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The prevalence of obesity continues to increase particularly in developed countries. To
establish the primary mechanisms involved, relevant animal models which track the devel-
opmental pathway to obesity are required.This need is emphasized by the substantial rise
in the number of overweight and obese children, of which a majority will remain obese
through adulthood.The past half century has been accompanied with unprecedented tran-
sitions in our lifestyle. Each of these changes substantially contributes to enhancing our
capacity to store energy into adipose tissues. The complex etiology of adiposity is critical
as a majority of models investigating obesity utilize a simplistic high-fat/low-carbohydrate
diet, fed over a short time period to comparatively young inbred animals maintained in fixed
environment. The natural history of obesity is much more complex involving many other
mechanisms and this type of challenge may not be the optimal experimental intervention.
Such processes include changes in adipose tissue composition with time and the transition
from brown to white adipose tissue. Brown adipose tissue, due its unique ability to rapidly
produce large amounts of heat could have a pivotal role in energy balance and is under
epigenetic regulation mediated by the histone H3k9-specific demethylase Jhdma2a. Fur-
thermore, day length has a potential role in determining endocrine and metabolic responses
in brown fat.The potential to utilize novel models and interventions across a range of animal
species in adipose tissue development may finally start to yield sustainable strategies by
which excess fat mass can, at last, be avoided in humans.

Keywords: obesity, development, brown adipose tissue, photoperiod, FTO

INTRODUCTION
Over the past decades there have been a substantial number of pub-
lications indicating that the way an individual grows and develops
early in life directly impacts upon their cardio-metabolic health
in later life (McMillen and Robinson, 2005; Symonds et al., 2009).
At the same time, some authors have been skeptical of this rela-
tionship emphasizing that current adult lifestyle is perhaps more
important (Bray et al., 2004; Slyper, 2004). Coincident with these
arguments has been the global increase in the incidence of adult
and, crucially, of childhood obesity (Flegal et al., 2010; Gaziano,
2010). The extent to which the substantial changes in contempo-
rary lifestyles have contributed to the current obesity epidemic
similarly remains controversial and several authors have indi-
cated that there may be other plausible explanations other than
excess food intake and/or reduced physical activity (Keith et al.,
2006; McAllister et al., 2009). As such, although young sedentary
rodents which are overfed for a relatively short period of time and
maintained within a constant thermoneutral environment, may
be considered as an acceptable model for the study of obesity in
humans, treatments which may work to overcome obesity in such
models could well be inappropriate in active subjects irrespective
of body weight (Martin et al., 2010).

There are several major challenges to our ability to determine
the primary causes and consequences of obesity and these include
the difficulty in accurately recording dietary intake simultaneously
with measurements of physical activity, energy expenditure and
environmental changes in humans (Johnson et al., 2011). At the
same time, a large number of animal studies, primarily in rodents,
have adopted the rather simplistic view that increasing fat intake
by between 5- and 10-fold, whilst reducing the intake of other
macronutrients (particularly carbohydrate; Ainge et al., 2010;
Table 1), over a relatively short time period of a few weeks mimics
the type of metabolic adaptations and increased fat mass which
often take several years to occur in humans. Furthermore, these
animals are usually maintained within a constant thermoneutral
environment and in isolation of other animals, which they would
rarely encounter in the wild. In humans, although even a dou-
bling of fat intake has a marked impact on food intake and energy
balance (Schrauwen and Westerterp, 2000), this type of change
has not been observed in human populations in recent times
(Garriguet, 2007). In addition, genome-wide association studies
on very large cohorts are providing more detailed insights into
individual, or combinations of, genotypes which contribute to an
increased body mass index (Bauer et al., 2009; Lindgren et al.,
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Table 1 | Comparison of the macronutrient composition of a standard adult human diet with those used in nutritional studies involving

primates and rodents.

Species Control (or normal) diet (%) High-fat:low–carbohydrate diet (%) Reference

Protein Carbohydrate Fat Protein Carbohydrate Fat

Human 17 50 31 – – – Garriguet (2007)

Primate 18 72 11 16 31 52 McCurdy et al. (2009)

Rodent 21 71 6 15 55 15 Ainge et al. (2010)

2009; den Hoed et al., 2010; Li et al., 2010). These appear to impact
on an individual’s susceptibility to obesity within an obesogenic
environment rather than being a major cause.

