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By linkage mapping of quantitative trait loci, we previously identified at least 11 natural
genetic variants that significantly modulate Caenorhabditis elegans life-span (LS), many
of which would have eluded discovery by knock-down or mutation screens. A region on
chromosome IV between markers stP13 and stP35 had striking effects on longevity in
three inter-strain crosses (each P < 10−9). In order to define the limits of that interval, we
have now constructed two independent lines by marker-based selection during 20 back-
cross generations, isolating the stP13–stP35 interval from strain Bergerac-BO in a CL2a
background. These congenic lines differed significantly from CL2a in LS, assayed in two
environments (each P < 0.001). We then screened for exchange of flanking markers to
isolate recombinants that partition this region, because fine-mapping the boundaries for
overlapping heteroallelic spans can greatly narrow the implicated interval. Recombinants
carrying the CL2a allele at stP35 were consistently long-lived compared to those retain-
ing the Bergerac-BO allele (P < 0.001), and more resistant to temperature elevation and
paraquat (each ∼1.7-fold, P < 0.0001), but gained little protection from ultraviolet or peroxide
stresses. Two rounds of recombinant screening, followed by fine-mapping of break-points
and survival testing, narrowed the interval to 0.18 Mb (13.35–13.53 Mb) containing 26 puta-
tive genes and six small-nuclear RNAs – a manageable number of targets for functional
assessment.
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INTRODUCTION
Longevity is largely under genetic control in all animal species
studied, with genetic factors contributing roughly half of life-
span (LS) variance in Caenorhabditis elegans (Johnson and Wood,
1982; Ebert et al., 1993, 1996; Ayyadevara et al., 2001, 2003). Spe-
cific genes controlling LS were first discovered through screens
for long-lived mutants of C. elegans (Klass, 1983; Yang and Wil-
son, 1999) or from study of mutants originally noted for other
phenotypes in this nematode (Apfeld and Kenyon, 1999; McEl-
wee et al., 2004; Morley and Morimoto, 2004; Hansen et al.,
2005; Ayyadevara et al., 2008). Longevity effects were subsequently
observed for orthologous genes in yeast, Drosophila, and mice

Abbreviations: BO, C. elegans var. Bergerac-BO (here, strain RW7000 from R.
Waterston); cDNA, complementary DNA; CL2a, C. elegans var. Cl2a (here strain
DR1345 from D. Riddle); LS, life-span, MLS, maximum life-span (i.e., the life-
span of the last-surviving worm in a cohort); N2, C. elegans var. Bristol-N2
(here, subline N2-DRM from D. Riddle); NC, no change; NGM, nematode growth
medium; NS, not significant; PCR, polymerase chain reaction; QTL, quantitative
trait locus; RNAi, RNA interference; RT-PCR, real-time, reverse-transcriptase poly-
merase chain reaction; SD, standard deviation; SEM, standard error of the mean;
SNP, single-nucleotide polymorphism; UV, ultraviolet.

(Guarente and Kenyon, 2000; Tatar et al., 2001; Barbieri et al.,
2003; Quarrie and Riabowol, 2004; Wood et al., 2004; Curtis et al.,
2007; Kim, 2007; McElwee et al., 2007; Taguchi et al., 2007; Zahn
and Kim, 2007). Life-extending mutations in the nematode com-
prise several distinct pathways, although considerable evidence
implies convergence or cross-talk among those genetic circuits
(Kondo et al., 2005; Berdichevsky et al., 2006; Gami et al., 2006;
Matsumoto et al., 2006; Troemel et al., 2006; Greer et al., 2007;
Shmookler Reis et al., 2009; Tazearslan et al., 2009).

Multiple genetic elements, jointly controlling a complex pheno-
type such as longevity, can be resolved by identification of naturally
occurring polymorphisms – allelic variants at quantitative trait loci
(QTLs) – that influence the aging process. Analysis of QTLs may
reveal gene-sequence alternatives that arose by natural selection
in diverse environments and genetic backgrounds during evolu-
tion. At least some of these genes might be quite distinct from
those implicated in mutagenesis studies, and may interact in allele-
specific combinations (Larsen et al., 1995) inferable from polygene
mapping data.

