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Electric micromobility, both as a private option and as a shared service, can
represent an alternative to cars, particularly for given user groups (market
segments) and specific classes of travel distance. The paper explores the
potential for shifting from cars to electric micromobility (specifically, e-bikes
and e-scooters) for commuting trips, investigated through floating car data (FCD).
The methodology combines the calibration of random utility models (RUMs) and
the subsequent simulation through the adoption of FCD spanning the entire city
of Rome (Italy). The data used for the calibration of RUM models have been
sourced from an online revealed preferences and stated preferences survey
carried out between November 2020 and January 2021. Socioeconomic
factors, along with transport features (travel time, access time, monetary
costs, and perceived safety levels), enter into the definition of the mode
choice probability. The first results showed that in Rome, the potential
demand for electric micromobility could range between 14% of the FCD
sample in the best case (low cost, high accessibility, and road infrastructures
with a high perceived level of safety) and about 2% in the worst case (high cost,
low accessibility, and a low perceived level of safety).
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1 Introduction

In recent years, sustainable mobility options have become widespread in cities, driven
by both national and international mobility policies and heightened user awareness. For
example, the European Commission recently presented its “Sustainable and Smart Mobility
Strategy,” consisting of 82 initiatives across 10 flagships (i.e., key areas for action) that
should guide the evolution of mobility within Europe for the next years. The aim is to cut
90% of pollutant emissions by 2050 as well as to have more smart, competitive, safe,
accessible, and affordable transport (European Commission, 2019). In this context, several
directives and policies about urban mobility have encouraged the potential shift to electric
and active mobility and the development of a sustainable approach to multimodality (Eltis,
2019; Gössling, 2020).
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Then, to enhance the quality of life, city planners must devise,
support, and implement measures that satisfy the mobility needs of
people and enterprises within cities and surrounding areas.
Promoting public transport is one strategy that can be used to
mitigate the reliance on cars and favour more environmentally
friendly modes of transport in urban areas. Public transportation
should be the cornerstone of sustainable urban mobility, and the
only way to achieve this is through the integration of services into a
multimodal network, encouraging interchanges between different
transportation modes (Russo and Rindone, 2023). In this context,
micromobility can play a key role in facilitating the modal shift,
especially in urban contexts, where it could be integrated into a
broader mobility platform to balance “the right to access and
mobility on the one hand, and the right to clean air and living
quality on the other hand” (Musolino et al., 2022; Cirianni
et al., 2023).

At the same time, the recent impacts of the COVID-19
pandemic highlight the need for an increasing number of
individual mobility options. As shown by some studies (Paydar
and Kamani Fard, 2021; Cirianni et al., 2022), several cities
worldwide have expanded their cycling/walking infrastructures to
increase their resilience in the face of the COVID-19 pandemic.
Additionally, travel behaviours have been significantly influenced by
the perceived risk of infection, leading to a shift in demand towards
active mobility and micromobility. Therefore, in this fast-evolving
transport environment, micromobility can be seen as a potential
solution tomoving people more efficiently around cities, particularly
when replacing trips made in private cars. Electric micromobility
(e-micromobility), characterized by electric micro-vehicles that are
small in size and reach moderate speeds, may thus help in covering
both short single-mode trips and longer trips, when combined with
public transport (i.e., as a multimodality option), contributing to
alleviating car use (Abduljabbar et al., 2021).

Due to the heterogeneity of electric micro-vehicles (Sandt,
2019), for the purposes of this study, a micromobility device is
defined as a light motorized vehicle used for transporting people
and goods, not subject to type-approval for on-road use, in
accordance with the definition provided by Holve et al. (2020).
Given the high diffusion of e-bikes and e-scooters, especially in the
European Union and Italy (Nigro et al., 2022; Comi and Polimeni,
2024), only these last two electric micro-vehicles have been
considered in this study.

In this context, understanding the potential demand and the
factors and features defining the choice of electric micro-vehicles is
essential to evaluate the effectiveness of sustainable mobility policies
as well as the strategies of the involved operators (sharing
e-micromobility operators, transport agencies, and energy
providers). In fact, the e-micromobility challenge lies in finding
the right equilibrium that meets the needs of cities and citizens while
ensuring that the interests of service providers can be respected.

Therefore, the aim of this paper is to assess the potential shift
from cars to e-micromobility, applying the proposed methodology
to commuting trips in Rome, Italy. The approach combines the
simulation of commuting car trips performed through floating car
data (FCD) for characterizing the car trips and the traditional
discrete choice modelling for the identification of the potential
shift of each car trip. FCD are obtained from vehicle tracking
and are currently provided by owners (or administrators) of

vehicle fleets, such as taxi fleets, private vehicle tracks, or ride-
hailing services (Neun et al., 2023). According to Nigro et al. (2022),
FCD covering the entire city of Rome are assumed to be a
representative sample of private mobility, at least in terms of
travelled distances and times.

Preliminary results of the potential shift from private transport
to e-micromobility have been developed to investigate urban freight
delivery. In particular, the potential for crowdshippers to use
micromobility devices has been investigated through
probabilistic-behavioural models. The reader can refer to
Castiglione et al. (2022) for more details. This article, moving
from such first results, proposes further models that allow us to
consider further types of micromobility devices calibrated using
different techniques. The potential benefits of shifting commuting
trips from private cars to e-micromobility are assessed through the
developed models, which allow us to evaluate the stability of the
estimates and the benefits that can be obtained through the
e-micromobility shift.

The article is organized as follows: in Section 2, the state of the
art about e-micromobility is presented, while Section 3 outlines the
proposed methodology. This section begins with a presentation of
the survey and its results, followed by an explanation of how the
calibration database was organized. Additionally, it includes a
concise introduction to random utility models (RUMs) and
details the process of performing simulations using FCD. In
Section 4, the developed models are presented, along with the
estimated potential shift towards e-micromobility in Rome, Italy.
The paper concludes with Section 5, which discusses the conclusions
and potential future developments.

2 The state of the art

The number of scientific works on e-micromobility is growing
alongside their widespread adoption. While most studies focus on
e-bikes, literature about e-scooters is increasing rapidly.
E-micromobility is studied both as a solution for first- and last-
mile trips in the case of multimodal transport and as a single-mode
option for shorter journeys.

Distances and related travel times can greatly influence the
choice of e-micromobility. Scott Smith and Schwieterman (2018)
suggest that e-scooters are used as a single mode for trips up to 3 km;
beyond this distance, they can become an option for multimodal
transport. Porsche Consulting (2019) found that the travelled
distances by e-scooters were between 1 km and 4 km, and the
travelled distances by e-bikes were between 1.5 km and 9 km.
Chang et al. (2019) analysed shared e-scooter data from Austin,
Louisville, Minneapolis, and Washington D.C. in the United States,
stating that around 95% of users travelled up to 5 km. If we consider
that in the United States, about 60% of car trips are less than 10 km
(FHWA, 2017), while in Europe, 50% of trips by car are less than
5 km (UNECE, 2020), the potentiality of e-micromobility as a
substitute for a car, at least in terms of travelled distances,
becomes clear.

