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Ensemble forecasting is class of modeling approaches that combines different data
sources, models of different types, with different assumptions, and/or pattern
recognition methods. By comprehensively pooling information from multiple sources,
analyzed with different techniques, ensemble models can be more accurate, and can
better account for different sources of real-world uncertainties. The share of for-hire vehicle
(FHV) trips increased rapidly in recent years. This paper applies ensemble models to
predicting for-hire vehicle (FHV) trips in Chicago and New York City, showing that properly
applied ensemble models can improve forecast accuracy beyond the best single model.
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1 INTRODUCTION

The advent of for-hire vehicles (FHVs), such as Uber, Didi, and Lyft is a new occurrence, and the
share of FHV in all trips (0.5% in 2017 in the United States (Federal Highway Administration, 2017))
remains low compared to existing modes of transport, but the FHV continues to grow at a rapid rate,
and their numbers have already became significant in some areas. Nearly 10%Americans use FHV in
any given month in 2017 (Conway et al., 2018); in New York City in particular, the number of FHVs
tripled between 2010 and 2019 (Roberton et al., 2020). At this rate of growth, and with the help of
autonomous vehicle technology, the FHV will likely become a significant mode of transport, which
might cause conflicts with the existing transport system. Empirical research finds FHV to be a
significant contributor to traffic congestion (Erhardt et al., 2019), and increases vehicle emission
(Roberton et al., 2020), therefore a better understanding of FHV trips is needed.

In addition to conventional models, various machine learning models are increasingly used in
transport studies to predict the flow of people (Liu et al., 2021; Ou et al., 2020) and for-hire vehicles
(Luo et al., 2020). The current transport modeling practice relies heavily on a single model. When
predictions made by alternative models appear not as accurate, even when the performance difference
between models were small, these alternative model assumptions are generally discarded. But
discarding models that appear to underperform is not a prudent approach to modeling. As
McCullagh and Nelder (1989) put it: “Data will often point with almost equal emphasis on several
possible models, and it is important that the statistician recognize and accept this.”Model predictions
are inherently probabilistic, so relying on a single model assumption is not the best approach.

Our theory of ensemble forecasting (Wu and Levinson, 2021) suggests that there might be room
for improvement in both forecast accuracy and reliability by adopting ensemble models. Ensemble
forecasting is a modeling approach that combines outputs from different models that use different
assumptions or methods of pattern recognition, so that more information can be extracted from
available data, and different model assumptions also provide checks and balances for each other. The
idea of ensemble forecasting originated in weather forecasting, and has significantly improved
forecasting accuracy. There has been very little awareness, and limited use of ensemble models in
transport modeling (Wu and Levinson, 2021).
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This paper focuses on FHV trips data as proof of concept, and
tests the use of different algorithms as base models, and different
ensemble models to combine base models in predicting the trip
production, attraction, and flow of FHVs between places. The
goal is to test whether combining different base models will be
able to produce forecasts that are more accurate and reliable, than
any individual base model. If ensemble models indeed perform
better than the single-model approach, then perhaps prevalent
modeling approaches in the four-step transport planning models,
at least in the prediction for trip production and attraction can be
improved, by the adoption of ensemble models.

2 DATA AND METHODS

2.1 Data
This paper uses For-hire Vehicle (FHV, from ride-hailing companies
such as Uber and Lyft) data from New York City and Chicago. On
the data side, New York City data includes 239 taxi zones, which
provides less training data for models predicting trip production and
attraction, when compared to 794 census tracts in the Chicago data;
ensemble models for New York City would also have less data to
calibrate meta-learners. This smaller data size does not pose a

significant issue for predicting flows, as the origin-destination
matrix of 2,392 = 57, 121 zone pairs is a sufficiently large number.

Chicago
Data for select For-hire Vehicle trips are available for Chicago
(totalling 794 census tracts) (Chicago Data Portal, 2019). This
dataset includes trip details such as pick-up and drop-off
locations, which can be used to tally the number of trip
production, attraction within different zones, and the number
of trips between zones.

Trips may begin or end outside the City of Chicago area; these
internal-external (or external-internal) trips constitute a small
percentage of total trip numbers, and are excluded from the
dataset. We extract trips that took place on 26 consecutive
Wednesdays in the first half of 2019, and use the average daily
trips numbers for models to predict average daily trips.

Explanatory variables include social demographic, and locational
factors of a zone. The percentage of non-family households, number
of jobs and workers, and the median household income within a
zone describe social demographic characteristics of an area. For each
location, we include the number of jobs reachable within 30min via
transit as an additional explanatory variable. This “access to jobs”
variable characterizes an area in terms of its land use and the

FIGURE 1 |Model performance in predicting trip production—Chicago MAE. Distribution of mean absolute error from 400 experiments. Boxes span 25th to 75th
percentile, whiskers extend to max/min of the values, excluding outliers (1.5 box heights away from box edges, which are shown as dots).
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provision of public transport. Explanatory variables used in models
are listed below.

