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Motion planning algorithms for automated vehicles need to assess the intended
behavior of other Traffic Participants (TPs), in order to predict the likely future
trajectory of TPs and plan the motion consequently. Information resulting from
several sources, like sensors, must be gathered and combined into a reliable
estimate of the intended behavior of TPs. Such estimates must be sufficiently
steady and quantify the inherent uncertainty around the assessment. We present a
novel information fusion algorithm to combine information from different sources
into a coherent and reliable estimate. To explicitly account for the uncertainty of
estimates, we leverage the Belief Function Theory and evaluate and handle
possible disagreements between estimates individually provided by the
sources. The algorithm is flexible and can also handle sources that do not
discern between some of the considered behaviors and are only capable of
assessing the probability of unions or clusters of different behaviors. We
discuss the strengths of the approach through simulations in SUMO,
comparing it to the Interactive Multiple Model algorithm.
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1 Introduction

The automated driving field has recently seen incredible progress and autonomous
vehicles are nowadays capable of dealing with complex situations. Especially in urban
automated driving, handling interaction with traffic participants (TPs) is complicated, as it
requires predicting their future motion. Connected and Automated Vehicles (CAVs)
alleviate the task, as they share information making other CAVs aware of the future
intention. However, although the share of CAVs on roads is expected to quickly
increase, for a significant amount of time traffic will still mainly be characterized by
human-driven vehicles, whose future motion is unknown because of the lack of
communication. Moreover, also in the long term, automated vehicles will continue to
have to deal with the presence of non-communicating TPs, such as cyclists and pedestrians,
who should be given special attention as vulnerable road users.

In control-based autonomous driving schemes such as Model Predictive Control, the
future behavior of the automated vehicle is optimized, accounting for the future moves of the
other TPs, whose future motion must, therefore, be predicted. Several common approaches
to infer the expected future motion of the other TPs rely on running prediction models
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starting from the current position and velocity of TPs. The design
of.such prediction models is a challenging task, as they have to
consider both the dynamics of TPs and their internal objective,
depending on the driving style and on the maneuver being executed
Lefevre et al. (2014). Tuning the prediction model depending on the
maneuver being executed or even the selection of different
prediction models depending on the traffic situation requires an
online assessment of the behavior of TPs.

The intention driving the behavior of a given TP, whether it is
another vehicle, a cyclist, or a pedestrian, can be estimated based on
information collected from onboard sensors, cameras, and radars
along the road and from intelligent infrastructures communicating
with automated vehicles. The past trajectory of each TP can be
analyzed and candidate behaviors ranked evaluating a measure of
similarity with respect to properly designed models representing
different situations Tran and Firl (2014). In Woo et al. (2017), a lane
change detection mechanism is introduced, relying on phase models
of lane changes. However, phase models for lane changes are
required, thus the method does not generalize well. In Carvalho
et al. (2014), the Interacting Multiple Model (IMM) algorithm is
used to estimate the intended trajectory of target vehicles. However,
the variability of the estimation is not considered and the estimation
might suddenly and repetitively change if none of the considered
models perfectly matches the dynamics, making the estimate
unreliable. Berclaz et al. (2011) proposes an efficient multiple-
object tracking algorithm based on the K-shortest paths
optimization, which is applied to track pedestrians who walk
possibly producing occlusions. Notably, Bewley et al. (2016)
introduced SORT, an online multi-object tracking algorithm
based on the Kalman filter, which was further improved in
Wojke et al. (2017). Neural networks have also been extensively
used for pedestrian tracking, see, for example, Zhao and Thorpe
(2000); Song et al. (2021). Further motion tracking algorithms are
mentioned in the surveys Moeslund et al. (2006); Gerónimo et al.
(2010). Furthermore, heuristics and other non-vision or radar-based
sources, e.g., traffic statistics, can provide a bias useful to categorize
the behavior of TPs.

After the intended behavior of TPs has been recognized, the
future motion of vehicles and vulnerable road users can be predicted
as in Deo et al. (2018). Moreover, the authors in Xin et al. (2018)
present a long short-term memory network for long-horizon
trajectory prediction, relying on identified intended maneuvers of
the TPs. In addition, in Ding and Shen (2019) a two-level vehicle
prediction framework is introduced, in which the second block
consists of an optimization-based prediction method relying on the
prior identification of the intended vehicle maneuver. Further
motion prediction models are discussed in the recent survey
Ghorai et al. (2022). Then, the predicted trajectories and their
estimated probabilities can be passed on to the motion planner
of the automated vehicle accounting for the multiple possible future
motions of TPs depending on their probability, as, e.g., in our recent
work Benciolini et al. (2023).