Surveys conducted by Baek et al. (2021) showed that travel time
is significantly important for last-mile trips using e-micromobility;
in Axhausen and Reck (2021), travel time is reported as the main
factor influencing the choice of shared e-micromobility.
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Additional factors to be considered for replacing short car trips
with e-micromobility include trip purpose, the complexity of trip
chains, the travel environment, the road infrastructure conditions,
the safety perception, and certain socioeconomic characteristics and
user attitudes. Fan and Harper (2022) estimated that approximately
18% of short car trips could be replaced by e-micromobility in
Seattle when considering commuter age, tour and trip purposes,
time of day, and weather limitations. McKenzie (2019), Jiao and Bai
(2020), and Christoforou et al. (2021) found that shared e-scooters
are used mainly for recreational purposes. Caspi et al. (2020)
observed that trips on shared e-scooters involved road
infrastructures whose characteristics are compatible with
micromobility.

Road infrastructures with low speeds, such as local or tertiary
roads, are perceived as more compatible with e-micromobility
(Portland Bureau of Transportation, 2019; Zhang et al., 2021).
Bike lanes and multi-use paths are indeed the most used by
e-scooter users (Zhang et al., 2021); moreover, sidewalks are
considered attractive for e-scooters, but these are usually off-
limits to ensure pedestrian safety (James et al., 2019).

Safety perception is one of the most deterrent features in the
choice of micromobility (Sanders et al., 2020; Bao and Lim, 2022).
Cubells et al. (2023) showed that e-micromobility route choices are
impacted by urban elements related to safety, accessibility, and
aesthetics, pointing out the importance of considering the
surrounding environment to ensure user safety. In this regard,
several studies confirmed that dedicated infrastructures (Greibe
and Buch, 2016; Park and Abdel-Aty, 2016; Hossein Sabbaghian
et al., 2023) that can be shared by both cyclists and e-scooter users, as
well as pavement conditions (López-Molina et al., 2023;
Mitropoulos et al., 2023) are key elements to micromobility
safety perception and, consequently, to e-micromobility adoption.
A tailored, suitable infrastructure that enables cyclists and
e-micromobility users to be separated from motorists is much
more likely to be chosen when compared to other safety
measures. However, the safety perception is not only related to
the interaction with motorists; Wang et al. (2023) highlight public
concerns regarding interactions between e-scooter riders and
pedestrians, further underscoring the need for adequate road
space and infrastructure to promote e-micromobility services
effectively.

Regarding socioeconomic factors, sharing e-micromobility users
are mostly young, male individuals, with high incomes and high
education levels (Axhausen and Reck, 2021; Christoforou et al.,
2021; Nikiforiadis et al., 2021). Non-functional factors such as
environmental concern, innovativeness, and a sense of belonging
associated with using that particular transport mode can be even
more important for users in choosing e-micromobility (Axhausen
and Reck, 2021; Bretones and Marques, 2022); additionally, lifestyle
and cultural norms may also impact mode substitution (Fukushige
et al., 2021).

According to the literature review presented above,
e-micromobility is seen as a potential solution to moving
people more efficiently around cities and replacing trips done
by cars. These new services are well received by users, as clearly
demonstrated by their large and rapid adoption. Consequently,
there is a growing need to investigate these new transport modes as
a competitive alternative to cars. In addition, given the desirability

of a forecasting tool for modal share to be used in city planning,
this article presents various mode choice models for estimating the
potential shift from cars to e-micromobility among commuters.
Indeed, exploration of mode substitution for commute trips is
explicitly required in the literature (Fukushige et al., 2021). The
opportunity offered by telematics is used here to infer commuters’
trips in a real case study (Rome, Italy) and assess the potential
mode shift, providing an operative tool for city planners to evaluate
the reduction in reliance on private car use and, thus, support the
modal shift.

3 The proposed methodology

The paper employs revealed preference (RP) and stated
preference (SP) surveys to investigate, through RUM models
applied to FCD, the potential for shifting from cars to
e-micromobility, in particular e-bikes and e-scooters, for
commuting (Home–Work and Home–School) trips. Different
scenarios are considered (e.g., individual e-micromobility vehicle
ownership or e-micromobility sharing service usage), with a focus
on Rome, Italy.

The general framework is designed to be used as a tool for
estimating the potential demand that can shift from private cars to
e-micromobility. In particular, it provides the shift potential to
e-bikes and e-scooters for commuting trips as an output. Its key
features include the use of RP and SP surveys to investigate user
behaviours and the use of GPS-based data (i.e., FCD) to identify and
characterize car trips. Home-based commuting trips by car are
highlighted as these types of trips do not usually entail significant
changes in travel attitudes and operations when shifting from
private cars to e-micromobility (unlike trip chains or multi-daily
activity travels).

Once the study area is defined, the procedure consists of the
following steps (Figure 1):

• Revealed and stated preference (RP and SP) surveys: allow us
to 1) reveal the current travel behaviours by users; 2) evaluate
user behaviour when users are faced with different possible
e-micromobility scenarios;

• RUM development: based on the RP and SP results, panel data
are set up, and RUMmodels are calibrated (i.e., coefficients of
the models and their statistical significance are estimated) and
validated (i.e., the capacity of the models in reproducing the
sample choices is assessed as well as their potentiality to be
applied to further scenarios);

• Floating car data (FCD): two sets of floating car data from the
study area for the years 2015 and 2019 are analysed to identify
and characterize commuting car trips;

• Shift potential: based on the characteristics of car trips derived
from FCD analysis and the developed RUM models, the
potential shift from cars to e-micromobility is estimated;

• Comparison and validation: we argue that if the main
attributes describing users’ mode choice behaviour have
remained consistent between 2015 and 2019, applying
RUM models to the two different FCD datasets should
yield similar results. This consistency allows the entire
methodological approach to be validated.
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3.1 Surveys

The first stage of the methodology is investigating user
travelling habits and mode choices. The survey design and
the selected attributes and levels used in the SP survey were
based on a comprehensive literature review related to travel
behaviour on e-micromobility (Guo and Zhang, 2021;
Nikiforiadis et al., 2021; Weikl and Mayer, 2023) and on
previous research experience and knowledge in this field
(Nigro et al., 2021; Comi et al., 2022; Nigro et al., 2022; Comi
et al., 2024). The following subsections describe the survey
design and present the main results obtained.

3.1.1 The survey design
The data used for developing the choice models were gathered

through the administration of a survey of about 300 inhabitants of
Rome between November 2020 and January 2021. The message of
the questionnaire emphasized the importance of collecting data on
commuting trips and mentioned that the respondents would be
introduced to the use of e-micromobility options for their
commuting trips. The survey was distributed via various
channels, including social media networks, instant messaging
apps, and email. Despite the potential impact on the response
rate as well as on the overall representativeness of the sample,
incentives were not offered to respondents due to budget

constraints and to overestimate younger people’s participation,
given that younger people are more sensitive to incentives. The
survey consists of four sections:

(i) A personal data section to collect data on age, gender, and
employment status. This section was used to select users
having personal characteristics that are compatible with the
study and to filter out those who do not engage in regular
Home–Work or Home–School commuting, such as retirees
or unemployed individuals. The remaining users were split
into three categories: Workers, Students, and
Working Students;

(ii) A sociodemographic data section to collect further data on
the users and their households, such as level of education,
place of residence, number of household members, and
drivers’ licence ownership;

(iii) A commuting trips data section to investigate trip destination
(workplaces or schools/universities), ownership and
availability of private vehicles (car, moped/motorbike,
bike/e-bike, and e-scooter), transport mode mainly used
to carry out the specific commuting trip, travel times,
parking availability, and public transport
subscription ownership;

(iv) Hypothetical e-micromobility scenarios to be evaluated
through SP scenarios;

FIGURE 1
Proposed methodology.
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(v) Potential e-bike or e-scooter ownership, considering
willingness to purchase the micro-vehicle, travel times,
and perceived road safety level;

(vi) Potential e-bike or e-scooter sharing service usage,
considering service costs, walking time to access the
shared micro-vehicle, and perceived road safety level.

