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Genome-editing technologies have the potential to correct most genetic defects involved

in blood disorders. In contrast to mutation-specific editing, targeted gene insertion can

correct most of the mutations affecting the same gene with a single therapeutic strategy

(gene replacement) or provide novel functions to edited cells (gene addition). Targeting

a selected genomic harbor can reduce insertional mutagenesis risk, while enabling

the exploitation of endogenous promoters, or selected chromatin contexts, to achieve

specific transgene expression levels/patterns and the modulation of disease-modifier

genes. In this review, we will discuss targeted gene insertion and the advantages and

limitations of different genomic harbors currently under investigation for various gene

therapy applications.

Keywords: genome editing, gene therapy, nuclease, CRISPR, targeted integration (TI), knock-in, safe harbor,

homologous recombination (HR)

INTRODUCTION

Blood genetic disorders are caused by mutations in genes or in their regulatory elements that result
in a dysfunctional, dysregulated, or absent protein. Conventional gene therapy approach consists
of the addition of a functional copy of a mutated gene to patients’ cells using viral vectors, such
as adeno-associated virus (AAV) (Mingozzi and High, 2011) and lentivirus (LV)-derived vectors
(Naldini, 2011). These modified viruses can deliver the transgene expression cassettes encoded in
their genome to the cell nucleus, where the genetic information is used. This gene replacement
strategy is mutation-independent and thus can benefit patients with the same condition regardless
of their genotype.

Despite its remarkable success for ex vivo and in vivo treatment of several monogenic disorders
(Dunbar et al., 2018), there are still major hurdles to overcome to improve therapeutic outcomes
and treat challenging monogenic (e.g., hemoglobinopathies, immunodeficiencies, and congenital
anemias) as well as multifactorial blood diseases (e.g., cancer, autoimmune, and infectious
disorders). Apart from vector-specific issues such as immunogenicity and tropism (Masat et al.,
2013; Colella et al., 2018), which are beyond the scope of this review, classic gene replacement
has a major limitation: it is hard to faithfully re-create characteristics of endogenous promoters
and gene-specific regulation within the context of a viral vector. Tissue-, developmental-, and
stimulus-specific gene expression requires the complex interaction of different genomic elements
(promoters, enhancers, and silencers) that can be located in distant regions of the genome and span
several kilobases (Schoenfelder and Fraser, 2019).

AAV vectors are small viruses (∼4.7 kb), limiting the choice of regulatory elements to include
in the expression cassette, especially when delivering large transgenes (Li and Samulski, 2020).
Moreover, they persist mainly as episomes in non-dividing cells and are progressively lost through
cell division (Nakai et al., 2001; Ehrhardt et al., 2003; Bortolussi et al., 2014)—a major obstacle
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for treating infantile disorders and tissues undergoing rapid
proliferation (e.g., hematopoietic and epithelial cells). On the
other hand, LV have larger cargo capacity (∼8 kb), stably
integrate in the genome, and persist through cell replication
(Naldini et al., 1996), but they carry the intrinsic risk of
insertional mutagenesis and oncogene transactivation (mainly
when strong promoters/enhancers are present (Cavazzana
et al., 2019; Bushman, 2020)). In addition, their semi-random
integration (Schroder et al., 2002) results in transduction
mosaicism and heterogeneous transgene expression due to
chromatin position effects (Chen et al., 2017; Vansant et al.,
2020), making therapeutic levels harder to reach.

When combining AAV and nucleases, both transgene
expression cassettes and genomic integration sites contribute
to the corrective strategy, dramatically expanding therapeutic
possibilities. Primarily, targeting a functional copy of a gene to
its endogenous locus, under the control of its own promoter
and in the right chromatin context, can result in physiological
expression and minimize genotoxic integrations. Alternatively,
transgenes can be targeted to safe integration sites or specific
genomic elements of interest to engineer cells with novel
functions, further improving safety and increasing potential
applications of gene replacement/addition therapy (Cox et al.,
2015).

Sequence-specific endonucleases (such as ZNF, TALEN, or
CRISPR/Cas9) (Gaj et al., 2016) can induce genomic DNA
double-strand breaks (DSB) in proximity to pathological
mutations and activate cellular DNA repair pathways
to correct them. The inclusion of short single-stranded
oligodeoxynucleotide (ssODN) donors is a simple and effective
approach for precise correction of single-nucleotide mutations
(DeWitt et al., 2016; De Ravin et al., 2017; Romero et al., 2019).
Although their short size currently limits their application
for diseases caused by multiple pathological variants (e.g.,
β-thalassemia, ∼300 different mutations across the β-globin
locus), technological advances in long ssODN synthesis would
most likely expand their therapeutic potential (Praetorius et al.,
2017; Roth et al., 2018).