Such findings are not unexpected given the rapid increase in
the occurrence of obesity in both children and adults over the
past 15 years (e.g., Figure 1). However, determining the differ-
ent pathways that may be involved still requires an approach
which combines detailed, imaginative animal studies with inten-
sive in vivo measurements on individuals of known genotype and
body fat distribution whose dietary and activity status is available
for scrutiny across a range of environmental and nutritional chal-
lenges. In the present review, we will consider some of the main
limitations to our understanding of the causes of obesity, partic-
ularly from a developmental view-point, and whether the current
vogue for seeking epigenetic explanations for this process is really
supported by the science.

LIMITATIONS OF HISTORICAL AND PROSPECTIVE STUDIES
IN HUMAN POPULATIONS FOR EXPLAINING THE CAUSES
AND CONSEQUENCES OF OBESITY IN CONTEMPORARY
SOCIETY
Since the end of the Second World War, there has been a dramatic
change in our lifestyles and many of the identified factors acting
alone could be anticipated to promote obesity. The “step-wise”
adaptations in lifestyles within the developed world have coin-
cided with “rural flight,” a substantial rise in the use of mechanical
transportation (Juneau and Potvin, 2010), a reduction in manual

FIGURE 1 |The change in incidence of overweight and obese children

in the United Kingdom between 1980 and 2009.

labor and altered working patterns with more shift work adding to
disease risk (Puttonen et al., 2010; Szosland, 2011). These, in turn,
have a variety of social and health related effects (Ramsden, 2009)
even impacting upon reproductive success and birth weight (Masi
et al., 2007).

Although in contemporary society in the developed world less
disposable income is spent on food and the majority of food
purchasing takes place in supermarkets (Pettinger et al., 2008),
the extent to which the amount of processed food consumed has
changed remains controversial. At the same time, there has been
a rise in the viewing of an expanding number of television chan-
nels, the majority of which are highly dependent on food and
soft drink advertising revenue (Wells et al., 2008; Charreire et al.,
2011). Nevertheless, whether there have been consistent increases
in total food or specific nutrient intakes over the past 20–30 years
is unclear. There is not strong evidence of a significant increase
in food consumption with both intake of both total energy and
fat decreasing in many age groups (Garriguet, 2007; Stahl et al.,
2009). These secular trends are dependent, in part upon, gender
(Popkin et al., 1989), socioeconomic class (Hulshof et al., 2003)
and the industrial status of a country (Kearney, 2010). It should
also be recognized that accurate data of food intakes can be very
challenging when it is largely based on information gathered from
questionnaires. Importantly, to date, the relative contributions of
diet and exercise in the etiology of obesity remain inconclusive
(Bleich et al., 2011).

Further changes in living environments have included the
increased use of central heating, air conditioning and artificial
lighting (Keith et al., 2006) in combination with global changes
in temperature and carbon dioxide concentrations which have
accompanied climate change and are predicted to further accel-
erate (Walker, 2006; Hansen et al., 2007). In the face of these
challenges, there is now evidence across a large spectrum of species
that mature body weight has increased over the past two decades
(Klimentidis et al., 2011), although it remains to be established
whether this equates with greater fat mass. There is also a social
divergence in the maternal age at first pregnancy. Teenage preg-
nancies occur in a significant proportion of girls from lower
socioeconomic classes with adverse early life experiences (Harden
et al., 2009). In marked contrast, women who are both better edu-
cated and more affluent tend to delay their first pregnancy until
much later in life (Tromp et al., 2011). Dietary intakes of these
groups of women are different (Knudsen et al., 2008) as is their
incidence of breast feeding. Some authors have considered that
the majority of established health benefits to the offspring are a
reflection of social class, together with maternal education (Kelly

Frontiers in Genetics | Epigenomics May 2011 | Volume 2 | Article 24 | 2

http://www.frontiersin.org/epigenomics/archive
http://www.frontiersin.org/epigenomics/


Symonds et al. The obesity epidemic: more than increased fat intake

and Watt, 2005; Skafida, 2009), rather than the result of maternal
milk as a primary source of nutrition. As families have become
smaller, the amount of investment in each offspring may further
promote excess fat mass (Liefbroer, 2009).

In view of the major changes in societal influences over the past
few decades, it is prudent to place much less emphasis on findings
from cohorts of children born at times of modest rates of child-
hood obesity when looking for contemporary explanations for the
rise in adult and childhood obesity over the last 15 years (Figure 1;
Reilly and Kelly, 2010).