3.1.2 Survey sample and data collected
The obtained survey data were cleaned and processed to identify

missing data or inconsistencies within the dataset. From the original
survey, 239 valid respondents were suitable for this study. Table 1
shows the sociodemographic characteristics of the user pool (data
gathered through the earlier described questionnaire Sections 1, 2).
It emerged that the sample has a higher share of younger people
comprising population segments that are affected by a higher
interest towards such a survey and segments with a potential to
be e-micromobility users (Axhausen and Reck, 2021; Christoforou
et al., 2021; Kwak and Radler, 2002). Such features were taken into
account in discrete choice model development, using adequate
weights for age strata.

Section 3 investigated regular Home–Work and Home–School
trip characteristics. The respondents were questioned about the
frequency (with the option to choose between always, often,

rarely, and never) of availability of different private vehicles: 64%
of respondents always had a car available to use, and 11% of
respondents always had either a moped or motorcycle available
to use (compared to the 72% of the entire population who always
had a car plus a moped/motorcycle available; RSM, 2020). As for
private micromobility vehicle availability, 34% of users always have a
bike available (compared to 29% of the entire population; RSM,
2020), and a further 41% of participants consider having a bike
often/rarely. The percentage of users who have a private e-scooter
available to use is much lower (6%), and the percentage of users who
never have an e-scooter available is 64%.

Then, users were questioned about the transport mode used
most of the time to carry out their regular trips to work or school.
The recorded results were vastly different between workers and
students, with the car being by far the most prevalent transport
mode among workers (76%). As for students, 43% choose the car as
their preferred mode of transport to reach their school/university,
whereas 48% use public transport (either subway, train, or bus).
Only 3% of workers and 2% of students picked bikes or e-scooters as
their transport mode of choice.

All respondents were asked about the average travel time to
reach their regular destination using their chosen mode of transport:
72% of respondents take less than 30 min to reach their destination
using either private cars (or motorcycles) or public transport, with
the majority taking between 16 min and 30 min on average; 92% of
respondents claimed that parking for private vehicles was available
at their destination, and most had free parking. Lastly, 27% of
respondents (47% of students) have either a monthly or annual
public transport subscription.

In the last section of the survey, the respondents were presented
with a series of questions assessing the perceived safety level when
travelling by an e-bike/e-scooter, maximum usage time, and
willingness to purchase an e-micro-vehicle that would allow the
users to consider using e-micromobility as a potential
transport mode.

In terms of safety concerns, the users were given several
scenarios with different infrastructural/traffic conditions and
were asked to pick the one in which they would be willing to
use an e-bike or an e-scooter. The presented scenarios investigating
safety concerns were inspired by the level of traffic stress (LTS),
which is an indicator that quantifies the stress experienced by
cyclists or pedestrians on segments of a road network (Furth et al.,
2016). Results showed that 44% of respondents were willing to use
an e-bike only if bike lanes fully separated from car traffic were
available, 21% only if bike lanes of any type, even not physically
separated from traffic, were available; 23% of users were willing to
use an e-bike even if bike lanes were not available but only on roads
with low levels of traffic, whereas 4% declared to be willing to use
an e-bike on roads with any traffic condition. Lastly, 8% of users
were not willing to use an e-bike in any of the conditions
mentioned above. For e-scooters, 39% would be willing to use
them on bike lanes physically separated from traffic, and 16%
would use them on any type of bike lane. Then, 10% of users were
willing to use e-scooters on low-traffic roads, and only 3% were
willing to use them on roads with any level of traffic. Compared to
e-bikes, a much higher percentage of users (32%) were not willing
to use an e-scooter in any of the safety conditions mentioned
above. This result confirms what can be found in the literature,

TABLE 1 Personal and sociodemographic data.

Sample (%)

Age

<18 4.0

18–24 18.0

25–34 30.0

35–44 13.0

45–54 24.0

55–65 9.0

>65 2.0

Total 100

Employment condition

Employed 45.6

Student 27.0

Working student 8.4

Retired 2.6

Homemaker 8.0

Unemployed 8.4

Total 100.0

Education level

None 0.5

Elem. school 0.6

Middle school 9.8

High school 39.9

BSc/MSc degree 41.5

Postgraduate 7.7

Total 100.0

Driver’s licence ownership

Yes 92.3

No 7.7

Total 100.0
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where e-scooter riders usually perceive a higher risk potential
(Useche et al., 2022).

In terms of willingness to purchase an e-micromobility vehicle,
11% of respondents claimed to be willing to purchase an electric
bike, and 41% would be willing to purchase an e-scooter. Lastly, the
maximum travel time that users would be willing to spend on an
e-micromobility vehicle was investigated: 74% of the respondents
were willing to ride an e-scooter for up to 30 min; respondents were
willing to ride an e-bike for a longer time (48% for more than
30 min, Figure 2).

Two additional factors were considered to investigate users’
willingness to use an e-micromobility sharing service: access
time and service costs (Guo and Zhans, 2021). The access time

impacts the service quality because shared e-scooters and e-bikes
are mostly accessed on foot (Ham et al., 2021). Thus,
guaranteeing the presence of e-vehicles within walking
distance is crucial for promoting modal shift. Indeed, most
users (87%) would only consider walking for up to 5 min to
reach a shared vehicle. Service cost is a common explanatory
variable in mode choice models and is one of the main barriers to
using e-micromobility services, especially for low-income users
(Rodriguez-Roman et al., 2022). The respondents were
presented with several fare options inspired by the
e-micromobility sharing services currently active in Rome
(Figure 3). These were presented as a function of travel time
(for 5 min trips, 15 min trips, and 30 min trips): 20%–22% of

FIGURE 2
Maximum usage time for e-bikes and e-scooters.

FIGURE 3
Cumulative trend of adopting e-micromobility shared services as a function of service cost and travel time.
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respondents were not willing to use an e-bike sharing service
given the presented costs (22% for 5 min trips and 20% for 15-
min and 30-min trips), whereas 34%–38% of respondents were
not willing to use an e-scooter sharing service (35% for 5-min
trips, 34% for 15-min trips, and 38% for 30-min trips). However,
of the users who showed interest in using an e-micromobility
sharing service, the majority selected the lowest cost presented in
the survey (boxes in Figure 3).

3.2 RUM development

According to the data collected, the RUMs were developed, as
summarized in the following subsections.

3.2.1 Model building and set up of the panel data
The procedures implemented for developing the RUMs are

described below. The models aim to investigate the potential
usage of e-bikes and e-scooters. Specifically, the main objective
was to develop a model capable of evaluating the potential choice
among the following three alternatives:

• use their own e-micro-vehicle, that is, the user is interested in
buying their own e-micro-vehicle;

• use an e-micromobility sharing service, that is, the user is
interested in using shared services;

• keep using the current transport mode (not-alternative), that
is, the user is not interested in using e-micromobility (whether
owned or shared), preferring to travel as usual.

As depicted in Figure 4, when choosing an e-micro-vehicle, the
two alternatives of e-scooter and e-bike are assessed, with each of
them considering its possible adoption or not.