DSB generated by endonucleases can also facilitate integration
of therapeutic transgenes to selected genomic locations (targeted
gene replacement). AAV has a tendency to integrate at pre-
existing chromosomal breaks that provide free DNA ends
for non-homologous end joining (NHEJ) (Miller et al.,
2004). To increase efficiency, specificity, and precision of
integration, homology arms derived from genomic regions
flanking the target site are introduced on each side of the
AAV cassette with the aim of leveraging the homologous
DNA repair pathway (Hirata et al., 2002). Although effective
in proliferating cells, homologous recombination is quite
inefficient in quiescent hematopoietic stem cells (HSC) and
postmitotic cells or tissues (Nishiyama, 2019; Shin et al., 2020).
Therefore, alternative DNA repair mechanisms based on NHEJ
or microhomology-mediated end joining (MMEJ) are now
being investigated (Suzuki et al., 2016; Banan, 2020). In both
cases, AAV are the gold-standard DNA delivery system for
gene-targeted integration in vivo (Li et al., 2011) and ex vivo
(Wang et al., 2015), though the exact molecular mechanism

underpinning this process remains unknown (Deyle and Russell,
2009).

INTEGRATION STRATEGIES

Selecting a suitable genomic site for transgene integration
depends on many factors, such as the expression level required,
the target cells/tissue, and the disease to be treated.

We have subdivided integration sites in four groups according
to functional characteristics: (i) endogenous promoters, when
promoterless transgenes are inserted under the control of
endogenous enhancers/promoters; (ii) safe genomic harbors,
when transgenes and their promoters are integrated into
genomic regions that allow robust expression without affecting
cell physiology; (iii) disease modifier genes, when transgenes
integrate into coding sequence of endogenous genes, whose
inactivation benefits disease-affected cells; and (iv) specificity
exchange, when transgenes are integrated into coding sequence
of endogenous genes to change their function.

It is worth noting that this subdivision is only a working
framework, as the same integration site can fall into two or more
categories, and it is not exhaustive, as new integration strategies
are described every day.

ENDOGENOUS PROMOTERS

Correction of Dysfunctional Genes
A straightforward approach for targeted gene replacement
consists in inserting a functional copy of a gene downstream
of its endogenous promoter. This strategy can correct most
pathological mutations that are scattered along the gene
body (such as substitutions and frameshift mutations), while
maintaining physiological gene expression (Table 1A), which can
be hard to achieve with artificial promoters used in classical gene
therapy vectors (Toscano et al., 2011).

The first proof of concept was obtained using ZFN on primary
T cells ex vivo to replace interleukin-2 receptor subunit gamma
(IL2RG), whose mutational inactivation causes X-linked severe
combined immunodeficiency (X-SCID) (Urnov et al., 2005;
Lombardo et al., 2007). X-SCID represents an ideal model for
testing this approach, as correction of only a small fraction of
treated cells, given their strong growth advantage, should allow
expansion and restoration of T cell function in vivo.

However, for effective clinical translation, targeted gene
replacement should be performed in hematopoietic stem cells
(HSC), the life-long source of all the different blood progenitors.
Genovese via ZFN (Genovese et al., 2014) and Schiroli via
CRISPR/Cas9 (Schiroli et al., 2017) were the first to report
successful integration of a functional copy of IL2RG gene
downstream its endogenous promoter in HSC, with the idea
of restoring the endogenous lineage specificity and expression
level of IL2RG without the risk of insertional mutagenesis
(Hacein-Bey-Abina et al., 2003, 2008). Following this example,
additional strategies have been developed for many blood
diseases, including thalassemia (Voit et al., 2014; Dever et al.,
2016), chronic granulomatous disease (De Ravin et al., 2017;
Sweeney et al., 2017), hyper-immunoglobulin (Ig) M syndrome
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TABLE 1 | (A–F) The advantages and disadvantages of different integration strategies.

