenario group.

Scenario grouping Average crashes Avg.
Sim time/Vehicle (s)

% Change from
Previous Scenario

Base 0 325.9 --
Scenarios 2 331.8 1.8%
10–12
Scenarios 8 359.2 8.3%

13–15
Scenarios 17 383.5 6.8%

16–18
Average 9 358.2 5.6%

FIGURE 6 | Vehicle speed per time step—MITM groups.
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higher drops in speed and generally fail to recover during the
simulation at a network scale.

A conclusion can be drawn between the simulated DoS and
MITM attacks through multiple means of comparison - their
impact on transportation network efficiency is nearly identical.
This is an important concept to understand in developing a
robust transportation network against cyberattacks. While this
research focused on two significant cyberattacks, it has also
shown a large variety of attacks an adversary can use to
compromise the network in different ways. Understanding
the impact of these attacks is the first step in understanding the
risk they pose to the transportation network. Effectively
understanding the possible risk of these attacks can help
engineers gain a step on nefarious actors in the battle for
cybersecurity.

DISCUSSION

With the future development of intelligent transportation systems
and CAVs, cybersecurity will soon come to the forefront of safety
and efficiency concerns for transportation engineers. Understanding
how cyberattacks can impact the safety and efficiency of intelligent
vehicles is important when planning for them. Future transportation
systems need to be cyber resilient to function properly. This research

presented a baseline impact analysis of cyberattacks on efficiency and
showed the possible negative impact on the transportation network.
Other research has shown different aspects of cyberattacks against
the VANET and ITS.

Key Findings
The findings from this research are important to show
decision-makers the possible consequences of implementing
emerging technologies without proper forethought to
resilience. The key findings discussed previously in the
results section are summarized below:

• Moderate to high severity DoS and MITM attacks carry
similar operational impacts on the transportation network.

• Safety and resilience engineers must understand the impact
of a wide variety of cyberattacks that carry with them a
variety of impacts. Understanding these base impacts is
important for resilience planning and metro regions.

• A threshold appeared that correlates to the number of
impacted RSUs and the negative impact of the attack on
vehicular traffic operations. The higher number of impacted
RSUs corresponded to more impact.

• The number of successfully compromised RSUs had a
higher impact on operations than an increase in attack

TABLE 8 | Average simulation time per vehicle comparison.

Attack

DoS MITM

Scenario group Sim time/Vehicle
(s)

% Change
from base

Scenario group Sim time/Vehicle
(s)

% Change
from base

Base 325.9 -- 0 325.9 --
1 332.7 2.1% 4 331.8 1.8%
2 360.4 10.6% 5 359.2 10.2%
3 386.6 18.6% 6 383.5 17.6%
Average 359.9 10.4% Average 358.2 9.9%

FIGURE 7 | Average speed per time step—all Scenario groups.
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likelihood for an attack with the same number of
infected RSUs.

• Both attacks resulted in high variance of results for the travel
time delay.

• A widespread attack, both MITM and DoS, represented a
worst-case scenario for operations regardless of the attack’s
success rate.

Research Applications
This research provided a baseline transportation efficiency
analysis of cyberattacks against CAVs. The results and analysis
provided by this research could be of importance to planners at all
levels of transportation. Specifically, state and municipal DOTs
who may not have the resources or expertise to quantify the
possible negative impacts of cyberattacks against an unprotected
connected environment could benefit from this. This research
presents a worst-case scenario in an urban environment without
proper cybersecurity countermeasures and resilience planning.
Understanding the impact of attacks against the system is an
important first step in developing resilience countermeasures and
mitigation strategies. Without adequate planning and
implementation, connected technologies present an
opportunity for hackers to have a significant negative impact
on the transportation system—negating their promised benefits.

CONCLUSION

The results from the simulations showed that as both DoS and
MITM increased in severity, the negative impact on efficiency
also increased. It was also found that the worst-case MITM and
DoS attacks produced similar results, with both producing over a
20% increase in travel time delay. Simulation results also showed
that the attack success rate does not matter once an attack
becomes widespread through the system. This result shows
that preventing an attack from spreading through the
transportation network is extremely important to minimize
the impact of an attack. Data analysis also showed that attacks
carried a high level of variance with them. High variance in results
makes the network itself less reliable and makes it difficult for
planners to develop resilient network solutions for a wide range of
results.

Overall, this research showed how important it is to
develop proper cyber resilience plans for emerging
technologies before their implementation. Engineers need
to detect and react to cyberattacks to prevent them from
spreading throughout the transportation network. Without
proper resilience planning against cyberattacks, the network
will be vulnerable to these attacks. If these attacks can spread
without detection, they greatly impact transportation
efficiency and reliability.
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