The decision structure results in a complex nested structure. To
simplify the process, we decided to follow a sequential approach in
building the models, moving from the bottom of the decision tree to

the upper level. As a consequence, we started from the following
simple binomial logit:

1. adopting an owned e-bike/not adopting (i.e., keep using the
current transport mode),

2. adopting an owned e-scooter/not adopting (i.e., keep using the
current transport mode),

3. adopting e-bike sharing service/not adopting (i.e., keep using
the current transport mode),

4. adopting e-scooter sharing service/not adopting (i.e., keep
using the current transport mode).

Finally, we progressed to a trinomial model evaluating the
following choices:

1. acquiring an owned micro-vehicle,
2. using an e-micromobility sharing service,
3. continuing with the current transport mode.

Following the approach of Fukushige et al. (2021), we identified
travel time as a basic trip attribute in studying mode substitution for
commuting trips. However, because travel times using
e-micromobility were not collected during the survey, this
information has been simulated as the ratio between the origin-
destination distance and the average e-micromobility vehicle speed.
We assumed average speeds of 20 km/h for e-bikes and 10 km/h for
e-scooters based on literature and experimental values provided by
the e-scooter sharing service Dott in Rome (Nigro et al., 2022).
However, travel times and other network features can be derived
from FCD, as shown in the literature (Alonso et al., 2023). The
sharing service options are considered unavailable to the users if
their travel times are either less than 5 min or more than 30 min.
This criterion is based on the assumption that for trips with travel
times lower than 5 min, the user would prefer walking, whereas, for
trips with a travel time longer than 30 min, the service would be too
taxing and expensive for the user.

FIGURE 4
Decision tree for choosing an electric micromobility option.
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Just like e-micromobility travel times, certain other features or
behaviours were not explicitly requested from users. Therefore, these
have been appropriately simulated and processed in order to be
included in the calibration process. For instance, considering the
simulated e-micromobility travel times and the costs that users were
willing to accept for commuting with a shared micro-vehicle,
potential pricing options were computed by giving the users two
scenarios to choose from. In the first scenario, the trip cost is
calculated by increasing the current price by the standard
deviation of the proposed costs, whereas in the second scenario,
the price of the trip is decreased by the same amount.

Two scenarios were also presented for access time, which refers
to the duration users are willing to walk to reach a particular shared
e-micro-vehicle. In the first, the users are presented with an access
time that has been halved from the declared expected time, whereas
in the second, we presented them with an access time increased by
half of the expected access time declared.

Regarding safety concerns, similar to the level of traffic stress
(LTS) classification by Furth, Mekuria and Nixon (2016),
e-micromobility safety is assessed using a Likert scale ranging
between 0 and 4, where 0 represents the user’s willingness to use
an e-micromobility vehicle in any road safety condition, 3 represents
a user’s willingness to use an e-micromobility vehicle only on bike
lanes physically separated from traffic, and, lastly, 4 denotes a user
who would never use an e-micromobility vehicle regardless of
infrastructural conditions. In scenarios where the perceived safety
is extremely low, the vehicle is not considered to be an available
choice for the user.

Some features were defined as binary or ordinal variables to
simplify the segmentation of the market. These include
the following:

• gender, as a binary attribute (1 if female, 0 otherwise);
• age, as an ordinal variable with six classes (18–24, 25–34,
35–44, 45–54, 55–65, >65);

• age_bis, as a binary attribute (1 if age ≤34 years, 0 otherwise);
• level of education, as an ordinal variable (ranging from 0 if the
user has no education to 5 if the user has a
postgraduate degree).

Micromobility vehicle ownership, along with the user’s
propensity to eventually purchase a micro-vehicle, are both
factored into the ownership-based models. This means that if a
user neither owns an e-micromobility vehicle nor intends to buy
one, then the ownership-based alternative is not available to them,
and they are excluded from the sample for the ownership-
based models.

The users’ choices are then determined by comparing the
information they declared with the hypothetical scenarios
presented. For example:

• if the travel time with an e-micro-vehicle does not exceed the
user’s maximum acceptable travel time, and the perceived
infrastructural safety of the proposed scenario is at least equal
to the user’s minimum requirement, then owning an e-micro-
vehicle is considered to be a feasible option;

• in addition to the conditions mentioned above, if the time
needed to access a sharing e-micromobility service does not

surpass the maximum duration the user is willing to walk to
reach it, and the cost of the service presented in the given
scenario is within the user’s acceptable range for their specific
commuting trip, then the shared service is considered to be a
viable option.

3.2.2 Model specification, calibration, and
validation

Multinomial logit models belong to the family of random utility
models (Train, 2002). The basic hypothesis is that the user (decision
maker) i assigns to each alternative j in their choice set a perceived
utility or “attractiveness” Uj

i and selects the alternative that
maximizes this utility. The perceived utility U for each option j
for user i can be assumed to be the sum of two terms: a systematic
utility V and a random error ε (Eq. 1):

Uj
i � Vj

i + εji . (1)

The logit model assumes that the random elements εj are
distributed independently and identically with a Gumbel distribution
with a scale parameter ϑ. This hypothesis allows the computation of the
probability of choice p with a closed form (Eq. 2):

pj
i � e

Vj
i/ϑ

∑j′ e
Vj′
i /ϑ . (2)

The systematic utility part V is the mean perceived utility among
all individuals who have the same characteristics. It is expressed as a
function of explanatory variables (attributes Xj

i,k) relative to the
alternatives j and the decision maker (user) i. Although the function
V may be of any type, it is usually assumed, for analytical and
statistical convenience, that the systematic utility is a linear
combination of explanatory variables Xj

i,k (or their functional
transformation), where the weights in the linear combination are
the βk coefficients. A dummy variable is usually included in the
systematic utility of the generic alternative j; its value is 1 for
alternative j and 0 for the others. This variable is usually denoted
as the alternative specific attribute (ASA) or “modal preference”
attribute, and its coefficient is known as the alternative specific
constant (ASC) (Eq. 3).

Vj
i � ∑

k

βkpX
j
i,k

⎛⎝ ⎞⎠ + ASCjpASAj. (3)

In all binomial logit models, which represent the lower level of
the decision tree in Figure 4, the systematic utility V of not adopting
e-micromobility (both owned and shared) is set as the reference
alternative and is, therefore, set equal to 0. The main attribute
considered in all the other systematic utility functions is the travel
time, while additional attributes were sequentially added or
removed, and their statistical significance was tested.

For thoroughness, attitudes such as individual needs, values,
tastes, and capabilities (Eccarius and Lu, 2020; Nikiforiadis et al.,
2021) are indirectly captured in the proposed model through
socioeconomic characteristics or by alternative specific constants
due to possible difficulties in their definition.