However, when different sources or multiple motion tracking
algorithms are used to infer the probability candidate behaviors of
TPs, a multitude of estimates of the probabilities of candidate
behaviors are produced, which might differ. Thus, the
information provided by the several sources must be combined
and gathered in a coherent estimate. One main challenge in

combining different behavior estimations lies in handling the
inherent uncertainty around the information provided by each
source and in their possible discord. Furthermore, the resulting
overall estimation of the behavior of TPs should be made as stable
and reliable as possible and the reliability of the provided
information should be explicitly quantified. Assessing the
reliability of the provided estimation is especially important to
allow motion planners to subsequently take action to address the
uncertainty and to avoid aggressive decisions until the estimation is
reliable enough, particularly when interacting with vulnerable users.
Finally, combining non-homogeneous individual estimations is
challenging. For example, some of the sources might not discern
between some of the candidate behaviors and estimate their
probability separately, but rather only assign probability to their
unions, that is, that either of them will occur. Examples of sensors
only capable of assigning belief mass to the union of singletons can
be found in Jøsang (2019a) for genetic mutation detection
application and inMilisavljevic and Bloch (2003) for mine detection.

In this work, we rely on Belief Function Theory (BFT) to
combine information resulting from different sources in a reliable
way, explicitly accounting for the uncertainty around the estimate.
BFT has been utilized to account for the reliability of the information
in a safe reinforcement learning framework in our previous works
Zhou et al. (2020, 2021), and for grid-based mapping and tracking in
our previous works Tanzmeister et al. (2014); Tanzmeister and
Wollherr (2017). In Wu et al. (2002), BFT is utilized for sensor
fusion, through the Dempster-Shafer evidence combination rule and
an improved evidence combination rule that weighs sensors.
However, conflict among observations is not dealt with and thus
additional observations always render the result more certain, even
when they do not agree with each other. Several conflict detection
mechanisms were proposed in Martin (2019), which, however, do
not consider the uncertainty of the sources, which is to some extent
unreasonable. A conflict-handling mechanism called Uncertainty
Maximization has been presented in Jøsang (2019b), transferring
part of the belief masses to the uncertainty independently of the
degree of conflict, which, depending on the application, is also
unreasonable for small conflicts.

We provide a two-step algorithm to combine the information
about the behavior of TPs provided by multiple sources in a
consistent and reliable estimate using BFT. At first, a
modification of the Dempster-Shafer rule is used to gather the
information collected by several sources independently during the
last sampling time. Sensors estimating the probability of unions of
events instead of the probabilities of singletons can also be adopted.
Furthermore, we design a new conflict-handling mechanism taking
the reliability of the information provided by each source into
account. Then, the information is fused with the estimate from
the previous iteration, giving steadiness to the framework. We
compare our approach with the IMM algorithm Genovese (2001)
through numerical simulations in SUMO Krajzewicz et al. (2002).
The proposed approach is well suited to combine the information
obtained by different sources to estimate the future trajectory of TPs
handling conflicts in the estimation through the notion of
uncertainty. For this reason, the approach leads to improved
safety when automated vehicles need to interact with non-
communicating TPs, such as human-driven vehicles and
vulnerable users like cyclists and pedestrians.
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The remainder of the paper is organized as follows. An overview
of the proposed approach is given in Section 2. Remarks on BFT and
the formal definition of opinions and possible generation
mechanisms are given in Section 3, whereas the steps of the
belief processing mechanism and their properties are outlined in
Section 4. Simulation results and an outlook for future research are
given in Section 5, whereas conclusive remarks Section in 6.

2 Overview of the approach

The information flow considered in this work is repeated in
parallel for each TP separately. The procedure can be divided into
three parts, namely, generation of opinions, multi-source
information fusion, and temporal belief distribution propagation.
The scheme of information handling is represented in Figure 1. Our
focus is combining information with a view to assessing the behavior
of TPs, but the method is not limited to this specific application.

At first, information is collected from each source
independently. This step happens outside and independently of
our belief processing algorithm. Based on new data, at each time step
k, nS opinions ω1

k, . . . ,ω
nS
k are generated in parallel, one for every

source of information, that will be defined more precisely in Section
3. The opinion consists not only of an estimate of the probability of
each considered outcome but includes an assessment of the
reliability of the information provided, taking advantage of the
“uncertainty” concept from BFT Reineking (2014), that
represents the epistemic uncertainty regarding the reliability of
information. Depending on the sensor or detection mechanism,
some individual and separate outcomes might not be distinguishable
for a given source of information. In those cases, we allow the source
to provide an estimation assigning probability to the union of
singletons, rather than, for example, redistributing equally the
probability within the singletons involved.

Secondly, independently-generated opinions are combined,
gathering the information resulting from the current time
step. An agreement between individual estimations provided by
different sources is found, based on the last samples available,
reporting possible changes in the behavior. The processing of
individual estimations is independent of how opinions are

generated. Observe that the combined opinion is not just an
average of the estimated probabilities from every separated
source. Rather, opinions are merged considering the uncertainty
of each of them, weighing in more sources that provide more
reliability. Furthermore, an assessment of the uncertainty of the
combined estimate is also provided, so that several independent but
coherent opinions reduce the overall level of uncertainty, whereas
possible disagreement is treated through a mechanism outlined in
Section 4.1. The combined opinion is labeled ~ωk.