CURRENT ANIMAL MODELS USED TO EXAMINE THE
CONSEQUENCES AND TREATMENT OF OBESITY
In the context of a lack of convincing evidence that total fat intake
alone has changed substantially in contemporary populations over
the past 20 years, there are very many rodent and non-human
primate models of obesity which simply increase the fat content
of the diet by between 5- and 10-fold whilst protein, and to a
much greater extent carbohydrate, content is substantially reduced
(Table 1). This may mean that although the diets appear broadly
comparable to human diets in the developed world in terms of
gross macronutrient content, their fat content is more dense. The
short-term responses to these diets are likely to be quite different to
those which may occur in response to those consumed by humans
and it is unlikely that such a dramatic and sustained increase in fat
consumption would occur in species with food choice. Although
promoting fat intake rapidly enhances fat mass and concomitant
changes in its molecular activity, it is perhaps not surprising that
some pharmacological interventions which have been successful
in rodent studies (e.g., rosiglitazone) appear to have deleterious
effects in humans which has resulted in the cessation of their use,
at least in Europe (Scheen, 2010).

The primary animal models for investigating obesity remain
mice and rats, with the former having the distinct advantage of
being open to substantial genetic manipulation. The latter often
results in pronounced differences at birth whose significance is
usually over-looked. For example, knockout of the uncoupling
protein (UCP)2 gene results in a reduced litter size (Rousset et al.,
2003). The translational relevance of the information obtained
must be considered with caution as there is now an increasing
awareness of the very artificial and constrained environment in
which these animals are raised (Martin et al., 2010). In addition,
it is becoming increasingly apparent that the gene profile of spe-
cialized tissues involved in energy balance, such as brown adipose
tissue (BAT), has a very different molecular signature in humans
compared with mice (Svensson et al., 2011). The critical role of
BAT will be considered in more detail below as there is increasing
data demonstrating that BAT activity is reduced in obese humans
(Vijgen et al., 2011).

Developmental studies in larger animal models have enabled
significant clinical advances such as in the use of glucocorticoids
to promote lung maturation in preterm infants (Olson, 1979;
Ballard, 1983). However, to date, despite some appreciable benefits
(Symonds et al., 2009), they are seldom used in nutritional studies.
Nevertheless, it is now possible to undertake genetic manipulations
in large mammals with a fascinating model of cystic fibrosis, for
example, now established in the pig (Rogers et al., 2008; Meyerholz

et al., 2010). One obvious reason for the limited use of these models
is their much longer time scale and consequent expense despite the
results of studies conducted during early life being of potentially
greater relevance.

There is now a clear need to undertake complementary studies
across a range of mammalian species, both large and small reared
under a variety of environmental conditions and dietary regimes,
ideally throughout their life cycle.

ALTERNATIVE DIETARY MODELS OF OBESITY
In view of the hypothesis that maternal obesity could be an
important contributor to increased birth weight and fat mass
in the offspring (Sewell et al., 2006; Catalano, 2007) which in
turn results in offspring at increased risk of later obesity a num-
ber of animal models have attempted to replicate these findings.
This has included the more traditional approach of high-fat/low-
carbohydrate or low-protein diets which has quite different out-
comes between rodents and non-human primates (Khan et al.,
2003; Jones et al., 2009; McCurdy et al., 2009). In mice a high-
fat/low-carbohydrate diet does not affect maternal body weight
but increases near-term fetal, but not placental weight (Jones et al.,
2009). Consumption of a high-fat/low-protein diet sufficient to
increase maternal body weight by ∼10% in non-human primates
has no effect on birth weight or early postnatal growth but does
result in a modest increase in total body fat from 3.5 to 5.7%
by 90 days of age, although fat mass then declines by 180 days
of age (McCurdy et al., 2009). This species thus differs from
both humans and sheep in which substantial fat growth occurs
postnatally (Clarke et al., 1997; Budge and Symonds, 2006).