Life-span QTLs were first mapped via linkage in C. elegans
(Ebert et al., 1993, 1996; Shook et al., 1996; Shook and Johnson,
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1999; Ayyadevara et al., 2001, 2003), soon followed by parallel
interval-mapping studies in Drosophila (Nuzhdin et al., 1997;
Leips and Mackay, 2000; Pasyukova et al., 2000; Vieira et al., 2000;
Reiwitch and Nuzhdin, 2002; Geiger-Thornsberry and Mackay,
2004), including a trait-extreme genotyping strategy (Luckinbill
and Golenberg, 2002) similar to ours. The Mackay group has iden-
tified genetic variants that interact with one another and with
known candidate-gene mutants to jointly influence Drosophila
longevity (Geiger-Thornsberry and Mackay, 2004; Pasyukova
et al., 2004; Magwire et al., 2010), whereas genome-wide associa-
tion in humans has implicated many candidate genes contributing
to complex signatures that predict extreme-longevity (Beekman
et al., 2010). It has long been predicted that genes which influence
longevity would exhibit antagonistic pleiotropy, wherein alleles
that are beneficial to early survival or fecundity are detrimental to
survival later in life (Kirkwood and Rose, 1991; Rose et al., 2002).
Evidence has accumulated indicating pleiotropy of many genes
for age- and stress-related traits, and a subset of these which show
“antagonism” between longevity and early fecundity (Ebert et al.,
1993, 1996; Shook and Johnson, 1999; Ayyadevara et al., 2001,
2003; Leips et al., 2006; Magwire et al., 2010). Pleiotropy between
stress-survival traits and longevity has been found repeatedly, evi-
denced both by coincident mapping of QTLs (Shmookler Reis
et al., 2007) and by the observation of extended LS in mutants
or drugs initially screened for a specific stress-resistance (Sam-
payo et al., 2000; Benedetti et al., 2008), or vice versa (Ayyadevara
et al., 2008; Onken and Driscoll, 2010; Shmookler Reis et al., 2011).
Although such pleiotropy is predominantly concordant, it can also
be antagonistic (Magwire et al., 2010); that is, the longer-lived allele
is usually but not always the more stress-resistant allele.

In the nematode, we positioned at least 11 QTLs that
strongly and significantly affect longevity in four independent
cross-progeny populations arising from three pairings of wild-
type strains. For each cross, a high-transposon “marker” strain,
Bergerac-BO (∼500 Tc1-insertions), was crossed to a low-
transposon strain, either Bristol-N2, CL2a, or RC301 (each hav-
ing 25–35 Tc1 elements). Additional crosses using DH424 as
the high-copy strain produced results identical to those employ-
ing Bergerac-BO (Ebert et al., 1996), and direct comparison
of Tc1-insertion sites implied a recent laboratory derivation of
DH424 from Bergerac-BO (Egilmez et al., 1995). Many marker
pairs showed highly significant interactions (Ayyadevara et al.,
2003), lending support to the concept that longevity in nat-
ural populations depends on interactive networks of polymor-
phic genes (Leips and Mackay, 2002; Ayyadevara et al., 2003;
Geiger-Thornsberry and Mackay, 2004). One or two QTLs on
chromosome IV, initially termed lsq4a, b (Ebert et al., 1993,
1996; Ayyadevara et al., 2001, 2003; Shmookler Reis et al., 2007)
but here designated as lsq4, were highly significant in five stud-
ies of aging cohorts comprising segregants from three distinct
inter-strain crosses. Peak LOD scores for longevity were 3.9–
16.3, well above the P < 0.01 genome-wide significance thresh-
old (which permutation tests placed at LOD ∼3.5). QTL peaks
on chromosome IV, from all three strain pairings, are illus-
trated in Figure 1 (data compiled from Ebert et al., 1993;
Ayyadevara et al., 2001, 2003). They appear to define two adja-
cent QTLs: lsq4a between −8 and +2 on the genetic-map