The estimation of the coefficients occurs through the
maximization of the natural logarithm of the likelihood function,

Frontiers in Future Transportation frontiersin.org08

Nigro et al. 10.3389/ffutr.2024.1391100

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2024.1391100


formed by the sum of the natural logarithm of the probability of the
chosen alternative (j′) of each user i (Eq. 4):

ln L β, ϑ( ) � ∑
i

lnpj′
i Vj′

i Xj′
i,k, βk( ), ϑ[ ]. (4)

Beyond the “standard” logit model, a variant has also been
investigated: the penalized logit (also called weighted logit; Bierlaire,
2018; Train, 2002; Cascetta, 2009). In this model, a number of
market segments are defined based on either the socioeconomic
characteristics of the users or the transport mode chosen to carry out
the trip. The weight w assigned to the user segment g can either
increase or decrease the significance of that segment’s probability
within the maximization of the log-likelihood function, as can be
observed in Eq. 5:

ln L β, ϑ( ) � ∑
g

wgp∑
i∈g

lnpj′
i Vj′

i Xj′
i,k, βk( ), ϑ[ ]. (5)

Thus, the penalized logit can be beneficial when a segment of
users is disproportionately represented in the sample. In our study,
this occurs with users opting for shared e-micromobility services.
Once the models have been specified and calibrated, the
reasonableness and significance of the estimated coefficients are
verified. Additionally, the model’s capacity to replicate the choices
made by the sample of users is evaluated. The assumptions
underlying the model’s functional form are also tested.

In particular, preliminary (or informal) tests refer to the
expectations regarding the signs of the estimated coefficients and
the relationships between their values. Subsequently, the asymptotic
properties of maximum likelihood estimates are exploited to test
different assumptions on the estimated parameters (formal tests).
The null hypothesis that the true value of a coefficient is equal to zero
and its estimate differs from zero due to sampling errors has been
checked through the t-test and the p-value tests. The model’s ability
to reproduce the choices made by the sample of users has been
measured by using the rho-square statistic ρ2. Another informal
statistic has been used: the %-of-right. This statistic relates to the
percentage of observations in the sample for which the chosen
alternative is the one with the maximum probability as predicted by
the model. Other synthetic statistics used are the choice percentage
observed and predicted by the model for each alternative. The
former is given by the ratio between the number of users
choosing each alternative and the total number of users to whom
it is available (i.e., market share). The latter is obtained as the average
of choice probabilities given by the model for the users to whom the
alternative is available (i.e., simulated probabilities; Cascetta, 2009).

3.3 Floating car data and shift potential

The article focuses on integrating new data sources, such as
FCD, with traditional behavioural-based RUM models. FCD are
recorded from probe vehicles that are equipped with a device, the
on-board unit (OBU), that tracks the vehicle position and collects
information at high spatial coverage. The OBU records the
sequences of location points during the trips, in addition to the
start and stop points, thus storing all the characteristics of the
vehicle’s path. The recording frequency of the vehicle’s position is

currently set as follows (Liberto et al., 2018): 1) every 30 s when the
vehicle is located along the motorway network or some main roads
in metropolitan areas; 2) every 2 km on the remaining roads.

In this paper, the calibrated models have been applied to an FCD
dataset, referred to as the 2015 Floating Car Dataset, that spans the
entire metropolitan area of Rome to evaluate the potential
e-micromobility demand within the city. The dataset refers to
243,784 monthly monitored vehicles, with more than 300 million
trips recorded and a 7% penetration rate (Nigro et al., 2022). The
FCD were collected in November 2015 and have been analysed to
filter out potential errors, that is, by eliminating trips whose travel
times and distances are inexplicably long (or short) considered the
study area. A trip concatenating process is also conducted to filter
out brief stops (less than 10 min long) in order to avoid errors due to
loss of GPS signal or functionality issues of the engine.

The residence location procedure of Nigro et al. (2021) was
implemented to determine whether the start/end point of each probe
vehicle’s trip is the home. This approach utilizes GIS tools for spatial
analysis and employs clustering techniques based on the number
and duration of overnight stops. The filtered-out, refined database
consists of 9,148,710 records, of which 43.45% are home-based and
occurred on weekdays.

Another floating car database, focussing on the municipality of
Rome and collected in October 2019, was utilized for validation
purposes. The number of trips is around three million, involving
43,270 vehicles. The same filtering criteria applied to the 2015 Floating
Car Dataset were used here, enabling a comparative analysis between
the two datasets. The final 2019 Floating Car Dataset consists of
808,370 records, of which 44.20% are home-based trips on weekdays.
Both the 2015 and 2019 datasets have been previously used in other
studies (Nigro et al., 2021; Nigro et al., 2022).

Given our interest in the potential modal shift towards
e-micromobility options for commuting trips, we focused solely
on weekday trips classified as home-based in the FCD, as these have
the highest likelihood of being commuting trips. For each record and
for each possible scenario presented to the users beforehand, the
utility of the considered alternatives, as well as the choice
probabilities, are computed. Then, for each alternative, all the
computed probabilities are averaged over the total number of
FCD records to obtain the average choice probability. These
average choice probabilities give the proportion of potential
demand in the Floating Car Dataset.

Some model attributes are not detected by the OBU, so they must
be computed and hypothesized through several scenarios for each
record of the dataset. The travel time by micro-vehicle is computed
knowing the trip length and assuming, as introduced above, average
speeds of 20 km/h for e-bikes and 10 km/h for e-scooters. The cost of
the sharing service is assumed to be a function of the resulting micro-
vehicle travel time and the different fees adopted by the sharing
companies in Rome, considering, in particular, the cheapest, the most
expensive, and the average fee. Infrastructural safety level and access
time are unrelated to the Floating Car Datasets; therefore, they are
defined according to different scenarios.

The collected data show that 4% and 32% of respondents are not
willing to use an e-bike or an e-scooter, respectively, regardless of the
safety conditions presented. However, 28% of users stated their
willingness to purchase a micro-vehicle (24% said they would buy
an e-bike, and 32% said they would buy an e-scooter). It is apparent that
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the willingness to use amicro-vehicle and the willingness to buy, despite
safety concerns, are intertwined. Given the collected observations, we
argue that users who are not willing to use a micro-vehicle in any safety
condition are also not willing to purchase it. Therefore, The willingness
to purchase a vehicle is implicitly included by considering the
alternative to be available only for 28% of records.

The willingness to purchase a micro-vehicle is irrelevant in
models that inquire about user interest in sharing service use; thus,
only the willingness to use the vehicle despite safety concerns is
considered, and the availability of the micromobility alternative is
adjusted based on the percentage of the sample that is not willing to
use the micro-vehicle under any safety circumstance.

For clarity, a step-by-step description of the simulation
methodology is presented:

1. for each home-based trip in the FCD dataset, the independent
variables are extracted;

2. for sharing models, a travel time constraint is considered for
each trip (i.e., when travel time is either lower than 5 min or
higher than 30 min, there is no chance for the sharing option to
be chosen);

3. for each trip and for each scenario, the probability for each
alternative is computed. The average probability for each
scenario is then obtained;

4. for ownership models, the availability of the alternative is
adjusted by taking into account the percentage of users who
are willing to purchase the vehicle (28% on average);

5. for sharing models, the availability of the alternative is adjusted
by taking into account the percentage of users who are not
willing to use the micro-vehicle under any safety circumstance;

6. the results of the simulation are validated using a different
FCD dataset.

4 Modelling results and discussion

4.1 Calibration results

The calibrated RUMs are presented in this section. The models
are structured to address different levels of the decision tree. For the
lower level of the decision tree, we have calibrated the following
binomial logit models:

• model 1—adopt an owned e-bike vs. not adopt (i.e., keep using
the current transport mode);

• model 2—adopt an owned e-scooter vs. not adopt (i.e., keep
using the current transport mode);

• model 3 (penalised logit)—adopt e-bike sharing service vs. not
adopt (i.e., keep using the current transport mode);

• model 4 (penalised logit)—adopt e-scooter sharing service vs.
not adopt (i.e., keep using the current transport mode);

At the upper level of the decision tree, we have developed a trinomial
penalised logit model. This model evaluates the choice of owning a
micro-vehicle, using an e-micromobility sharing service, and sticking
with the current transport mode. All these models were calibrated using
Biogeme, an open-source software application designed for the
estimation of discrete choice models, as in Bierlaire (2023).