Finally, to propagate the estimation over time, the combined
opinion-gathering information from the current time step ~ωk is
fused with the information obtained up to the previous time step,
ωk−1, resulting in ωk, the output of the algorithm. Differently from
the previous combination, here the goal is to give steadiness to the
estimate, so that too sudden fluctuations in the estimate, which
would make the information unreliable, are attenuated.

In this work, singletons and individual probabilities represent
different behaviors of TPs, resulting in different expected future
trajectories. As a possible purpose of providing such an estimate, we
refer to the motion planning problem using predictive controllers.
Therein, an estimation of the probabilities of several candidate
future trajectories of TPs allows us to optimize with respect to
different outcomes depending on their probabilities, as in our
previous work Benciolini et al. (2023). Nevertheless, the
algorithm for information handling is potentially general and
applicable for other purposes.

Remark 1. Our algorithm provides a reliable combined estimate of
the probability of the currently intended behavior of traffic
participants, which is suitable to be used to predict future
maneuvers or future trajectories (given the intended maneuver).
However, such (potential) prediction module is not part of our
algorithm, whose output is the combined estimate of the
probabilities of candidate behaviors.

3 Opinions

In this section, we rigorously define the concept of opinion and
explain how opinions can be obtained from data. Then, Section 4
outlines the mechanism to combine opinions. Depending on the
application, different definitions of opinion are possible. The aim of
our approach is to combine different sources of information
explicitly assessing and handling the inherent uncertainty
stemming from incomplete information and from relying on
approximated models. Each event or singleton is associated with
a possible behavior or maneuver of the TP, determining a (nominal)
future trajectory.

In order to quantitatively take the uncertainty into account,
rather than the Bayesian probability framework we employ Belief
Function Theory Shafer (1976). Probabilities assigned to events are
called belief masses. In the following, we assume that the sources of
information provide estimations on the probability of the N
outcomes possibly independently of a clear mathematical model.
Therefore, the considered estimates of probabilities are in fact
subjective probabilities Kahneman and Tversky (1972).

Definition 1. An opinion is the vector

FIGURE 1
Scheme of the approach.
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ω � b1, . . . , bM, μ[ ]⊤, (1)
where scalars b1, . . . , bM, μ ≥ 0 are the belief masses. Opinions are 1-
norm unit vectors, i.e.,

∑M
i�1

bi + μ � 1. (2)

A major difference of BFT compared to Bayesian probability is
that probability can be assigned not only to each singleton event but
also to the union of several singletons Srivastava (2011). Thus, the
number of considered belief masses can be larger than the number of
singleton events, i.e.,M ≥N, since, different belief masses can refer to
non-mutually-exclusive events. This allows more flexibility in the
information handling, considering that some sources of information
might not be able to distinguish between different singleton events,
and thus only assess the probability of their union. Furthermore, μ is
the belief mass assigned to the union of all singletons and is called
uncertainty Jøsang (2019b). Variable μ gives an additional degree of
freedom to quantify the epistemic uncertainty, e.g., assessing the
reliability of the information carried by the other belief masses.
Uncertainty μ is understood as the belief mass of the whole outcome
set, that is, the probability of any of the considered outcomes to
occur. Since it represents the gap between the sum of the belief
masses of the considered events and 1, the uncertainty is a measure
of the inaccuracy of the information, representing the belief mass
that cannot be allocated and anyhow further specified yet. Thus, μ is
inversely proportional to the subjective confidence in the opinion.

Remark 2. Belief masses b1, . . . , bM are not probabilities, since they
do not add up to one and are referred also to as unions of singletons.
Nevertheless, standard probabilities are obtained for example,
equally dividing probabilities of unions between all considered
events. In doing so, also the belief mass of uncertainty must be
equally split among all events.

3.1 Example of opinion generation

In this section, an example of opinion generation for a TP
motion estimation application is given, to clarify how belief masses
and uncertainty can be estimated from data. As previously
mentioned, the opinion generation takes place upstream of our
method and is not part of it, thus this section serves as a purely
explanatory example. Any other opinion generation mechanism
resulting in opinions in the form (1) is suitable.

We consider a set of candidate behaviors or maneuvers, each
determining a (nominal) future trajectory, and propose an
opinion generation mechanism based on the lateral y-position
of a TP measured by a noisy sensor. For each considered
candidate behavior, let yi, i = 1, . . . , N be the y-position of
the nominal trajectory realizing the behavior. Furthermore, for
every candidate behavior, we assume that the variance (σ iy)2 of
the y-position is available, quantifying the expected deviation
from the nominal trajectory when realizing that behavior, also
considering the sensor noise. For example, three behaviors could
be turning right, proceeding straight, and turning left at an
intersection. At first, the probability of each behavior is

estimated by comparing the noisy measurements yk collected
at the current time step k with the nominal trajectory yi

k for
maneuver i, accounting for the expected deviation from the
nominal trajectory. Precisely, measures of similarities can be
obtained from a Gaussian kernel, i.e.,

pi
k �

1���
2π

√
σ iy

exp − yk − yi
k( )2

2 σ iy( )2
⎧⎪⎨⎪⎩

⎫⎪⎬⎪⎭, (3)

then rescaling masses pi
k so that they sum to one.