FIGURE 1 | Composite of multiple mappings for crosses between

Bergerac-BO (a common reference strain with >500 transposon

markers) and other C. elegans strains. Data are drawn from references
(Ebert et al., 1993; Ayyadevara et al., 2003, 2001). The Bristol-N2 × BO cross
was analyzed by non-parametric interval mapping, which produces Z
scores as output (right ordinate), while the others (RC301 × BO and two
independent CL2a × BO crosses) were analyzed by categorical trait
interval-mapping (Ayyadevara et al., 2003), for which likelihood results are
generated as LOD scores (log of odds ratio; green curves refer to the left
ordinate). Note that the RC301 × BO data shown here correspond to the
same cross presented previously (Ayyadevara et al., 2001), but reanalyzed
by our categorical trait interval-mapping procedure (Ayyadevara et al., 2003).
Dashed horizontal lines indicate empirical P = 0.01 false-positive thresholds
based on 1000 interval-mappings, permuting genotype with respect to LS.

(upper axis scale in Figure 1) and lsq4b between +2 and +8.
Both loci showed a significant interaction with stP127 (chro-
mosome III), affecting Darwinian fitness (Bonferroni-adjusted,
genome-wide P < 0.05 in both young and longevity-selected
worms); however, no interactions affecting LS were significant
between lsq4 and any other marker locus tested (Ayyadevara et al.,
2003).

We now describe the construction of congenic (near-isogenic)
lines spanning this LS QTL region, by marker-directed selection
during 20 generations of backcrossing, and the isolation of recom-
binants to dissect the interval. The results confirm the existence of
a longevity QTL close to the dimorphic sTP35 marker, with signifi-
cant effects on median and “maximal” (90th-percentile) longevity.
Less extensive backcrossing in the opposite direction also implies
the presence of a LS locus near sTP35. The same region of chromo-
some IV modulates thermotolerance and paraquat resistance by
almost twofold, but has far less influence on resistance to hydrogen
peroxide or ultraviolet (UV) irradiation.

High-throughput genetic fine-mapping (Ayyadevara et al.,
2000a,b), coupled with SNP discovery and analysis in this region,
greatly increased marker coverage and map resolution,defining the
genetic boundaries of introgressed chromosome segments in seven
lsq4 recombinants. By comparing longevity and stress–response
data among strains with overlapping“foreign”(heteroallelic) chro-
mosomal segments, we were able to assign the QTL to a discrete
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0.3-Mb interval. A second round of recombinant screening further
narrowed this span to less than 0.2 Mb, providing a manage-
able set of positional candidate genes to examine for expression
and coding-sequence differences, and to test for functional con-
sequences of altered expression – results that will be presented
elsewhere (Ayyadevara et al., submitted).

RESULTS
SURVIVAL ANALYSIS OF BACKCROSSED LINES
Since QTL-mapping in several C. elegans inter-strain crosses had
indicated the existence of a natural polymorphism, termed lsq4,
near the center of chromosome IV with strong effects on longevity
and stress-resistance (Ebert et al., 1996, 1993; Ayyadevara et al.,
2003, 2001; Shmookler Reis et al., 2007), we attempted to define
that region by isolating genetic recombinants from a cross between
strains CL2a (DR1345) and Bergerac-BO (RW7000), after 20 gen-
erations of marker-directed backcrossing into CL2a to remove
most of the Bergerac-BO-derived DNA not tightly linked to lsq4.
Figure 2A shows survival curves in liquid suspension culture for
strain CL2a, and for two congenic lines (SR700 and SR701) in
which the lsq4 interval from strain Bergerac-BO replaced that
segment of the CL2a genome. CL2a had a median adult LS of
15.5 days, 24% longer than either congenic line [12.5 days; each
P < 0.001 by Cox–Mantel test (Lee and Wang, 2003)].