4.2 Model 1—adopt owned e-bike

The expression of the systematic utility V related to the
calibrated model is based on Eq. 6. The features and factors
considered by the model are the travel times by e-bike, the
dummy variable age_bis (as described in Section 3.2), and the
infrastructural safety level.

Multiple observations were obtained from each respondent;
specifically, four infrastructural safety level scenarios are defined,
thus obtaining 956 total observations and 740 cases (i.e., the total
number of observations minus the not-available ones; Table 2). The
systemic utility to choose the alternative “adopt e-bike” was
expressed as follows:

Vadopt owned e−bike � βtimetravel time ebike

+ βsafetyinfrastructural safety level

+ βagebisagebis + ASC. (6)

The calibrated coefficients and the model evaluation tests are
highlighted in Table 2. As expected, the probability of using e-bikes
decreases if travel time increases; that is, the user prefers to continue
to travel as usual. For increasing infrastructural safety levels, there is
a higher propensity to switch to e-bikes (positive sign of the
coefficient β). A negative coefficient for age_bis means that
owned e-bikes are mostly chosen by users with age >34 years:
older people may be better able to afford an e-bike and also have
less energy to use an e-scooter. Older people could also be more
familiar with bikes (and, thus, with e-bikes) than e-scooters.

4.3 Model 2—adopt owned e-scooter

The systemic utility to choose the alternative “adopt owned
e-scooter” is expressed as follows:

Vadopt owned e−scooter � βtimetravel time escooter

+ βsafetyinfrastructural safety level

+ βageage + ASC. (7)

As in model 1, features and factors influencing the choice
probability are travel times, infrastructural safety level, and age.
However, age is adopted as an ordinal variable with six classes, and,
as reported in Table 3, its negative coefficient β means that young
users are more inclined to adopt e-scooters. This result replicates
the findings of the scientific literature as reported in Axhausen and
Reck (2021) and Christoforou et al. (2021). As in the previous
model, four infrastructural safety level scenarios are defined, thus
obtaining 956 total observations (Table 3). In Table 3, the
coefficients obtained from the calibration and the model
evaluation are shown.

4.4 Model 3 (penalized logit)—adopt the
e-bike sharing service

Penalized logit models have been adopted to evaluate the
sharing e-micromobility services. In both cases (e.g., shared
e-bikes and shared e-scooters), a weight higher than one has
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been assigned to the group of users choosing the shared service
because this is the most unbalanced choosing set (only 8.84% of the
records in the panel data are potentially interested in shifting to
shared e-bikes, and only 6.88% are interested in shifting to
shared e-scooters).

Correctly setting the weight wg of Eq. 5 is fundamental: if we
increase the weight too much, it can over-increase the probability of
choosing a shared e-bike with respect to the sample probability and
also reduce the statistical significance of some parameters. To this
aim, we performed a sensitivity analysis for different wg values: a
value equal to 1.80 represents a good compromise between the
accuracy in replicating the two choosing options and the statistical
significance of the model parameters.

Compared to the previous factors in the sharing services-based
models, two additional factors are included in the systematic utility:
the cost of the service and the time to access the e-micro-vehicle.
Then, the systemic utility to choose the alternative “adopt the e-bike
sharing service” was expressed as follows:

Vadopt shared e−bike � βtimetravel time ebike

+ βsafetyinfrastructural safety level

+ βaccessaccess time + βcostcost. (8)

The ASC has been omitted in the final model, given that its
estimated value was found to be significantly close to zero. Here, four
infrastructural safety level scenarios, two service cost scenarios, and
two access time scenarios generated 3,792 total
observations (Table 4).

4.5 Model 4 (penalised logit)—adopt the
e-scooter sharing service

A penalised model was also calibrated for the e-scooter sharing
service, where a weight higher than one has been assigned to the
group of users choosing the shared e-scooter service. Specifically, the
value wg for the penalised log-likelihood function in Eq. 5 has been
set equal to 2.40.

As in the previous model, four infrastructural safety level
scenarios, two service cost scenarios, and two access time
scenarios generated 3,792 total observations (Table 5).
However, e-scooter sharing is considered to be not available to
the users if their travel times are either less than 5 min or longer
than 30 min. Moreover, 32% of the sample were not willing to use
an e-scooter under any conditions. These factors generated a
strong reduction in terms of the number of available cases for

TABLE 2 Adoption of owned e-bike.

Market share

Adopt owned e-bike 22.43%

Not adopt 77.57%

Attributes Coefficients (β) Standard Deviation t-test p-value

Travel time e-bike [min] −0.053 0.006 −9.10 0.00

Infrastructural safety level 1.196 0.123 9.75 0.00

Age_bis −1.106 0.229 −4.82 0.00

ASC −0.861 0.277 −3.11 0.00

Model fit statistics

Number of respondents 239

Total observations 956

Number of cases 740

Null log-likelihood −512.93

Final log-likelihood −255.72

Likelihood ratio test 514.41

Rho-square 0.501

Adjusted rho-square 0.494

Rho-square at constants only 0.232

Simulation test

%-of-right 85.13%

Simulated probabilities

Adopt owned e-bike 22.43%

Not adopt 77.57%
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calibration. In this penalized model, the travel time was not found
statistically significant because travel times and cost of the
e-scooter sharing service were found to be highly correlated
(Pearson coefficient R equal to 0.81). Then, the systemic
utility of choosing the alternative “adopt the e-scooter sharing
service” was expressed as follows:

Vadopt shared e−scooter � βsafety p infrastructural safety level

+ βaccess p access time + βcost p cost. (9)

4.6 Model 5—trinomial penalized logit

All three alternatives contain the respective travel times
(alternatives 1 and 2 by an electric micro-vehicle, that is, e-bike
plus e-scooter; alternative 3 by the current transport mode).
E-micromobility-based alternatives (1 and 2) also consider the
infrastructural safety level, with alternative 2 (the shared one)
considering the cost of the service and the access time. In the
final model specification, only the estimated ASC corresponding

to alternative 3 was found to be significantly different from zero and
was, therefore, included.

A weight higher than one has been assigned to the group of users
choosing the shared e-micromobility. Specifically, the value wg for the
penalized log-likelihood function in Eq. 5 has been set equal to 1.80.

The total observations increased with respect to the other
calibration set due to the need to join both scenarios related to
shared e-scooters and shared e-bikes and the possibility of shifting or
not to an owned e-micro-vehicle. Then, the systemic utilities to
choose the three identified alternatives were expressed as follows:

V1 owned e-micro( ) � βtime time travel e-micro-vehicle

+ βsafety infrastructural safety level

V2 shared e-micro( ) � βtime travel time e-micro-vehicle

+ βsafety infrastructural safety level
+ βaccess access time + βcost cost (10)

V3 currentmode( ) � βtime travel time currentmode + ASC.

The calibrated coefficients and an evaluation of the model that
shows a high level of prediction accuracy are shown in Table 6.

TABLE 3 Adoption of owned e-scooter.