A number of other dietary formulations have also been investi-
gated in which the high-fat has been complemented with increased
intake of simple sugars, at the expense of protein and polysaccha-
rides (Kirk et al., 2009) or raised salt and less fiber (Bayol et al.,
2007). Neither of these diets appears to have any effect on birth
weight but do promote maternal weight gain. Not surprisingly the
longer the duration over which this type of diet is consumed the
greater the fat mass in the offspring (Bayol et al., 2008). Whilst
exposure to a high-fat/high-sugar diet both before, and through
pregnancy and lactation increases fat mass at the expense of mus-
cle in the adult offspring irrespective of gender (Samuelsson et al.,
2008). These types of responses are very different to those seen
when only the father is fed a high-fat/ low-carbohydrate diet in
which no effect on body composition is apparently seen in the
offspring, although females show modest β–cell pancreatic dys-
function at 12 weeks of age (Ng et al., 2010). It remains to be
shown if these symptoms persist, are truly gender specific and
ultimately accompanied by enhanced lipid deposition.

In the sheep, increased body mass can be induced by ad libitum
feeding over a comparatively short time prior to mating, although
this has no subsequent effect on birth weight (Wang et al., 2010). It
maybe that the metabolic changes observed in these types of small
and large animal models do not really reflect the changes seen in
obese women. For example, they would not be expected to show
such a remarkable magnitude of hyperinsulinaemia (e.g., a five-
fold increase in plasma insulin up to 25 μU/ml) that is maintained
through gestation as reported in obese pregnant sheep (Wang et al.,
2010). Indeed, the relative contributions of pre-pregnancy weight
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versus weight gain through gestation remain largely unexplored.
Interestingly allowing pregnant sheep to eat ad libitum from mid-
pregnancy increases birth weight but does not have a major effect
on maternal fat mass (Budge et al., 2000). Irrespective of these
nutritional and related factors it is clear that simply changing
maternal diet around the time of conception or during gesta-
tion will not provide a simple solution to the potential long-term
adverse outcomes of being born to a mother who is consuming
too much food (Symonds et al., 2010).

GENDER CAN MAKE A DIFFERENCE
It is becoming increasingly apparent that litter size, together with
gender can result in misleading conclusions in developmental
studies (Symonds and Budge, 2009). There are substantial dif-
ferences in body composition, particularly in fat mass and com-
position, which are apparent between genders and these occur
across a majority of species and can vary with age. In rodents and
other species, females reach their mature body weight much ear-
lier than males, who continue to grow and deposit fat for longer
(Symonds, 2007). Other gender differences in rodents include an
increased retention of BAT with age in females (Pearce et al.,
2003) in conjunction with increased “drive” to undertake exer-
cise (Cortright et al., 1997). These differences will have substantial
consequences for the control of energy balance with different path-
ways involved in males and females depending on whether a gene is
ablated or amplified and following a nutritional, or related, inter-
vention. There is increasing evidence from human clinical studies
that women are often protected from the adverse effects of sepsis
(Adrie et al., 2007) or obesity (Regitz-Zagrosek et al., 2006), for
example, at least until after the menopause (Shaw et al., 2008). As
such, with the increasing age of populations across the developed
world the need to not only consider gender but also age is likely to
become a priority although this clearly increases the costs of any
research project.

BROWN ADIPOSE TISSUE AS A TARGET OF WEIGHT
PREVENTION
A potential target tissue in the prevention of obesity, especially in
children, is BAT which is primarily located within the supraclav-
icular region and is uniquely able to rapidly generate heat due to
the presence of UCP1 (Cannon and Nedergaard, 2008; Cypess and
Kahn, 2010a,b). Heat production by BAT is 300 W/g compared to
1 W/g in all other tissues (Power, 1989; Symonds et al., 2011). It
has, therefore, been calculated that in adult humans only 40–50 g
of BAT would be required for it to be able to contribute to 20% of
daily energy expenditure (Rothwell and Stock, 1979, 1983). This
calculation is based on the assumption that BAT would be contin-
ually stimulated which is unlikely to be the case even with a severe
cold challenge of adults (van Marken Lichtenbelt et al., 2009). The
potential role of BAT in body weight regulation has returned to
the forefront of obesity related research since its discovery in adult
humans ∼3 years ago (Cypess et al., 2009; van Marken Lichtenbelt
et al., 2009; Virtanen et al., 2009; Lee et al., 2010). Its function does
appear to be greatly suppressed in obese adults (Vijgen et al., 2011),
but whether it can be reactivated in these individuals will become
a major challenge. The control of BAT has been extensively investi-
gated in rodents (Cannon and Nedergaard, 2004) and young sheep

(Symonds et al., 2003) but the extent to which these findings are
translatable to the human situation remains to be established.