Very similar allelic effects on LS were seen when worms were
maintained on the surface of solidified agar medium, demon-
strating that the difference in longevity between lsq4 alleles is
not restricted to a specific environment. Survival curves on agar
(e.g., Figure 2B) indicate a median LS of 17.5 days for CL2a,
3 days (20%) longer than either SR700 or SR701 (each P < 0.001).
For either genotype, median LSs were 2–3 days (17–21%) longer
on agar than in liquid medium, while 90th-percentile and max-
imal survival times benefited considerably more from growth
on agar: 8 days (42%) for CL2a, and 7–8 days (47–52%) for the
lsq4-congenic lines.

The converse introgression, of the CL2a allele into a Bergerac-
BO background, is more difficult for technical reasons – i.e.,
infertility of Bergerac-BO males, and the need to score loss rather

than gain of transposable-element markers, against a background
of several hundred nearly identical transposon insertions (Egilmez
et al., 1995). Nevertheless, we were able to conduct a limited
backcross over three generations, sufficient to reduce the CL2a
contribution on other chromosomes (or on distal parts of chro-
mosome IV) by ∼94%. Survival assays were then conducted on
agar medium. As shown in Figure 3, retention of a CL2a seg-
ment including both stP44 and stP35 (the “center-right” of the
lsq4 interval as initially defined) extended median LS from 15.5 to
18 days, while a CL2a region just to the left of this (“lsq4L,” includ-
ing marker stP13 but not stP44 or stP35) reduced it to 14 days.
Thus, the CL2a allele of lsq4 again conferred ∼2.5 days (16%)
longer median LS than the Bergerac-BO allele. These data imply
that the major longevity QTL on chromosome IV resides in the
center-right portion of this interval (Figure 3). Although they also
suggest the existence of a weaker, countervailing QTL to its left,
the survivals for Bergerac-BO and the lsq4L recombinant did not
differ significantly (Figure 3) or reproducibly.

These data decisively confirm the presence of a longevity QTL
on chromosome IV between the markers stP13 (−2 cM) and stP35
(+10 cM), a span encompassing more than 1000 genes. Evidence
from recombinants, as described above, can partition that interval.
In order to define and narrow the region implicated in the more
tractable CL2a background, recombinants were selected based on
loss of the introgressed (BO-allele) marker near either the left
(stP13) or right (stP35) end of the QTL region, as indicated
by marker-specific polymerase chain reaction (PCR). An inter-
mediate marker, stP44, provided additional information useful
in comparing recombinants. We thus created seven independent
recombinant-congenic lines: three retaining BO-alleles at the left
and center markers (stP13, stP44), three retaining only the right-
most marker (stP35), and one with both the center and right hand
markers (stP44, stP35) introgressed from the BO strain.

SURVIVAL ANALYSIS OF lsq4 RECOMBINANTS
Figure 4 illustrates survivals in liquid medium for two indepen-
dent assays of lsq4 recombinants, with median and maximum LSs
summarized in Table 1. Within each experiment the recombinants

FIGURE 2 | Survivals of C. elegans wild-type strain CL2a, and two

congenic lines derived from CL2a by introgression of the

chromosome IV stP13–stP35 region from Bergerac-BO. SR700 and
SR701 are independent congenic lineages generated by 20 generations of
backcrossing, with marker-based selection of the Bergerac-BO allele for
stP13, stP44, and stP35. Homozygotes for the introduced lsq4 region were
ascertained, expanded, and used to measure survival at 20˚C. (A) Survivals

in liquid medium. (B) Survivals on solid agar medium. Protocols for
nematode culture, scoring, and survival analysis are described in the
“Materials and Methods” section. Each survival group was initiated with
56–70 worms at late L4, on two plates; after exclusion of censored losses,
total numbers of natural deaths ranged from 50 to 65. Adult age is
measured from the L4/adult molt; total age is the indicated “adult age” plus
2.5 days for all strains.

www.frontiersin.org September 2011 | Volume 2 | Article 63 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Genetic_Architecture/archive


Vertino et al. Longevity and stress-resistance QTL

FIGURE 3 | Survivals of C. elegans wild-type strain Bergerac-BO, and

two recombinant-congenic lines derived from Bergerac-BO by

introgression of stP13–stP35 segments from chromosome IV of CL2a.