Integration strategies Advantages Disadvantages References

A Endogenous locus Physiological

transgene

expression

Corrects

multiple mutations

Gene-specific

strategy

Limited to gene

body mutations

Urnov et al., 2005;

Lombardo et al., 2007; Li

et al., 2011; Genovese

et al., 2014; Voit et al.,

2014; Dever et al., 2016;

Hubbard et al., 2016;

Schiroli et al., 2017;

Sweeney et al., 2017; Kuo

et al., 2018; Wang et al.,

2019; Rai et al., 2020;

Wang L. et al., 2020

B Superactive

promoters (ALB,

HBA)

Accommodates

different

transgenes

Supraphysiological

expression

Few

integrations required

Partial gene

disruption

Limited to non-cell

autonomous

disorders

Extensive

validation required

Barzel et al., 2015; Sharma

et al., 2015; Davidoff and

Nathwani, 2016;

Laoharawee et al., 2018;

Chen et al., 2019; Conway

et al., 2019; De Caneva

et al., 2019; Ou et al., 2019,

2020; Zhang et al., 2019;

Wang Q. et al., 2020

C Tolerant to

integration

(AAVS1, CCR5,

Rosa26)

Accommodates

different

transgenes

Artificial promoters

required

Variable expression

De Ravin et al., 2016; Diez

et al., 2017; Stephens et al.,

2018, 2019; Gomez-Ospina

et al., 2019; Scharenberg

et al., 2020

D Chromatin

domains (NAD)

Fine gene

regulation

Far from

oncogenic genes

No

proof-of-principle

in clinically relevant

models

Schenkwein et al., 2020

E Disease-modifier

genes (CCR5,

HBA)

Improve

therapeutic effect

Lower

therapeutic threshold

Extensive

validation required

Limited to well-

known diseases

Voit et al., 2013; Wiebking

et al., 2018

F Specificity

Exchange

(TCR, BCR)

Improved CAR

expression and

potency

Off-targets

Translocations risk

(for multiple edits)

Eyquem et al., 2017;

MacLeod et al., 2017;

Greiner et al., 2019;

Hartweger et al., 2019;

Moffett et al., 2019; Voss

et al., 2019

Scissors: nuclease; Solid arrows: promoters; Enh, enhancers; TAD, topologically associating; d, domain; Solid ovals: histone modifications; Solid squares: DNA modifications.

(Hubbard et al., 2016; Kuo et al., 2018), and Wiskott–Aldrich
Syndrome (Rai et al., 2020).

Beside HSC and terminally differentiated blood cells, like B
and T cells (Wang et al., 2016; Hung et al., 2018), AAV and
nucleases have been the preferred method to achieve targeted
transgene integration in many tissues in vivo (Suzuki et al.,
2019; Kohama et al., 2020; Nishiguchi et al., 2020), especially
the liver.

Li et al. were the first to demonstrate targeted gene correction
in vivo by delivering ZFN and a partial F9 (coagulation
factor IX, FIX) cDNA cassette with AAV8 to the liver of a
humanized mouse model of hemophilia B (Li et al., 2011). While
correction was performed in newborn mice, FIX expression
was maintained in adults and even persisted after partial
hepatectomy, demonstrating stable genomic integration. This
approach was later replicated using CRISPR/Cas9 to integrate
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a hyperactive FIX variant in the mouse F9 locus (Wang et al.,
2019).

Targeted gene replacement can also be combined with
classical gene therapy to improve therapeutic outcome. In a
neonatal mouse model of ornithine transcarbamylase (OTC)
deficiency, an AAV carrying a liver-specific promoter and a
human OTC transgene was integrated via CRISPR/Cas9 in the
murine OTC locus (Wang L. et al., 2020). Prompt, short-term
expression from episomal AAV protected newborn mice from
fatal hyperammonemia crisis, whereas its genomic integration
allowed long-term disease correction.

Although targeting transgenes to their genomic loci is an
effective therapeutic approach, it requires the development of
countless gene-tailored editing strategies. Moreover, it can be
difficult to reach and correct a number of cells that is sufficient to
achieve a therapeutic benefit. Finally, its efficacy is limited in the
presence of deletions/inversions that affect large portions of the
locus or when regulatory elements controlling gene expression
are mutated.