DIURNAL AND PHOTOPERIODIC CHANGES IN METABOLIC
CONTROL AND THEIR CONTRIBUTION TO EXCESS FAT MASS
Rodents exhibit pronounced changes in their activity which
impact on metabolic control (Gimble and Floyd, 2009) and are
driven, in part, by photoperiod. Thus they are very active in the
night and sedentary through the day even when maintained under
laboratory conditions (Heldmaier and Steinlechner, 1981). This
is especially important when investigating energy balance and the
potential role of BAT which is much more active at night than
day (Rothwell et al., 1983; Stefanidis et al., 2009). Simply chang-
ing day length, therefore, has the potential to cause a pronounced
effect on body mass as a consequence of increased activity of the
BAT-specific UCP1 (Cannon and Nedergaard, 2004). Interestingly,
interventions targeted at manipulating heat production by this
tissue appear to only have an effect when the animal is active
(Stefanidis et al., 2009). At the same time, increasing the length of
time mice are exposed to light means they spend a greater propor-
tion of the day having to consume food under these environmental
conditions which can enhance white fat deposition and raise total
body weight (Fonken et al., 2010). This is accompanied by a blunt-
ing of the normal diurnal variation in plasma corticosterone in a
manner not dissimilar to that seen when access to food is limited
to a 12-h period of light (Zvonic et al., 2006). Under the latter con-
ditions, overall food intake and body weight remains unaffected
despite a resetting of circadian-controlled gene expression patterns
in brown and white fat and in the liver (Zvonic et al., 2006).

Nocturnin is one potential factor which has been implicated
in the diurnal cycling of mRNAs through regulation of deadeny-
lase and exhibits a 100-fold change in abundance between night
and day (Wang et al., 2001). Deletion of this gene reduces physical
activity and body temperature in conjunction with an apparent
reduction in efficiency of food absorption such that body weight
is reduced despite a similar food intake to controls (Green et al.,
2007). Effects on gene expression of important metabolic genes
such as peroxisome proliferator-activated receptor (PPAR)γ, sterol
regulatory element-binding protein-1c and steroyl-CoA desat-
urase are only apparent when the mice are challenged with a
high-fat diet which also causes a much more pronounced diur-
nal variation in gene expression. Nocturnin knockout mice only
show a transient and small reduction in body fat whilst UCP1
gene expression is unaffected (Kawai et al., 2010). Taken together,
these findings suggest that the animal is able to compensate for the
absence of nocturnin by other mechanisms related to the control
of circadian rhythms, thus emphasizing the complexity of these
processes.

A majority of mammals including humans can show marked
seasonal variations in body weight which also appear to be driven
by changes in photoperiod (Heldmaier and Steinlechner, 1981).
One hormone which is highly responsive to changes in day length
is prolactin, a hormone which regulates a wide range of biologi-
cal processes essential for the development of mammals including
gonadal function and reproduction, mammary development and
lactation, adrenal and pancreatic endocrine secretion and metab-
olism (Goffin et al., 2002). It acts through a specific prolactin
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receptor (PRLR) which has at least three isoforms expressed in
both BAT (Symonds et al., 1998) and white adipose tissue (Ling
et al., 2000) and has been implicated in the regulation of adipose
tissue mass (Freemark et al., 2001). Two recent genome-wide asso-
ciation studies have identified a variant (rs4712652) adjacent to the
prolactin gene which is associated with excess body weight (Meyre
et al., 2009; Nilsson et al., 2011). Furthermore, as may be expected
for a gene which is closely involved in reproductive function, this
relationship is gender specific with the risk A allele of rs4712652
being strongly correlated with body mass index and fat mass in
males but not females (Nilsson et al., 2011).

Previous clinical studies have demonstrated that correction of
hyperprolactinaemia in humans acts to normalize body weight,
although it has a much greater effect on reducing excess body
weight in males compared to females (Greenman et al., 1998).
However, obese females with a normal prolactin profile do benefit,
at least in the short term, from a reduction in prolactin secretion
achieved following administration of the dopamine D2 receptor
agonist bromocriptine (Kok et al., 2006). This intervention pro-
motes both lipolysis and heat production, adaptations which may
also be indicative of enhanced BAT thermogenesis. The latter may
be important as BAT is retained into adult life in humans when the
main supraclavicular depots is accompanied by additional deposits
in the paraspinal and suprarenal regions (Cypess et al., 2009; van
Marken Lichtenbelt et al., 2009; Virtanen et al., 2009).