The lineage designated “4L” retained the Bergerac-BO allele only at marker
stP44, while the “lsq4 (center-right)” cohort retained the Bergerac-BO allele
for stP13 and stP35. Homozygotes for the introduced lsq4 region were
ascertained, expanded, and used to measure survival at 20˚C. Procedures
for nematode culture, scoring, and survival analysis are described in
Experimental Procedures. Each survival began with 60–65 worms in two
dishes, cultured on agar medium. Adult age is measured from the L4
larval-stage; total age is the indicated adult age plus 3 days, for
Bergerac-BO and strains derived by backcrossing into it.

fell into two groups, for which survivals closely followed those of
either CL2a or the short-lived lsq4-congenic line, SR701. Recom-
binant lines SR705, SR706, and SR707 had median post-larval
LSs of 14.5–16.5 days in both experiments, not significantly dif-
ferent from the CL2a parental strain (median LSs of 14.5 and
16.5 days in repeat survivals; each P ≥ 0.7 by Cox–Mantel test). In
contrast, median adult survival for the lsq4-congenic line SR701
was 3 days less than that of CL2a in each experiment, and recom-
binants SR708, SR709, SR710, and SR711 all fell in the same range
– with medians for this group averaging 11.7 ± 0.4 days (±SD)
in the first assay, and 12.9 ± 0.5 days in the second. The other
recombinants, along with CL2a controls, survived for 24 and 28%
longer (means of medians were 15.3 ± 1.0 and 16.0 ± 0.6 days in
the respective experiments). Every strain in the short-lived cluster
differed significantly from CL2a by Cox–Mantel test, with each
P < 0.001, and a combined P (comparing the clusters by t -test,
both experiments combined) of <2 × 10−6.

In a similar way, we demonstrated highly significant differences
between the two clusters, in two measures of maximal longevity.
The 90th-percentile values for the long-lived group (CL2a, SR705,
SR706, SR707) averaged 25.8 ± 0.5 and 25.5 ± 0.8 days in the two
experiments, 35–44% greater than the shorter-lived group (SR701,
SR708, SR709, SR710, and SR711) which respectively averaged
17.9 ± 0.9 and 18.9 ± 1.1 days (combined P < 2 × 10−11). The
maximum life-span (MLS; maximal LS, defined as the survival
time of the last worm to die in a cohort) for the long-lived cluster
averaged 31.3 ± 1.3 and 31.0 ± 1.0 days in the two assays, 35–37%
greater than the short-lived group which averaged 23.1 ± 1.1 and
22.7 ± 0.8 (each t -test P < 10−11).

FINE-MAPPING ANALYSIS BY ANCHOR-PCR DISPLAY
We analyzed the seven independent recombinants by a fine-
mapping technique developed in our laboratory (Ayyadevara et al.,
2000a). In this procedure (see Materials and Methods for details),
DNA sequences adjacent to Tc1 transposons were amplified by
“anchor-PCR” using a nested-primer protocol with fluor-tagged
primers in the second stage. Products were visualized on gels,
and employed as genetic markers based on presence or absence
in recombinants. Using this method, 26 new dimorphic markers
(i.e.,±Tc1) were found and positioned between stP13 and stP35 by
routine genetic-mapping – ignoring uninformative marker bands
common to parental strains CL2a and SR701. The resulting data
array, comprising seven recombinant lines typed for 29 markers
(26 new and three previously assessed markers, stP13, stP44, and
stP35), implies a unique ordering of the markers into 10 groups as
indicated at the bottom of Figure 4C (striped bars labeled T7, C1,
C2, C3, etc.). Markers within a given group are not necessarily in
close physical or genetic proximity, but were not resolved by this
set of seven recombinants; that is, no recombination break-points
fell within that group. Because SR708, the smallest introgression
mapped, carries the BO-allele trait for lsq4 (shorter LS), whereas
SR706 does not, the QTL is inferred to lie between markers G7
and T6, in the vicinity of stP35, G1, G2, and C4.