Over/Expression by Superactive Promoters
Although gene-editing technologies are evolving at a fast pace,
it can be challenging to correct enough cells to reach a clinical
benefit even using high doses of nuclease and donor DNA,
which increase chances of off-target genomic cleavage, immune
responses, and donor random integration. An alternative
strategy consists in “hijacking” strong endogenous promoters
to overexpress therapeutic cassettes from few modified cells
(Table 1B). An elegant example of this approach is the targeted
integration of AAV-delivered transgenes under the control of the
endogenous albumin promoter in the liver (Barzel et al., 2015;
Sharma et al., 2015; Davidoff and Nathwani, 2016). Even with
<1% of targeted integration events, the terrific transcriptional
activity of this superactive promoter was sufficient to achieve
5–20% of FIX levels and correct bleeding in hemophilia B
mice (Barzel et al., 2015). Until today, this strategy has been
successfully applied in different preclinical models of hemophilia
A and B (Barzel et al., 2015; Sharma et al., 2015; Chen et al.,
2019; Conway et al., 2019; Zhang et al., 2019; Wang Q. et al.,
2020) and metabolic disorders (Laoharawee et al., 2018; Conway
et al., 2019; De Caneva et al., 2019; Ou et al., 2019). Importantly,
this is also the first genome-editing strategy undergoing in
vivo testing in humans to treat mucopolysaccharidosis I and II
(NTC02702115, NTC03041324).

Although promising, this approach still presents some
concerns. First, targeted integration can lower serum albumin
levels (Zhang et al., 2019; Ou et al., 2020) and albumin mutations
have been observed in human hepatocellular carcinoma (Cancer
Genome Atlas Research Network, 2017; Rao et al., 2017). Second,
long-term AAV-mediated expression of endonucleases can result
in off-target editing and unwanted AAV insertions (Li et al., 2019;
Breton et al., 2020; Wang H. et al., 2020). Finally, pre-existing
liver conditions and immune responses against AAV vectors used
to deliver transgenes or nucleases severely limit the number of
eligible patients (Boutin et al., 2010; Simhadri et al., 2018).

To avoid these issues, we have recently proposed to
integrate therapeutic transgenes in the α-globin locus of HSC

(Pavani et al., 2020). Similar to albumin targeting, the idea
is to combine the strong transcriptional output of the α-
globin promoter with the abundance of transgene-expressing
erythroblasts to maximize protein production, reducing the
number of integration events required to reach therapeutic
levels. Moreover, differently from the liver, autologous HSC
can be recovered from patients and edited ex vivo before
re-administration, thus circumventing immunological issues.
Additional experiments in preclinical disease models will
elucidate the therapeutic potential of this novel HSC platform for
treating genetic diseases.

Following these examples, additional endogenous promoters
with specific expression levels/patterns can be exploited
for transgene expression. Although promoter hijacking has
many advantages over other approaches, it is important to
functionally validate the dispensability of the disrupted gene,
as nuclease-mediated targeting can result in bi-allelic gene
knock out, or to consider safer editing alternatives (e.g., nicking
endonucleases Ran et al., 2013).

SAFE GENOMIC HARBORS

Tolerant to the Integration of an Expression
Cassette
Genomic safe harbors are intragenic or intergenic regions of
the human genome that enable stable expression of integrated
transgenes without negatively affecting the host cell (Sadelain
et al., 2011). Targeting expression cassettes to these loci is an
efficient way to develop a “one-fits-all” platform to express
different therapeutic transgenes using the same nuclease(s),
therefore optimizing efficiency and improving safety.

By far, the most widely targeted genomic loci are AAVS1,
CCR5, and Rosa26 (Table 1C).

The AAVS1 locus (chromosome 19 q13.42) was historically
identified as the preferential integration site of wild-type AAV in
human cell lines (Kotin et al., 1992). It encodes the PPP1R12C
gene, a subunit of myosin phosphatase whose functions are not
fully elucidated (Surks et al., 2003), but probably redundant
(Smith et al., 2008). Stable and corrective editing of patients’
HSC at this locus has been obtained by integrating a transgene
cassette with (Fanconi anemia (Diez et al., 2017)) or without
an exogenous promoter (X-CGD (De Ravin et al., 2016)). It
is worth noting that the AAVS1 locus is an extremely gene-
rich region and, although the presence of an insulator in the
promoter of PPP1R12C could shield the genome from the
action of the inserted promoter/enhancer (Ogata et al., 2003; Li
et al., 2009), it requires a carefully designed transgene expression
cassette to avoid transcriptional perturbation of neighboring
genes (Lombardo et al., 2011). Moreover, several studies showed
that variable expression and promoter silencing can occur at this
site in different cell types (Lamartina et al., 2000; Smith et al.,
2008; Ordovas et al., 2018; Bhagwan et al., 2019; Klatt et al., 2020),
thus potentially limiting transgene expression.