Currently, very little is known about the primary factors which
control UCP1 function within BAT depots in humans, although
photoperiod is one potential factor (Au-Yong et al., 2009) which
could be mediated through changes in prolactin. The extent to
which photoperiod, as opposed to ambient temperature, is a pri-
mary regulator of BAT function remains uncertain. Photoperiod
can determine BAT activity irrespective of ambient temperature,
an effect which is enhanced in the cold (Klingenspor et al., 1989;
Wiesinger et al., 1989) suggesting different long- and short-term
regulation of BAT activity. It should also be noted that during nor-
mal development in the sheep, an increase in PRLR abundance is a
vital stage in fetal BAT development (Symonds et al., 1998, 2011).
Moreover, in the newborn sheep, direct stimulation of the PRLR
promotes BAT thermogenesis (Pearce et al., 2005). These results
have been confirmed in a mouse PRLR knockout model which
demonstrated that in mice lacking PRLR, BAT growth and devel-
opment was severely impaired, as was the expression of a number
of brown adipogenic genes including UCP1 (Viengchareun et al.,
2008). Prolactin, acting through the PRLR, may, therefore, have
a primary role in regulating fetal BAT development and its ther-
mogenic activity, a relationship which may extend into adulthood.
Importantly this system is responsive to a range of environmental
stimuli and not only dietary challenges.

EPIGENETIC REGULATION OF ADIPOSE TISSUE FUNCTION
We are just starting to appreciate epigenetic regulation and its
potential regulation of the long-term determination of energy
homeostasis. Although there is one study in which large changes
in methyl status of the diet can shift coat color of agouti-mice
(Waterland and Jirtle, 2003), this has very little effect on the frac-
tion of normal weight mice and the number of overweight animals.
Any accompanying effects on energy balance are likely to be very

modest and do not readily support a strong role for epigenetics
in regulating adipose tissue function (Symonds, 2009). Obesity
induced by consumption of a high-fat sucrose diet in 8-week-old
rats also fails to induce any detectable effects on the methyla-
tion status of genes related to energy homeostasis within the liver
(Lomba et al., 2010). It is becoming apparent that simply looking at
methylation status of individual genes in one tissue (Lillycrop and
Burdge, 2011) is much less informative than more robust global
assessments (e.g., using the HELP assay) in tissues that have a
defined role in phenotypic outcome such as the pancreas (Thomp-
son et al., 2010). They can be accompanied by changes in enhanced
enrichment of H3K27me3 that could be critical in determining
the age-related decline in pancreatic function and thus onset of
type 2 diabetes (Sandovici et al., 2011). These findings emphasize
the point that simply measuring fractional methylation of a gene
only provides very limited in-sight into the pathways involved.
Furthermore, there is not a close relationship between changes in
methylation status and genes expression during development, at
least in the rodent liver (Waterland et al., 2009).

To date, the most persuasive rodent model for a role of an epi-
genetic presetting of energy metabolism comes from a knockout
of the histone H3k9-specific demethylase Jhdma2a which results
in increased body weight after 8 weeks of age (Inagaki et al., 2009).
This effect appears to be mediated by a reduction in the amount
of BAT making the animals more susceptible to cold induced
hypothermia and less able to oxidize fat primarily due to a disrup-
tion of β-adrenergic stimulation (Tateishi et al., 2009). Moreover,
effects on metabolism become most apparent during the end of the
night phase when activity levels in knockout animals are less vari-
able (Inagaki et al., 2009). Interestingly, Jhdm2a can also directly
regulate PPARα and UCP1 expression, such that the obesogenic
effects of knocking out this histone demethylase are specific to
BAT and muscle and not accompanied by increased food intake
or changes in metabolic hormone profiles (Tateishi et al., 2009). A
potential role for Jhdm2a in early development of BAT remains to
be established although knockout animals are infertile and exhibit
impaired spermatogenesis (Okada et al., 2007, 2010).