SNP MAPPING AND SECOND-ROUND SCREENING FOR
RECOMBINANTS
Single-nucleotide polymorphisms (SNPs), which occur roughly
one to nine times per kilobase pair between any two indepen-
dently isolated C. elegans strains (Koch et al., 2000), are the most
abundant form of genetic variation. Many such polymorphisms
were originally detected between strains Bristol-N2 and Hawai-
ian strain CB4856, but over 75% of 98 SNPs tested were shared
among multiple strains, and on average >3 of the 10 strains tested
carried the non-N2 allele (Koch et al., 2000). A subset of SNPs
(“snip-SNPs”) alter restriction cleavage sites, and thus are easily
and robustly assayed (Koch et al., 2000). “Snip-SNPs” and con-
ventional SNPs, including new SNPs discovered by intermittent
sequencing in regions devoid of reported SNPs, were assessed for
strain CL2a, the initial congenic line SR701, and congenic recom-
binants SR706, SR708, and SR709. Figure 5 illustrates sequencing
runs confirming the most proximal SNPs at which the SR708
sequence is identical to that of the recurrent-parental strain CL2a,
but differs from Bergerac-BO. SNP typing thus narrowed the LS
QTL interval from 1.2 to 0.3 Mb in length, extending from 13.35–
13.65 Mb on chromosome IV (Figure 4C). A second-round screen
(Figure 6) turned up four new recombinants in this area, placing
the QTL to the left of stP35 and reducing the implicated QTL
interval to less than 0.2 Mb (13.35–13.53 Mb; see Figure 6B).

STRESS-RESISTANCE ASSOCIATED WITH lsq4 ALLELES
Thermotolerance assay
Several of the recombinant-congenic lines, including those defin-
ing the limits of the lsq4 interval, were tested for thermotolerance,
operationally defined as survival time after transfer from 20 to
35.5˚C. Survival curves for these strains are shown in Figure 7A.
Although they mirror closely the order of survival under nor-
mal, isothermal conditions (20˚C), the differences among strains
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FIGURE 4 | Survivals of C. elegans wild-type strain CL2a, the lsq4-

congenic line SR701, and seven recombinants derived from SR701 during

two final generations of backcross to CL2a. These recombinants were
detected by loss of the Bergerac-BO allele at one or two of the lsq4 markers
(stP13, stP44, stP35 ), and homozygotes of each were ascertained, expanded,
and used to measure survival in liquid medium at 20˚C. (A,B) are independent
survival experiments conducted sequentially. Procedures for nematode
culture, scoring, and survival analysis are described in the “Materials and
Methods” section. Numbers of worms initiated and scored per survival,
median, and maximal life-spans, and significance of differences among the
groups, are summarized inTable 1. Adult age is measured in days following
the L4 larval stage; total age is therefore the indicated adult age plus 2.5 days.
(C) Diagram of lsq4 mapping data. Markers in the stP13–stP35 region are
indicated by vertical bars. Horizontal two-headed arrows represent
genetic-map spans of the introgressed (Bergerac-BO allele) regions, for