The CCR5 gene (chromosome 3 p21.31) encodes for the
main HIV co-receptor. Since a bi-allelic null mutation of
this receptor (CCR5132) confers HIV-1 resistance and is not
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associated with any major pathology (Hutter et al., 2009),
this locus was first targeted/disrupted with nucleases in T
cells and HSC to provide protection against AIDS ((Perez
et al., 2008; Yu et al., 2020), NCT00842634, NCT02500849, and
NCT03164135) and later exploited for targeted gene addition.
Therapeutic transgenes involved in lysosomal storage disorders
were inserted in the CCR5 gene of human HSC, under the
control of exogenous ubiquitous or tissue-specific promoters.
Upon transplantation, edited HSC engrafted, differentiated, and
corrected the pathological phenotype in mouse models of MPS
I (Gomez-Ospina et al., 2019) and Gaucher (Scharenberg et al.,
2020). Although promising, the safety of this approach needs to
be further validated, as CCR5 deficiency can result in increased
susceptibility to West Nile (Lim et al., 2006; Cahill et al., 2018),
influenza (Falcon et al., 2015), and Japanese encephalitis viruses
(Larena et al., 2012).

The Rosa26 locus (chromosome 3 p25.31) was serendipitously
discovered in mice as a reliable site to integrate DNA cassettes
for transgenesis (Zambrowicz et al., 1997). This locus was then
successfully targeted in vivo with CRISPR/Cas9 to knock-in
human alpha-1-antitrypsin or FIX in mouse liver (Stephens et al.,
2018, 2019). The human homolog was identified on chromosome
3 (position 3p25.3) (Irion et al., 2007); however, the efficacy and
safety of this site for targeted integration is still undetermined.

While genomic safe harbors could represent a universal
platform for gene targeting and thus expedite clinical
development, so far no site of the human genome has been
fully validated. The described loci may be acceptable for research
applications, but clinical translation will require extensive
validation as they localize in gene-dense areas and in proximity
of cancer-related genes.

Chromatin Domains With Specific
Expression Patterns
The genomic location of transgene integration can change its
transcription up to 1,000-fold, according to some well-studied
aspects of large-scale domain organization of chromatin (Akhtar
et al., 2013; Brueckner et al., 2016; Corrales et al., 2017). Recent
evidence for targeting 3D chromatin domains comes from the
work of Schenkwein et al. showing that in primary human T
cells genomic regions distant from one another linearly, but near
in the three-dimensional genome, became jointly affected when
site-specific transgene integration was performed (Schenkwein
et al., 2020). In this work, transgenes were targeted to nucleolar-
associated domains (NAD), which are distant from protein-
encoding genes with oncogenic potential and thus represent safe
genomic loci for inserting therapeutic transgenes.

The increasing knowledge of chromatin functions and
dynamics (Moore et al., 2020) might soon allow us to
select integration sites to obtain a certain transcriptional
activity and cell/tissue/developmental specificity, as predicted
by the presence/absence of certain histone marks (Talbert
et al., 2019), DNA methylation, transcriptional factor binding
sites, nuclear lamina interaction (Amendola and van Steensel,
2014), chromatin accessibility, and topology (Zheng and
Xie, 2019; Zhang et al., 2020) (Table 1D). We can easily

envision that the combination of selected chromatin locations
and expression cassettes will allow fine-tuning of therapeutic
transgene expression to unprecedented levels.

DISEASE-MODIFIER GENES

Inactivation of Pathogen Receptors
A disease-modifier gene alters the expression of another gene
involved in a genetic/infectious disorder, therefore changing the
penetrance, dominance, and severity of the disease itself (Genin
et al., 2008). Novel genome-editing strategies can combine
transgene expression with modulation of disease-modifier genes
to improve therapeutic outcomes and provide cells with novel
functions (Table 1E). Voit et al. were the first to describe the
use of ZFN to integrate transgenes encoding for HIV restriction
factors into the HIV co-receptor gene CCR5 (Voit et al., 2013).
With this strategy, treated T cells were resistant to HIV infection
thanks to the concomitant expression of protective transgenes
and knockout of CCR5 (disease-modifier).

Restoring Balance in Disease Pathways
A second example of this approach involves β-thalassemias,
a group of blood disorders caused by mutations in the β-
globin gene. β-globin associates with α-globin to form adult
hemoglobin (HbA, α2β2) and, when β-globin chains are absent
or limiting, free α-globin precipitates causing hemolysis and
ineffective erythropoiesis. Reduction of α-globin has been shown
to ameliorate the β-thalassemia phenotype (Mettananda et al.,
2015); hence, we and others have proposed to target the
integration of a β-globin transgene into the α-globin site (disease-
modifier) of HSC to simultaneously express the therapeutic
gene while reducing α-globin production in differentiated
erythroblasts (Table 1E) (Pavani et al.; Cromer et al.; Molecular
Therapy Vol 27 No 4S1, April 2019). The full potential of this
combination therapy for these and other genetic diseases will be
more clear in the future (Hightower and Alexander, 2018; Rahit
and Tarailo-Graovac, 2020).