Market share

Adopt owned e-scooter 10.86%

Not adopt 89.14%

Attribute Coefficient (β) Standard Deviation t-test p-value

Travel time e-scooter [min] −0.070 0.010 −6.91 0.00

Infrastructural safety level 1.245 0.225 5.54 0.00

Age −1.25 0.220 −5.96 0.00

ASC 1.826 0.703 2.60 0.01

Model fit statistics

Number of respondents 239

Total observations 956

Number of cases 488

Null log-likelihood −338.26

Final log-likelihood −83.21

Likelihood ratio test 510.09

Rho-square 0.754

Adjusted rho-square 0.742

Rho-square at constants only 0.504

Simulation test

%-of-right 92.62%

Simulated probabilities

Adopt owned e-scooter 10.86%

Not adopt 89.14%
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4.7 Simulation by FCD 2015 and discussion

The simulation is realized by applying the RUM models to the
2015 Floating Car Dataset. As reported in the methodology section,
the only FCD trips considered are the weekday, home-based trips
(the method adopted to derive home-based FCD trips can be found
in Nigro et al., 2021).

The potential demand for owned e-micromobility vehicles is
first computed through the “standard” binomial logit models
(Models 1 and 2). Because both models require the age feature,
in the simulation, an age was assigned to each FCD trip through a
roulette wheel selection method (Lata and Asha, 2017), thus
ensuring the data reflected the distribution of Rome’s population
age (considering only the population of driving age). The results
show how the potential demand can vary as a function of the
infrastructure safety level (Table 7): ensuring separated lanes with
respect to vehicular flows (infrastructural safety levels 2 and 3)
allows reaching a potential demand of 4%–7%. That demand
decreases to 1%–3% when the interaction with other flows is
mandatory (infrastructural safety levels 0 and 1).

Lower values of the potential demand for e-scooters with respect
to e-bikes seem to confirm a lower propensity to use an e-scooter due

to its driving mode differences. The penalized binomial logit models
(Models 3 and 4) are adopted to compute the potential demand for
shared electric micro-vehicles. In this case, it is possible to analyse
how the potential demand can vary as a function of the
infrastructural safety level, the access time, and the service cost.
Therefore, a sensitivity analysis for each one of the previous factors is
performed, fixing the remaining factors to their most favourable
values (mono-dimensional sensitivity analysis).

The potential demand (Table 8) ranges from about 3% to 12%
for shared e-scooters and from 6% to 16% for shared e-bikes. The
highest impact on the demand derives from the infrastructural safety
level that shows the highest variations between the best and the
worst scenario (about 10 percentage points of difference). The
service cost shows an important impact on the demand for
shared e-scooters, while its impact for shared e-bikes is similar to
the impact of the access time.

Finally, the penalized trinomial model (Table 9) is applied,
reporting the total potential demand (both owned and shared)
and performing a mono-dimensional sensitivity analysis. The
trinomial model seems to be more “cautious” than the binomial
models because it reaches lower values of the potential demand;
indeed, the potential demand has a maximum value of about 14%

TABLE 4 Adoption of the e-bike sharing service (penalised logit).

Market share

Adopt shared e-bike 8.84%

Not adopt 91.16%

Attribute Coefficient (β) Standard Deviation t-test p-value

Travel time e-bike [min] −0.039 0.016 −2.26 0.02

Infrastructural safety level 0.603 0.087 6.93 0.00

Access time [min] −0.141 0.019 −7.26 0.00

Cost [€] −0.509 0.136 −3.75 0.00

Model fit statistics

Number of respondents 239

Total observations 3,792

Number of cases 848

Null log-likelihood −629.38

Final log-likelihood −323.57

Likelihood ratio test 611.61

Rho-square 0.486

Adjusted rho-square 0.480

Rho-square at constants only 0.393

Simulation test

%-of-right 91.15%

Simulated probabilities

Adopt shared e-bike 15.66%

Not adopt 84.34%
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with respect to the 16% reached by the simplest binomial models.
Service cost and access times affect the potential demand similarly;
the infrastructural safety level again has the highest impact as the
potential demand can range from 1.60% in the worst condition (level
0: any road condition) to about 14% in the best condition (level 3:
only on bike lanes physically separated from traffic).

We can glean several insights by applying the modelling results
to the specific policy context of Rome. The city’s Bike Plan is
currently in development, with preliminary analyses indicating a
potential to shift 11% of car trips to bikes. This estimation, based on
average trip distance, travel time (when comparable to car travel),
and the average daily kilometres travelled by car users, does not
account for factors such as infrastructural conditions. Our models
emphasize the necessity of considering infrastructural conditions to
set realistic targets for planning tools.

Regarding features related to sharing options, while shared
e-micromobility is widely available in Rome due to equity
policies by the public authority, access to e-micro-vehicles varies
across different areas. Our approach allows for an investigation of
potential demand changes as a function of access time. For instance,
increasing access time to 10 min could decrease the adoption of
shared e-scooters by 3.41 percentage points (and by 8.19 points for
shared e-bikes). This is a global estimate that can also be analysed at
the level of individual origin–destination pairs.

Lastly, the impact of service cost is worth noting, especially in
the context of developing Mobility as a Service (MaaS) packages.
Rome is currently piloting a MaaS project that includes shared
e-micromobility operators. A strategy focussing on reducing
access time rather than increasing standard service costs could
be highly beneficial, particularly from a service integration
perspective.

4.8 Validation by FCD 2019

The FCD 2019 simulation is adopted mainly for validation.
Results in terms of the potential demand (Tables 10–12) are
approximately the same as those obtained by FCD 2015: indeed,
if car trips exhibit comparable behaviour in terms of the distribution
of travelled distances (Figure 5), similar results are expected. This
consistency also underscores the versatility of the proposed mixed
method. Because it can be transferred to other cities, provided that
the necessary data are available, it can assist in evaluating the
advantages and disadvantages of various strategies for both
transportation planners and service operators. However, it is
important to note that these results are difficult to generalize as
they depend on specific trip attributes and the infrastructural
conditions at the network level.

TABLE 5 Adoption of the e-scooter sharing service (penalised logit).

Market share

Adopt shared e-scooter 6.88%

Not adopt 93.12%

Attribute Coefficient (β) Standard deviation t-test p-value

Infrastructural safety level 0.806 0.210 3.84 0.00

Access time [min] −0.077 0.028 −2.76 0.00

Cost of the service [€] −0.624 0.130 −4.81 0.00

Model fit statistics

Number of respondents 239

Total observations 3,792

Number of cases 160

Null log-likelihood −121.58

Final log-likelihood −65.30

Likelihood ratio test 112.55

Rho-square 0.463

Adjusted rho-square 0.438

Rho-square at constants only 0.389

Simulation test

%-of-right 94.37%

Simulated probabilities

Adopt shared e-scooter 15.44%

Not adopt 84.56%
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5 Conclusion

This paper presents a methodological framework that calibrates
and applies random utility models (RUMs) to floating car data
(FCD) trips, aiming to estimate the potential shift in demand from
cars to e-micromobility for commuting purposes. Thus, it effectively

merges traditional probabilistic-behavioural approaches with a data-
driven strategy that incorporates FCD.

The framework is primarily composed of four stages: 1)
conducting revealed preferences (RP) and stated preferences (SP)
surveys on commuting habits and the inclination to switch to
e-micromobility, 2) calibrating RUM models, 3) simulating

TABLE 6 Trinomial penalized logit model.