Then, to assess the uncertainty of the probabilities obtained
from (3), we consider the perturbation of the distribution of pi

k over
a window of n steps, i.e.,

μk �
1

2 n − 1( ) ∑k
h�k−n+2

‖ph − ph−1‖1, (4)

where p � [p1, . . . , pN]⊤. Expression (4) gives a measure of the
variability of the masses distribution over the time window. The
summation is normalized with respect to the largest theoretical
possible value of variation, ensuring that μk ∈ [0, 1]. Observe that (4)
increases in the presence of considerable variations in the estimated
probability of each considered behavior albeit the relative order
between behaviors remains the same. Indeed, since large
perturbations of the mass distributions reflect little reliability of
the source in general, (4) serves as a measure of uncertainty as
intended in this work. However, since uncertainty is a subjective
measure, there is no unique method to quantify it.

Finally, the opinion is obtained as

ωk � 1 − μk( )p⊤k , μk[ ]⊤, (5)
that is, rescaling the probabilities from (3) given the quantified
uncertainty. Depending on the source of information, a similar
approach can be used to generate other opinions.

Remark 3. The same procedure applied to the longitudinal
velocity of a TP approaching an intersection would not be
able to discern between a right and a left turn. Indeed, in both
cases, the expected longitudinal speed profile would be the same,
as it is reasonable to imagine that a vehicle needs to slow down in
a similar way when approaching the intersection. In this case, it is
more reasonable to estimate the belief mass of proceeding
straight and of a turn, without further specifying the direction
of the turn. This is the reason why the proposed algorithm admits
sources that specify the belief masses of unions of singletons,
allowing more flexibility.

Additionally, non-sensor sources can be included, for example,
using statistics of the recorded traffic. Belief masses can be set
proportionally to the statistical frequency of each behavior, and
the uncertainty can be determined based on the variance of the
recorded data. In this case, the resulting opinion is independent of
the current behavior of a TP but rather constitutes a bias, which can
be included in the information fusion.

Remark 4. Independently of the opinion generation mechanism,
the choice of the set of candidate behaviors plays a crucial role, as
previously discussed in Benciolini et al. (2023). However, should a
TP execute a maneuver that does not belong in the set of considered
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behaviors, the uncertainty component would increase, signalizing
that none of the considered modes can be reliably trusted.

Remark 5. In this work, a discrete set of candidate intended
behaviors is considered. Nevertheless, in practice the possible
future trajectories of TPs are infinite. Although this is
undoubtedly a limitation of the approach, the N candidate
trajectories are to be intended as nominal trajectories each
representing a cluster of similar future motions, as our algorithm
aims to return the probability of high-level behaviors. Once the
high-level behavior has been recognized (and fixed), an appropriate
model can be fit to estimate the precise parameters describing the
motion of the TP, thus yielding a refined prediction of the future
trajectory. However, the prediction module to forecast the exact
future positions of the TPs is not included in our algorithm, which is
intended to estimate the probability of candidate high-level
behaviors. For such purposes, a discrete set of candidate nominal
trajectories is sufficient.

4 Combination of opinions

In this section, we outline the two steps composing the proposed
belief processing algorithm, consisting of the combination of
information frommultiple sources and of the temporal propagation.

4.1 Combination of multiple sources

Here we introduce the first opinion combination mechanism.
The aim is to gather the whole information collected at the current
iteration, that is, merge opinions ω1, . . . ,ωnS , obtained from each
source independently, in the combination ~ω � [~b1, . . . , ~bN, ~μ]⊤.
Bearing in mind that the scope of such information fusion is
feeding an accommodation algorithm to account for several
outcomes depending on their probabilities, e.g., Benciolini et al.
(2023), the combined opinion ~ω only comprises N beliefs for
mutually-exclusive singleton events and assessment of the overall
uncertainty. However, if of interest, straightforward adaptions allow
to maintain belief masses of unions also in the remaining steps of the
algorithm.

Remark 6. In the following formulation of the algorithm, we
assume independence of the nS sources. When some of the
considered sources are dependent, they should be combined into
a single opinion upstream of our algorithm, so that the input to the
algorithm consists of nS independently generated beliefs.
Alternatively, the algorithm can be adapted to handle dependent
sources along the lines of Denoeux (2006).