EXPERIMENTAL MODELS OF THE OBESITY RELATED Fto
GENE AND ITS POTENTIAL CONTRIBUTION TO FAT MASS
Another factor, linked to nucleic acid stability, which plays a role
in obesity, comes with the discovery of the Fto gene. Fto is one
highly topical example of the substantial phenotypic differences
obtained within mouse models which either knockout (Fischer
et al., 2009; Gao et al., 2010) or increase copy number (Church
et al., 2010). The obesity-associated Fto gene is particularly intrigu-
ing as it is much more closely linked to body mass index than any
other single nucleotide polymorphism identified (Frayling et al.,
2007), although this relationship may be age dependent and not
linked to detectable differences in energy balance (Hakanen et al.,
2009). Moreover, Fto encodes a 2-oxoglutarate-dependent nucleic
acid demethylase which is involved in the production of succinate,
formaldehyde and carbon dioxide (Gerken et al., 2007). Inacti-
vation of Fto reduces body weight from 2 days after birth which
persists for the duration of the study and is, therefore, indicative
of very early growth failure. The latter would be predicted to be
accompanied with reduced fat stores (Fischer et al., 2009). This
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sustained long-term outcome does not appear to be due to any
difference in food intake and whether it was caused by increased
energy expenditure as opposed to reduced energy stores has yet
to be detailed. Interestingly this finding has not been supported
by a more recent study using a comparable model (Gao et al.,
2010). Moreover, the site of Fto knockout, i.e., global or confined
to the central nervous system, appears to have a marked gender
specificity in effects of postnatal growth (Fischer et al., 2009; Gao
et al., 2010). Consequently, accompanying differences in activity
with gender may be one explanation as to why Fto knockout mice
exhibit a substantial reduction in night-time, but not day-time
activity.

The opposite effect of ablating the Fto gene has also been exam-
ined very recently by increasing tissue copy number (Church et al.,
2010). One surprising aspect of this study is that the relative abun-
dance of Fto within the hypothalamus was similar to all other
tissues (Church et al., 2010) rather than being two- to fourfold
higher as in other publications across a number of species (Gerken
et al., 2007; Sebert et al., 2010). Furthermore, the greatest increase
in relative expression was within skeletal muscle (Church et al.,
2010), the only other tissue established to date to show an age-
related increase in expression between birth and adulthood, at
least in sheep (Sebert et al., 2010). Such differences in gene expres-
sion do not appear to be translated into protein, as Fto protein
abundance in all tissues studied to date appears to be completely
unresponsive to a range of dietary challenges (Gao et al., 2010).
From a developmental view-point, it is noteworthy that mRNA
abundance of Fto in the placental is positively correlated with fetal
weight in the sheep (Sebert et al., 2010) further supporting a role
for Fto in early growth (Bassols et al., 2010).

Increased Fto copy number was, perhaps surprisingly, accom-
panied with increased food intake (Church et al., 2010), a response
which is opposite to that seen with increased hypothalamic gene
expression in large mammals (Sebert et al., 2010). One explana-
tion for the change in food intake is that Fto copy number was
accompanied by leptin resistance, exacerbating the obese pheno-
type (Church et al., 2010). This contrasts with the effect of deleting
the Fto gene in which no interaction between plasma leptin and
Fto gene expression in the hypothalamus was seen (Gerken et al.,
2007). It is apparent that with increased Fto copy number females

are less responsive to being fed a high-fat diet which reduces food
intake but promotes fat deposition (Church et al., 2010). The
extent to which this may relate to differences in Fto gene expres-
sion between specific tissues or hypothalamic sensitivity which
could also contribute to greater activity in females remains to be
explored. As summarized in Figure 2 the Fto gene has multiple
roles for which the primary signals and outcomes remain to be
further defined.

In conclusion, the current obesity epidemic reflects mul-
tiple interactions between our lifestyle and inherited genetic
background. Clearly, the type of diet consumed and a lack of
physical activity will promote obesity especially in a constant
thermoneutral environment. Nonetheless, this does not replicate
epidemiological observations. Both the causes and the conse-
quences of obesity are dependent on multiple factors which need
to be understood in much more detail to enable effective preven-
tion and treatment. This will depend on our ability to unravel the
interactions between gene and environment during critical win-
dows of susceptibility that includes early life. Our review aims to
encourage a greater multidisciplinary, multispecies, approach and
the need to develop more relevant and thus complex models of
obesity.

FIGURE 2 |The FTO gene – future research challenges. Summary of the
main effects and regulators of the Fto gene and its potential role in the
onset of obesity.
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