While the possibility of combining gene replacement and
endogenous gene regulation could attain unparalleled additive
or synergic therapeutic effects, it is limited to the treatment of
diseases for which a deep knowledge of the underlying molecular
mechanism is available, and it requires careful examination.

Providing Novel Functions
Targeted integration can also provide cells with novel functions,
such as a “safety-switch” for cell therapy applications. Transgene
integration can be directed to inactivate an essential metabolic
enzyme, the uridine monophosphate synthetase, which makes
T cells dependent on supplemented uridine for their growth
and survival (Wiebking et al., 2018). This approach could
help therapies based on chimeric antigen receptor T cells
by introducing a metabolic control of their proliferation and
persistence. Further experiments are required to evaluate the
clinical readiness of the approach.
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SPECIFICITY EXCHANGE

A special case of gene targeting is represented by the “specificity
exchange” (Table 1F). Chimeric antigen receptors (CARs) are
synthetic receptors that redirect and reprogram T cells to
recognize specific antigens for tumor rejection (June and
Sadelain, 2018). Initially, CARs were introduced in T cells using
retroviral and lentiviral vectors (gene addition), with the risk of
insertional mutagenesis. In addition, these CAR-T cells had two
antigen specificities, the engineered one and the physiological
one encoded by the endogenous αβ T cell receptor (TCR) chains,
whichmay induce graft-vs-host disease when allogenic T cells are
used (Torikai et al., 2012).

New CAR-T cells are generated by targeting the integration
of the CAR transgene under the transcriptional control of TCR
α-chain gene promoter to simultaneously achieve physiological
expression of CAR and disruption of the endogenous TCR, thus
maintaining only CAR antigen specificity (specificity exchange)
(Eyquem et al., 2017; MacLeod et al., 2017). Overall, this strategy
allows uniform CAR expression in human T cells and enhances
T cell potency, outperforming conventional CAR-T cells.

A similar strategy has also been described to integrate
and express a sequence encoding for a defined monoclonal
antibody (Ab) of interest under the control of the heavy or
light immunoglobulin chain promoter to reprogram B cells to
secrete broadly neutralizing Ab against pathogens, for which no
protective Ab has been isolated (Greiner et al., 2019; Hartweger
et al., 2019; Moffett et al., 2019; Voss et al., 2019).

CONCLUSIONS

Over the past decades, gene therapy for blood disorders has
mainly focused on the optimization of transgenes and synthetic
promoters to improve expression and achieve therapeutic effects
using gene replacement. However, this strategy is associated
with the risk of insertional mutagenesis (LV) and episomal
vector loss (AAV). The advent of the first generation of DNA
endonucleases allowed the integration of transgenes in few
selected genomic loci, mainly to achieve stable expression
while minimizing insertional mutagenesis risk. Now, thanks to
easily programmable nucleases such as CRISPR/Cas9, we have
dramatically expanded our integration options and can creatively

exploit different genomic locations to finely tune transgene
expression or modulate disease-modifier genes to improve gene
therapy outcomes.

A common strategy to target transgene integration combines
nucleases with a donor DNA template (generally AAV) and
leverages the homologous recombination pathway. However,
before clinical translation, strict functional validation will be
necessary to reduce potential adverse events associated with each
individual component of this system. In particular, nucleases can
induce potential off-targets (Kleinstiver et al., 2016; Carroll, 2019)
and chromosomal alterations induced by on-target cleavage
(Adikusuma et al., 2018; Kosicki et al., 2018; Cullot et al., 2019;
Ledford, 2020); nucleases and AAV activate p53 response and
trigger cell cycle arrest (Schwartz et al., 2007; Haapaniemi et al.,
2018; Ihry et al., 2018); donor DNA integration can occur by
different DNA repair mechanisms with outcomes sometimes
difficult to predict (Canaj et al., 2019; Hanlon et al., 2019; Nelson
et al., 2019); the target site needs to be functionally validated for
safety and disposability (Papapetrou and Schambach, 2016).

Additional studies and further optimization of existing editing
technologies will remove these hurdles and allow a broad clinical
application of the described strategies to treat both monogenic
and multifactorial blood diseases.
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