To combine the most recent opinions generated by different
sources of information, we use a revised version of Dempster’s rule
of combination Srivastava (2011) allowing the combined opinion to
only consist of singletons and of the union of all singletons.
Opinions are iteratively combined two at a time. We assume
possibly heterogeneous sources of information, thus opinions
might, in general, consider different unions of singletons. Given
two opinions ωA andωB, the new belief masses for all singletons i = 1,
. . . , N and the overall uncertainty are obtained as

�bi �
∑

j∩h�i
bAj b

B
h

1 − ∑
j∩h( )⊄I

bAj b
B
h

∀i � 1, . . . , N (6a)

�μ � μAμB

1 − ∑
j∩h( )⊄I

bAj b
B
h

, (6b)

where I � {1, . . . , N,∪N
i�1i} is the set comprising each singleton and

the union of all singletons. The belief mass of each singleton is
obtained by summing contributions from every possible
combination that makes the singleton possible, and then belief
masses are normalized leaving out the belief mass of
combinations that do not uniquely identify a singleton. For some
unrealistic degenerate cases, the denominator in (6) could be zero: in
such cases, the combined opinion �ω is set as the completely
uncertain opinion, i.e., �μ � 1 and all other belief masses equal to
zero since further specifications of the belief masses are not possible.

The procedure is commutative with respect to the order of the
opinions and satisfies the following property.

Theorem 1. The combined uncertainty �μ obtained from (6) cannot
increase with respect to the two individual uncertainties μA and μB.

Proof. The proof is given in Appendix A.
As a result, the more opinions are considered, the smaller the

uncertainty of the combination is, following the idea that more
independent sources make the information more reliable. However,
this effect might also be undesirable, if the sources of information
contradict one another. For this reason, we add a conflict detection
mechanism, that reassigns part of the belief mass to the uncertainty of the
combined opinion �ω depending on the possible conflict among opinions.

Inspired byMartin (2019); Jøsang (2019b), we define the conflict
between two opinions as

CA,B � 1
2

bA

‖bA‖1
− bB

‖bB‖1

��������
��������1

��������������
1 − μA( ) 1 − μB( )√

, (7)

where bA and bB contain all belief masses of the opinions but the
uncertainty component, i.e.,ω � [b⊤, μ]⊤.CA,B is designed to increase if
the considered opinions assign differently the beliefmasses while having
high confidence (small uncertainty). Consistency in the ratio of belief
masses rather than values matters in the comparison of belief
distributions, whereas uncertainty does not play a role, since it only
scales belief masses. This is why belief masses are normalized before
taking the difference in (7). The conflict is a non-negative quantity and
CA,B = 1 for the extreme case of two sources completely certain (μA =
μB = 0) and yet assigning the belief masses in completely contradictory
ways, making the belief distributions orthogonal, for example, bA �
[1, 0, 0]⊤ and bB � [0, 0.2, 0.8]⊤.

Then, drawing from Martin (2019); Jøsang (2019b), belief
masses from (6), i.e., �ω � [�b⊤, �μ]⊤, are redistributed as follows

~b � ∏
i≠j

1 − Ci,j( )⎛⎝ ⎞⎠ 1
nS

�b (8a)

~μ � 1 − ‖~b‖1. (8b)
As for any two given sources i, j the conflict is 0 ≤ Ci,j ≤ 1, so is

also the coefficient in brackets in (8a). As a result, the adjusted belief

Frontiers in Future Transportation frontiersin.org05

Benciolini et al. 10.3389/ffutr.2023.1216527

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2023.1216527


masses ~b are non-larger than the previous �b, conversely the
uncertainty is ~μ≥ �μ. If the opinions of all sources completely
match, i.e., Ci,j = 0 ∀i, j, then there is no redistribution of belief
mass to the uncertainty, that is ~b � �b, ~μ � �μ.

The resulting opinion ~ω � [~b⊤, ~μ⊤] gathers the whole
information collected by different sources in the last sampling time.

4.2 Temporal propagation

After combining the information collected through different
sources in the current time step, the combined opinion is mixed with
the information collected up to the previous step. The aim of this
second combination is the temporal propagation of the information,
allowing the detection of patterns that are revealed over multiple
steps. At the same time, providing a stable and reliable estimate
preventing large fluctuations between consecutive time steps is of
primary concern. Therefore, we adopt the Weighted Belief Fusion
(WBF) operator Jøsang (2019b).

Opinion ~ωk gathering information from the current time step
and obtained through the procedure in Section 4.1 is combined with
the overall estimate ωk−1 from the previous time step, originating the
overall estimate for the current time step ωk � [b⊤k , μk]⊤, with

bk �
~bk 1 − ~μk( )μk−1 + bk−1 1 − μk−1( )~μk

~μk + μk−1 − 2~μkμk−1
(9a)

μk �
2 − ~μk − μk−1( )~μkμk−1
~μk + μk−1 − 2~μkμk−1

. (9b)

Observe that from (9), if one of the two opinions is certain (μ = 0),
then the result coincides with that one, that is the other one is neglected
and uncertainty is also set to zero. If both opinions are certain but
indicate different beliefs, then ωk is set to the completely uncertain
opinion, to signal that the information is completely unreliable.