• 30 min transit access to jobs
• Percentage of households that are not family units
• Median household income
• Number of workers in the area
• Number of jobs in the area
• Size of the area, in sqrkm
• Road distance between origin and destination zone (in the
flow model)

New York City
New York City For-hire Vehicle (FHV, rideshare companies such
as Uber and Lyft) trips data comes from the NYC Taxi and
Limousine Commission (TLC, 2017). The FHV trips data covers
the City of New York area, totalling 239 taxi zones.

Trips may begin or end outside the City of New York area;
these internal-external (or external-internal) trips presumably
constitute a small percentage of total trip numbers, and are
excluded from the dataset. We extract trips that took place on
30 consecutive Wednesdays, beginning in the July 2017, for
models to predict average daily trips.

Explanatory variables include social demographic, and
locational factors of a zone. The list of explanatory variables
used for New York City are the same as the ones used in Chicago,
but aggregated to New York City taxi zones, which are generally
larger than census tracts uses in Chicago. The same “access to
jobs” variable used in Chicago is also applied for New York City.

2.2 Models
Conventional modeling method uses a single base model for
predictions. We compare the performance of these base models
with different ensemble methods that combine base models. This
paper uses the R programming language. Packages
“neuralnet,”“randomForest,”“gbm” and “rpart” are used for machine
learning models, and base R is used for conventional models. The list
below shows the category of models used to predict travel demand.

• Base models (Linear, Classification Tree (CT), Random
Forest (RF), Gradient Boosting Machine (GBM), Neural
Network (NN)1)

FIGURE 2 | Model performance in predicting trip production—Chicago MSE. Distribution of mean square error from 400 experiments. Boxes span 25th to 75th
percentile, whiskers extend to max/min of the values, excluding outliers (1.5 box heights away from box edges, which are shown as dots).

1Neural Network with a single layer and six neurons.
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• Simple ensemble models combine outputs from base models.
Ensemble models with simple rules use the arithmetic, or
the weighted average of different base model predictions as
the ensemble model prediction. The simple arithmetic
average in particular has been shown to be robust in
empirical studies (Winkler, 1989), and often produces
better accuracy than using performance-based weights for
combining models (Kang, 1986; Elliott, 2011).

• Meta-learner ensemble models (stacking) (Wolpert, 1992)
calibrates a higher level model (meta-learner) to combine
forecasts made by different base models. Each time, the
training data is divided into two parts, with one part used
to train the basemodels, and the other part used to calibrate the
meta-learner. To compensate for the reduced size of training
data for base models, multiple base models and meta-learners
are trained, by repeatedly dividing the training data (e.g. k-fold
cross-validation (Chand et al., 2016), k = 3 in this paper). Three
types of meta-learners are used, namely the linear, gradient
boosting machine, and random forest meta-learners.

• The ensemble of ensembles approach recognizes that
ensemble methods combining base models are themselves
single algorithms, and therefore have limitations of their own.
This method combines different ensemblemethods, and is an

ensemble of ensembles. The goal is to reduce the dependence
on any single one of the ensemble methods. The ensemble of
ensembles can be implemented in many different ways; in
this paper we use an ensemble of ensembles method that
averages outputs from the three meta-learners.

Model performance is evaluated by measuring the difference
between predicted and observed values in a separate testing
dataset. Both the mean absolute error (MAE) and mean
square error (MSE) measure the size of prediction errors, with
the MSE focusing more on large errors. Ideally a good model
would have low MAE, low MSE, and a small dispersion of
prediction errors (standard deviation)

2.3 Trip Production and Attraction
Models predict the average daily number of trips produced and
attracted to each of the 794 zones (census tracts) within the City of
Chicago area, and each of the 239 taxi zones within New York City,
using demographic and locational data as explanatory variables.

We divide the data into training and testing datasets to
evaluate the performance of different models. The trip
production and attraction zones are divided into two mutually
exclusive groups, data in one group is used to train models, and

FIGURE 3 | Model performance in predicting trip production—Chicago SD absolute error. Distribution of standard deviation of absolute error from 400
experiments.
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data in the other group is used to test model performance.
Generally a zone with many trips previously would continue
to have a high trip volume later in time; machine learning models
can identify this trend in making predictions and substitute
predictions with historical trip numbers, so it would be
insufficient to separate training and testing data by time. In
this study, the training and testing data are separated spatially,
to prevent machine learning models from ‘memorizing’ specific
zones. Any zone in the training dataset will not appear again in
the testing dataset.

To evaluate the model performance, we repeat the whole
process (including splitting the data into training and testing,
model calibration and validation) 400 times to obtain a
distribution of model performance metrics. All taxi zones in
New York City and census tracts in Chicago are divided into
two mutually exclusive groups, so data in one group is used to
training models, and data in the other group is used for testing
model performance.