Market share

Owned e-micro 17.94%

Shared e-micro 1.09%

Current mode 80.97%

Attribute Coefficient (β) Standard deviation t-test p-value

Travel time [min] −0.041 0.001 −28.10 0.00

Infrastructural safety level 1.028 0.032 31.80 0.00

Access time [min] −0.090 0.014 −6.52 0.00

Cost [€] −0.291 0.047 −6.23 0.00

ASC 2.610 0.071 36.50 0.00

Model fit statistics

Number of respondents 239

Total observations 15,168

Number of cases 9,376

Null log-likelihood −7175.06

Final log-likelihood −3,620.53

Likelihood ratio test 7109.06

Rho-square 0.495

Adjusted rho-square 0.495

Rho-square at constants only 0.315

Simulation test

%-of-right 83.93%

Simulated probabilities

Owned e-micro 17.75%

Shared e-micro 1.73%

Current mode 80.52%

TABLE 7 Simulation of the potential demand for owned e-micromobility vehicles.

Simulation by model 1: adopt the owned e-bike vs. not adopt

Infrastructural safety level 0 Infrastructural safety level 1 Infrastructural safety level 2 Infrastructural safety level 3

Potential demand for owned e-bike 1.09% 2.62% 4.90% 7.10%

Simulation by Model 2: adopt the owned e-scooter vs. not adopt

Infrastructural safety level 0 Infrastructural safety level 1 Infrastructural safety level 2 Infrastructural safety level 3

Potential demand for owned e-scooter 0.83% 1.88% 3.72% 6.09%
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scenarios using FCD, and 4) validating the outcomes. This approach
can be readily implemented in other cities with access to FCD or
similar data sources that capture the characteristics of car trips.

The RUMs were developed sequentially, beginning with the
fundamental aspect of a modal shift model (travel time) and
progressively incorporating additional features. These models
differentiate between types of micro-vehicles (e-bikes and e-scooters)
and ownership types, culminating in a trinomial model that evaluates
three choices: take the owned micro-vehicle, use an e-micromobility
sharing service, or continue using the current transport mode. The

calibrated models have been used to simulate the potential shift from
cars to e-micromobility, indicating that the potential e-micromobility
demand can range between 14% in the best-case scenario (low costs,
high accessibility, and high road safety level) to about 2% in the worst
case scenario (high costs, low accessibility, and low road safety level). A
key influencing factor is the infrastructural safety level, particularly the
presence of bike lanes (whether physically separated or temporary). For
effective e-micromobility policies, it is crucial to address supply-related
aspects like separating different traffic flows and connecting fragmented
bike networks. Additionally, access time and service cost influence the

TABLE 8 Simulation of the potential demand for shared e-micromobility services.

Simulation by model 3 (penalised logit): adopt the e-bike sharing service vs. not adopt

Potential demand for shared e-bike Infrastructural safety level 0 Infrastructural safety level 1 Infrastructural safety level 2 Infrastructural safety level 3

6.31% 9.43% 13.01% 16.51%

Minimum cost Average cost Maximum cost

16.51% 12.38% 9.18%

Immediate access Access time 3 min Access time 6 min Access time 10 min

16.51% 14.10% 11.55% 8.32%

Simulation by Model 4 (penalised logit): adopt the e-scooter sharing service vs. not adopt

Potential demand for shared e-scooter Infrastructural safety level 0 Infrastructural safety level 1 Infrastructural safety level 2 Infrastructural safety level 3

3.16% 5.71% 9.10% 12.65%

Minimum cost Average cost Maximum cost

12.65% 9.57% 6.22%

Immediate access Access time 3 min Access time 6 min Access time 10 min

12.65% 11.66% 10.63% 9.24%

TABLE 9 Simulation of the potential demand for e-micromobility (both shared and owned).

Simulation by model 5 (trinomial penalised logit)

Potential demand Infrastructural safety level 0 Infrastructural safety level 1 Infrastructural safety level 2 Infrastructural safety level 3

1.60% 3.89% 8.15% 14.25%

Minimum cost Average cost Maximum cost

14.25% 12.53% 11.09%

Immediate access Access time 3 min Access time 6 min Access time 10 min

14.25% 12.94% 11.75% 10.38%

TABLE 10 Simulation of the potential demand for owned e-micromobility vehicles (validation).

Simulation by model 1: adopt the owned e-bike vs. not adopt

Infrastructural safety level 0 Infrastructural safety level 1 Infrastructural safety level 2 Infrastructural safety level 3

Potential demand for owned e-bike 1.09% 2.63% 4.93% 7.17%

Simulation by Model 2: adopt the owned e-scooter vs. not adopt

Infrastructural safety level 0 Infrastructural safety level 1 Infrastructural safety level 2 Infrastructural safety level 3

Potential demand for owned e-scooter 0.83% 1.89% 3.72% 6.11%
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TABLE 11 Simulation of the potential demand for shared e-micromobility services (validation).

Simulation by model 3 (penalised logit): adopt the e-bike sharing service vs. not adopt

Potential demand for shared e-bike Infrastructural safety level 0 Infrastructural safety level 1 Infrastructural safety level 2 Infrastructural safety level 3

6.33% 9.45% 13.03% 16.59%

Minimum cost Average cost Maximum cost

16.59% 12.43% 9.27%

Immediate access Access time 3 min Access time 6 min Access time 10 min

16.59% 14.12% 11.55% 8.30%

Simulation by Model 4 (penalised logit): adopt the e-scooter sharing service vs. not adopt

Potential demand for shared e-scooter Infrastructural safety level 0 Infrastructural safety level 1 Infrastructural safety level 2 Infrastructural safety level 3

3.14% 5.68% 9.04% 12.57%

Minimum cost Average cost Maximum cost

12.57% 9.50% 6.18%

Immediate access Access time 3 min Access time 6 min Access time 10 min

12.57% 11.59% 10.56% 9.18%

TABLE 12 Simulation of the potential demand for e-micromobility (both shared and owned, validation).

Simulation by model 5 (trinomial penalised logit)

Potential demand Infrastructural safety level 0 Infrastructural safety level 1 Infrastructural safety level 2 Infrastructural safety level 3

1.59% 3.75% 7.50% 12.11%

Minimum cost Average cost Maximum cost

12.11% 10.73% 9.64%

Immediate access Access time 3 min Access time 6 min Access time 10 min

12.11% 11.06% 10.15% 9.13%

FIGURE 5
Distribution of travelled distances by FCD 2015 and FCD 2019 (up to 10 km).
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demand for shared e-micromobility services, although less significantly
than infrastructural safety. Service cost is particularly impactful for
shared e-scooters, while its effect on shared e-bikes is comparable to that
of access time.

Future research could build upon the methods used in this
framework. During the survey phase, expanding the sample size
could mitigate potential biases arising from the response rate.
Because RUMs are calibrated using panel data, examining
correlations among responses from the same individuals using
mixed logit models could be insightful. Regarding the simulation
phase, while FCD are generally representative of car trips (Comi and
Polimeni, 2021), further investigation into the identification of travel
purposes and trips within daily trip chains is necessary.

Lastly, the rapid expansion of e-micromobility presents
additional research opportunities, such as its potential for
enhancing first- and last-mile connectivity to public transport.
Promoting multimodality in commuting could aid in reducing
traffic congestion and encouraging active mobility, thus
contributing to the development of sustainable and liveable cities.
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