In general, the resulting opinion is obtained as a weighted average
of the two opinions, accounting for each of them depending on its
uncertainty. Moreover, in this case, uncertainty does not necessarily
decrease and, for example, the combination of two identical opinions
results in the same opinion as an output, leaving the level of
uncertainty unchanged. Indeed, WBF can be adopted under the
assumption of dependent sources, thus additional sources do not
necessarily result in additional evidence Jøsang (2019b).

5 Simulation results

In this section, we showcase the belief processing algorithm through
numerical simulations in SUMO Krajzewicz et al. (2002). SUMO is a
widely used open-source traffic simulation environment to validate and
compare algorithms in urban and highway environments, providing a
microscopic simulation platform that includes models of different
modes of transportation, including pedestrians, bicycles, and
vehicles, providing a realistic representation of traffic dynamics.

We consider two scenarios involving processing information
provided by different sources to estimate the intended maneuver
executed by a vehicle approaching an intersection and a pedestrian.
We consider both the case in which sources provide coherent
individual estimations and the case with conflict among sources.

We compare our BFT-based algorithm with the IMM algorithm. The
IMM algorithm consists of one Kalman Filter for every candidate
behavior, and estimates from each filter are combined depending on
the estimated probability, accounting for possible switches between
behaviors occurring between consecutive time steps.

In the simulations, the BFT-based algorithm combines opinions
generated by three sources: a sensor for the lateral position applying
the procedure presented in Section 3; a sensor for the longitudinal
velocity also applying the procedure from Section 3; a constant
opinion representing traffic statistics. The IMM algorithm is
implemented along the lines of (Benciolini et al., 2023; Section
IV-B), but considering as measurements the lateral position and the
longitudinal velocity. The motion of both the vehicle and the
pedestrian is realized using the TraCI library in SUMO and noisy
measurements are used in both estimation frameworks.

5.1 Uncertain behavior of a vehicle

In the first simulation, a vehicle approaches an intersection on a
three-lane road and is detected by sensors of an automated vehicle
position on the same road, behind. Alternatively, the lateral position
and the longitudinal speed of the vehicle could bemeasured by sensors
placed on the infrastructure at the intersection and communicated to
connected vehicles. Finally, the traffic statistics representing the third
opinion, as mentioned above, are assumed to be available from an
online server. The candidate intended behaviors are: A) right turn, B)
proceed straight, C) left turn, see Figure 2. In reality a larger number of
candidate behaviors could be included, so as to differentiate among
multiple rates for the lane change and the turn, for example. However,
a few considerations concerning the choice of multiple candidate
behaviors representing relatively similar future motions arise, as
discussed in (Benciolini et al., 2023; Section VII). For simplicity, in
the following, we consider only three candidate behaviors, each
intended as representative of a cluster of possible trajectories.

The vehicle exhibits ambiguous behavior as it approaches the
intersection, possibly simulating a distracted driver. The vehicle stays
in the center lane, as to proceed straight, but not at the center, rather
proceeds irregularly and a little to the right of the lane, close to the edge.
Thus, the opinion based on the lateral position regards going straight as
the most likely maneuver, although the belief mass of a right turn
maneuver is non-negligible, see Figure 3A. Furthermore, the vehicle
slows down, therefore the opinion based on the longitudinal velocity
tends to give a higher belief mass to the turn maneuver, see Figure 3B.
This behavior is the union of the left and of the right turn maneuvers,

FIGURE 2
Candidate behaviors of the vehicle.
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that are not distinguishable considering the longitudinal velocity.
Finally, the BFT algorithm includes a constant bias ω �
[bright, bstraight, bleft, μ]⊤ � [0.18, 0.32, 0.17, 0.33]⊤.

The result of the estimation for the two frameworks is presented in
Figure 4A and Figure 4B, respectively. While the vehicle is still
approaching the intersection and showing ambiguous behavior, the
opinions produced by the three sources are conflicting. The
combination provided by our BFT-based algorithm generally assigns
the relative highest belief to the proceed straight maneuver, which is
altogether to be considered the most likely. However, the uncertainty is
very high, quantitatively expressing that a reliable estimate cannot be
extracted from the current data. Therefore, a motion planner based on
the BFT estimate might make use of the uncertainty information to use
caution while the intention of this TP is not clear and the prediction
could not be reliable. However, once the vehicle actually reaches the
intersection, the conflict between sources is resolved and the belief mass
of the proceed straight maneuver gradually increases and the
uncertainty decreases. Conversely, the IMM estimation is extremely
noisy and shows large and repetitive fluctuations even between
consecutive time steps, since none of the models can consistently
explain the data. Moreover, confidence oscillates between right turn
and left turn, whereas the proceed straight maneuver only emerges as
dominant when the vehicle reaches the intersection. As a matter of fact,
the IMM considers the dynamics of the model, thus the irregular
behavior is repeatedly interpreted as the beginning of a turning
maneuver. The IMM estimation is not reliable enough to be used
for the prediction of TP future trajectories.