2.4 Flow Model
Models predict the average daily number of trips between any
pair of zones, using descriptive statistics from both the origin and
destination zones, and the road distance between the two zones.

Generally the number of trips between two zones are
reciprocal, as more trips in one direction often suggest a
similar amount of trips in the other direction. So it would not
be sufficient to divide training and testing data based on trip pairs
alone, for example, including one origin-destination pair in the
training data does not exclude trips in the other direction from
this origin-destination pair in the testing data. In this study, the
entire data is divided into training and testing datasets based on
unique trip origins.

We vary the size of training data to test the performance of
different models. For each sample size, the model is calibrated on
90 different training samples, and each time applied to 100 testing
samples, to obtain a distribution of performance metrics to
evaluate model performance.

3 RESULTS

3.1 Trip Production and Attraction
Chicago
Different base and ensemble models have different performance
in predicting the average daily number of trips produced from,
and attracted to each zone. Figure 1 shows the mean absolute

FIGURE 4 | Model performance in predicting trip production - NYC MAE. Distribution of mean absolute error from 400 experiments. Base models exclude the
classification tree.
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error, and Figure 2 shows the mean square error of different
models in predicting trip production. The stability of model
performance, as measured by standard deviation of absolute
error is shown in Figure 3. Model performance follows
identical patterns in predicting trip production and attraction.
Figures showing model performance in predicting trip attraction
are included in Supplementary Appendix A.

Among the basemodels, the linear model has better performance
than the classification tree, but has lower performance than other
machine learning models. Within the 400 repeated experiments, the
linear model has the highest chance to produce large errors.

Ensemble models with simple rules, namely simple average,
and weighted average of the base models, improved MAE and
MSE beyond the best base model. Figures 1, 2 show these two
ensemble models (color coded green) to have the fewest cases
where the models have large error measures. In the 400 repeated
experiments, these two ensemble models have the most stable
performance accuracy between cases, as shown by the standard
deviation of absolute error in Figure 3.

Ensemble models with more complex rules, including meta-
learners and ensemble of ensembles did not work as well as simple
rules ensemble models, and did not significantly improve the
mean absolute error of the base models. The linear combination

meta-learner and ensemble of ensembles both have lower MSE
than the base models. The gradient boosting machine and
random forest machine meta-learners provided no noticeable
improvement from base models.

New York City
In predicting trip production and attraction inNewYork City, only
the simple average ensemble model is able to improve model
performance beyond the best single model (linear). The linear
stacking model has similar performance as the best single model.
When the classification tree, which has especially low performance
in this case, is removed as one of the base models, the simple
average of the 4 remaining base models perform better than the
best single model (linear) in terms of MAE and MSE, and “no
worse” in the stability of model performance. Weighted average
ensemble models, and RF, GBM stacking models performed worse
than best single model. The ensemble of ensembles method, which
averages RF, GBM and linear meta-learners also performed worse
than the best single model.

Model performance in predicting trip production is shown in
Figures 4, 5, 6. Model performance in predicting trip attraction
has identical patter as in predicting trip production, and is shown
in Supplementary Appendix A.

FIGURE 5 | Model performance in predicting trip production - NYC MSE. Distribution of mean square error from 400 experiments. Base models exclude the
classification tree.
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3.2 Flow Model
In predicting the average daily flow of FHV, ensemble models
with simple rules provide no improvement from the best
single model prediction, but accuracy of these ensemble
models are generally similar to the best single model. On
the other hand, the weighted average ensemble model scored
well (although not the best) on all three measures. The
weighted average ensemble model improves forecast
accuracy beyond the best single model when the training
sample size is small; once the sample size increases, the
weighted average becomes less accurate than the best
single model prediction.

Model performance in predicting the flow of FHVs is shown
in Figure 7 and Figure 8. Among the base models, the gradient
boosting machines has the best performance in MAE, MSE, and
in the standard deviation of absolute errors. The neural
network has good performance in the MAE measure, but
very high MSE in predicting flow, suggesting many large
errors in neural network predictions. Meta-learner ensemble
models (stacking) are able to improve model performance
beyond the best single model. Meta-learner ensemble models
improved the mean square error beyond the best base model,
suggesting a reduction in large errors. Mean absolute error of

stacking models is a slight, but not significant, improvement
beyond the best base model.

Among different stacking ensemblemodels, the linearmeta-learner
has the best accuracy (MAE and MSE), and produces forecasts with
the most stable accuracy. Ensemble of ensembles, averaging three
stacking ensemblemodels (Linear, RF, GBMmeta-learners), improves
accuracy beyond the best stacking ensemble models.