The IMM does not explicitly quantify probability uncertainty,
rather model mismatches result in large estimation variance for the
state estimate, which, depending on the application, might be
impractical. Moreover, different sensors are included in the IMM
algorithm as different outputs of the model. Thus, the handling of
the degree of uncertainty of different sources in the IMM is restricted to
specifying different statistical properties of the disturbances in the
underlying models. However, such statistical properties can not be
straightforwardly adapted online depending on the data collected over
time, thus the IMM algorithm is less suited to cope with sources with
different reliability. Furthermore, any conflict between the information
provided by each sensor is not explicitly addressed and reflects in large
fluctuations in the estimate yielded at consecutive time steps.

5.2 Clear behavior of a pedestrian

In the second simulation, the two frameworks are compared in
estimating the intended behavior of a pedestrian, initially located on
the grass in the vicinity of the road. Also this scenario assumes that
the position and speed of the pedestrian are detected by sensors of

FIGURE 3
Opinions generated by different sources. (A): Opinion generated
from lateral position measurements: right turn (blue), proceed straight
(orange), left turn (red), uncertainty (black). (B): Opinion generated
from longitudinal velocity measurements: turn (purple), proceed
straight (orange), uncertainty (black). The vertical line in green
represents the moment in which the vehicle reaches the intersection
and proceeds straight.

FIGURE 4
Probability estimate produced by the two frameworks: right turn
(blue), proceed straight (orange), left turn (red), uncertainty (black). (A):
Combined opinion generated by the BFT-based algorithm. (B):
Probabilities estimated by the IMM. The vertical line in green
represents the moment in which the vehicle reaches the intersection
and proceeds straight.

FIGURE 5
Candidate behaviors of the pedestrian.
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the intelligent infrastructure on the side of the road or by sensors of
an automated vehicle on the street, moving from left to right, that
may potentially cross the path of the pedestrian. The three candidate
behaviors are: A) remain on the grass, B) move to the sidewalk, C)
jaywalk, see Figure 5. For this simulation, both the BFT-based
algorithm and the IMM collect measurements of the lateral
velocity, rather than of the lateral position. Furthermore, the bias
is set to ω � [bgrass, bsidewalk , bjaywalk , μ]⊤ � [0.36, 0.22, 0.1, 0.32]⊤, to
discourage the combined BFT opinion from getting to the
conclusion that the pedestrian is indeed attempting to cross the
road outside of the crosswalk, as normally is not the case.

The results of the estimation for the two frameworks are
presented in Figure 6A and Figure 6B, respectively. Despite being
discouraged by the bias opinion, the BFT algorithm quickly
recognizes that the pedestrian wants to jaywalk. The two sensor-
based opinions generate coherent estimates, thus the uncertainty of
the combination is mainly due to partially contradicting
measurements, because of the noise, and due to conflicts with the
bias opinion. The latter, however, has a large uncertainty, being
based on statistics. Therefore, the conflict handling mechanism
introduced in Section 4.1 does not severely affect the estimation
and the uncertainty of the combined estimate is considerably smaller
than in the previous simulation. Finally, the IMM also promptly
recognizes that the pedestrian will jaywalk. However, due to the lack
of the uncertainty component in the estimate, model mismatches
and noisy measurements result in considerably large fluctuations in
the estimated probabilities, requiring post-processing of the estimate
to smooth the results.

Observe that in practice the pedestrian might cross the road at
different locations. To account for this, further candidate trajectories
could be included, each considering a different crossing location.

Furthermore, once the most likely nominal crossing location has
been recognized, an ad hoc model could be fit, so that the exact
crossing location over a continuous range can be identified, instead
of relying only on a few nominal candidate locations.

5.3 Belief function theory-based safety
constraints

In this section, we briefly discuss how the estimate produced
by this algorithm can be applied to the design of collision
avoidance safety constraints. In Benciolini et al. (2023), we
have proposed an algorithm to iteratively estimate the
probability of several candidate trajectories of TPs using the
IMM algorithm. Then, probabilistic safety constraints are
designed in a Stochastic Model Predictive Control fashion, that
is, requiring collisions to be avoided at least with a specified
probability. For each candidate trajectory, the specified level of
probability for constraint satisfaction is directly computed from
the estimated probability for that specific trajectory. Thus, only
those future TP trajectories currently considered sufficiently
likely are taken into consideration in the planning of the
future motion of the automated vehicle. In doing so, we
refrain from excessive conservatism that would occur if all
candidate future trajectories of TPs were considered at all
times. Nevertheless, none of the candidate future trajectories is
permanently excluded and each candidate might be considered in
future sampling times if the estimate of the TP behavior changed.

In such a framework, the probability estimates for each
candidate behavior play a major role. On the one hand,
probability estimates must be adapted iteratively depending
on the most recently collected data. On the other hand, too
sudden and repetitive variations in the estimated probabilities
make the safety constraints for the automated vehicle
inconsistent among consecutive steps, causing problems in
the motion planning for the automated vehicle. Therefore, the
probability estimates provided by the algorithm presented in this
paper are well-suited, since inconsistencies between estimates
are dealt with using the concept of uncertainty and the final
estimates are more steady over time. Moreover, the uncertainty
parameter might be used to enforce additional safety constraints
for the automated vehicle, designed to prevent aggressive
maneuvers from being taken if the motion of the TPs is not
clearly recognizable yet.