4 BASE VS. ENSEMBLE MODELS

How much model performance gain can be achieved from
ensemble models is relevant for its potential application. The
extent of model accuracy improvement from ensemble models
in Chicago are shown in Figure 9; the data in New York city has
similar patterns, and is included in Supplementary Appendix B.

With increasing sample sizes, the amount of accuracy improvement
provided by ensemble models has diminishing returns, so as sample
size grows, each additional unit of data improves the model less. An
initial drop in the performance improvement from stacking ensemble
models can be observed inFigure 9 for Chicago (and also inNewYork
City), which shows that at certain levels of training data size, the
amount of improvement obtainable from ensemblemodels is reduced.

FIGURE 6 | Model performance in predicting trip production—NYC SD absolute error. Distribution of SD of absolute error from 400 experiments. Base models
exclude the classification tree.
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This can be explained by the difference in how fast base models and
meta-learners improve their accuracy: if the best base model rapidly
improves with more training data, and the meta-learners were to have
a slower rate of improvement than the base model, then the gaps
between the best basemodel and the ensemblemodels will be reduced,
resulting in the noticeable kink in the performance improvement.
Diminishing returns set in as performance improvement per unit of

extra training data drops, and may eventually disappear, in the base
models, and the meta-learners are able to further improve upon base
models. For this reason, the extent of accuracy improvement with
meta-learners generally increases with the size of training data to
a point.

On the other hand, if the meta-learner improves faster than
the best base model, then the amount of performance

FIGURE 7 | Model performance in predicting Chicago FHV flow; Every dot is the average of 90 experiments, each with 100 testing samples.
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improvement from ensemble models will not diminish with more
training data, and the kinks in Figure 9 will not appear.

5 CONCLUSION

This article explores the possibility of improving transport models
by adopting ensemble models, by testing ensemble models on For-

hire Vehicle (FHV) data, and comparing the performance of
ensemble models with the conventional single model approach.
The results show that under the right conditions, ensemble models
have better performance than the best base model. Since linear
models are still widely used for prediction purposes, this paper
shows the efficacy of ensemble models, and its potential for wider
adoption in transport modeling.

FIGURE 8 | Model peformance in predicting New York City FHV flow; Every dot is the average of 90 experiments, each with 100 testing samples.
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The amount of training data available is a significant factor
in the relative performance of ensemble models and base
models. In the case of predicting trip production and
attraction, with a small training sample size, the simple
averages combining rule outperforms other ensemble models
and base models, producing both more accurate, and more
reliable forecasts. Stacking ensemble rules provide little to no
improvement from the best single model. This is possibly
because stacking models require sufficient data to be
calibrated; with a small sample size, both the base models
and meta-learners are not adequately calibrated. We also
find the linear meta-learner to have robust performance, in
that, although providing no significant improvement, the
ensemble models have similar performance to the best
single model.

With sufficient data available in predicting FHV flow,
meta-learner ensemble models improve model performance
beyond the best single model. In most cases the ensemble of
ensembles has the best performance. The neural network
model has low mean absolute error, but also a significant
amount of large errors, which resulted in a high MSE. So
reliance on a single model based on one set of performance
measure can be risky.

Ensemble models, especially robust ensemble algorithms
such as linear meta-learner and the ensemble of ensembles,
can generally improve model performance. Ensemble models
are also well rounded in performance, providing a good balance
between forecast accuracy, large and small errors, and stability
of forecast accuracy. In general, ensemble models are either
better, or “no worse,” than the best single model forecast.
However, discretion is needed in applying ensemble models
under different scenarios. In cases without enough data to

calibrate models, simpler and robust ensemble models
become preferable.

The comparison between ensemble models and the single-
model approach shows that, relying on a single model is not
the best modeling practice, even when a single model appears
to have the best performance; further performance gains can
be obtained by combining models with different
assumptions or pattern recognition methods. Removing
base models with particularly low performance improved
the ensemble model. More research is needed to further
develop ensemble methods, and to systematically select
base models.

Ensembles are more complex than single-models, requiring
more effort both in model calibration and interpretation of
results. Compared to single models, it is more difficult to
explain ensemble model outputs to the general public, or even
to people with some technical understanding of modeling. These
attributes of ensemble models may have slowed its adoption in
transport modeling.

In other disciplines, most notably in the weather
forecasting, continuous improvement in modeling
methods, and the use of ensemble models (and also better
measurement data) have significantly improved forecast
accuracy over the years (Blum, 2019). While the single-
model approach still has its value in analysis roles, it has
outlived its historical role in forecasting. It is time to move on
to better modeling methods. Although further tests are
needed to evaluate the effectiveness of ensemble models
under various circumstances, and to refine ensemble
methods under actual use scenarios, we believe ensemble
models should be properly recognized and considered as a
formal transport modeling approach.

FIGURE 9 | Performance improvement from the best base model—Chicago MAE
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