Differently, with minor adaptations of the presented algorithm,
the quantification of the probability of unions of candidate
trajectories could be maintained also in the final opinion
provided by the algorithm, that is, after the temporal propagation
outlined in Section 4.2. Then, the additional information might be
used to enforce additional safety constraints for the automated
vehicle, designed to prevent aggressive maneuvers from being
taken if the motion of the TPs is not clearly recognizable yet.
Similarly, since the uncertainty expresses the reliability of the
estimation, some of the constraints related to currently unlikely
future trajectories could be tightened depending on the estimated
uncertainty, in order not to exclude possible future trajectories that
currently seem unlikely due to insufficient information. The
discussion on the design of safety constraints based on BFT is

FIGURE 6
Probability estimate produced by the two frameworks: grass
(red), sidewalk (orange), jaywalking (blue), uncertainty (black). (A):
Combined opinion generated by the BFT-based algorithm. (B):
Probabilities estimated by the IMM. The vertical line in green
represents the moment in which the pedestrian starts moving toward
the road.
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worth a separate discussion, which we will address in a separate
publication.

6 Conclusion

We presented a novel information fusion algorithm to combine
information resulting from multiple sources in a coherent and
steady estimation of the behavior of TPs. By leveraging BFT, an
explicit quantification of the uncertainty of the estimates is provided,
representing the reliability of the information. At first, opinions
provided by independent sources during the last time step are
combined, evaluating and handling possible conflicts. Then, the
information is propagated over time, giving steadiness to the
estimate, which is suitable to be used as a basis for a motion
planning algorithm. Sources that cannot discern between all
considered individual behaviors, but rather assess the probability
of unions of singletons can also be included. We discussed the
advantages through numerical simulations in SUMO and compared
the performances with the IMM algorithm.

The proposed algorithm allows great flexibility and is well suited
to combining information from possibly inconsistent sources. When
the different sources provide individual estimates of the intended
behavior of TPs that do not match, the degree of conflict is evaluated
and part of the belief mass is transferred to the uncertainty
parameter. Other estimation mechanisms that do not address
possible contradictions among the information provided by
different sources, like the IMM, tend to produce inconsistent
results over consecutive sampling times, making the overall
combined estimate unreliable and therefore unfit for practical
application. Furthermore, by propagating the estimation over
time, sudden variations in the estimate probabilities are
attenuated. This aspect is especially important when human TPs
are considered, as sudden contradictory movements for a short time
are often encountered due to distraction. The temporal propagation
results in an estimate which is less sensitive to sudden but short
changes in the motion and which is steadier over time. Nevertheless,
if changes in the motion of TPs persist for a longer time, eventually
the estimate will reflect them, as desirable. Finally, the estimate
provided by our algorithm incorporates a quantitative, though
subjective, measure of the reliability of the information
contained, whichmotion planning algorithms can take advantage of.

In future extensions of the approach presented in this work, the
temporal correlation between the opinions generated by sources
over time and the impact on the combined estimate should be

investigated, as this aspect is not accounted for in the present
formulation.
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Appendix: Proof of theorem 1

Proof.We show that �μ≤ μB, likewise it is obtained that �μ≤ μA. Since
bB1 , . . . , b

B
M ≥ 0 and ∑M

i�1b
B
i ≤ 1, it holds that

∑
j∩h( )⊄I

bAj b
B
h � ∑M

j�1
bAj ∑M

h�1
j∩h( )⊄I

bBh (10)

≤ ∑M
j�1

bAj ∑M
h�1

bBh ≤ ∑M
j�1

bAj . (11)

Then, since from (2) μA � 1 −∑M
j�1b

A
j , (6b) yields

�μ � μAμB

1 − ∑
j∩h( )⊄I

bAj b
B
h

(12)

�
1 − ∑M

j�1
bAj

1 − ∑
j∩h( )⊄I

bAj b
B
h

μB ≤ μB, (13)

that is, the uncertainty of the combined opinion is upper bounded by
the uncertainty of each individual opinion.

Frontiers in Future Transportation frontiersin.org11

Benciolini et al. 10.3389/ffutr.2023.1216527

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2023.1216527

	Information fusion for online estimation of the behavior of traffic participants using belief function theory
	1 Introduction
	2 Overview of the approach
	3 Opinions
	3.1 Example of opinion generation

	4 Combination of opinions
	4.1 Combination of multiple sources
	4.2 Temporal propagation

	5 Simulation results
	5.1 Uncertain behavior of a vehicle
	5.2 Clear behavior of a pedestrian
	5.3 Belief function theory-based safety constraints

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References
	Appendix: Proof of theorem 1