congenic line SR701 and seven recombinants thereof. Long-lived recombinant
lines (life-spans similar to CL2a) are named at the left, while those named on
the right were shorter-lived. The 26 new markers obtained by Anchor-PCR
Display, and three previously determined markers in this vicinity (Williams
et al., 1992), were ordered into 10 groups by the seven recombinant lines;
eight of these are indicated by cross-striped vertical bars. Based on these
data, the longevity QTL lies between marker groups G7 and T6 (shaded
rectangle, 13.15–14.33 Mb). Several of the SNPs in this region that distinguish
between parental strains are indicated by triangles at the figure bottom;
symbols are green/open if SR708 carries the CL2a allele; and red/filled if
SR708 carries the Bergerac-BO allele. SNPs shown here, named for YAC
clones in which they reside, are: snp_Y67H2A (13.27 Mb),
snp_W02A2/pkP4053 (13.35 Mb), snp_Y45F10A/pkP4059 (13.49 Mb),
snp_Y45F10B (13.55 Mb), snp_Y45F10C (13.65 Mb), snp_Y37A1A (13.83), and
snp_C27H2 (13.95). SNPs with “pkP” are snip-SNPs.

were accentuated by “heat shock.” The backcross parent CL2a and
recombinant SR706 had almost identical survival curves at 35.5˚C.
Their median survival times averaged 6.8 ± 0.1 hr, 70% longer
than any of the three short-lived strains (the original congenic
line SR701 and recombinant sublines SR708 and SR710) which
averaged 4.0 ± 0.4 h (mean of medians, ±SD). Each short-lived
strain differed significantly in survival from CL2a by log-rank
test, with P < 0.0001. These results place narrow bounds on a
gene affecting thermotolerance: it must lie between the SNPs that
define the limits of the BO-like segment in SR708 (snp_W02A2
– snp_Y45F10C), i.e., 13.35–13.65 Mb on Chromosome IV (com-
pare Figures 4C and 7E). Thus, to this level of resolution, the QTLs
for longevity and thermotolerance coincide, indicating that both
traits are very likely to be governed by the same gene.

Resistance to oxidative-stresses and UV light
The lsq4-congenic lines and their recurrent–backcross parent were
exposed to either paraquat or hydrogen peroxide to induce oxida-
tive stress via reactive oxygen species. Lsq4-congenic lines SR701
and SR708 (substituting the Bergerac-BO allele of lsq4 in a CL2a

background) were nearly twice as sensitive to paraquat as the
parental strain (Figure 7B; each P < 0.0001). The allelic effect, 1.8,
is comparable to that conferred by the oxidative-stress-resistant
daf-2(e1370) mutation (orange curve, Figure 7B). Based on the
phenotypes of recombinants tested, this trait also maps to the
identical interval as LS and thermotolerance. In contrast, hydro-
gen peroxide toxicity was essentially indifferent to the allele present
at lsq4 (Figure 7C). A fifth trait, the ability of worms to survive
UV radiation, was moderately improved (1.35-fold longer survival
time, P < 0.01) by presence of the CL2a rather than the BO allele
of lsq4 (Figure 7D), again mapping to the same locus. The same
allele improved survival in each of the four assays that registered
any effect: longevity, thermotolerance,paraquat resistance,and UV
resistance (Figure 7E) – consistent with these being pleiotropic
effects of an allelic change to a single gene.

DISCUSSION
Caenorhabditis elegans has provided a valuable model for studies
of the aging process, and many of the genetic modulators of LS
discovered in this nematode have proven to be conserved in other
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Table 1 | Survival data for lsq4 recombinant-congenic lines in liquid medium.

Strain N Lost Median life-span P 90th-percentile MLS

EXPERIMENT 1

CL2a 61 4 14.5 days – 25.5 days 29.5 days

SR705 63 3 16.5 days 0.8 25.5 days 32.5 days

SR706 64 2 15.5 days 0.7 25.5 days 31.5 days

SR707 61 6 14.5 days 0.7 26.5 days 31.5 days

Mean ± SD 15.25 ± 1.0 25.75 ± 0.5 31.25 ± 1.3

SR701 61 5 11.5 days <0.001 18.5 days 21.5 days

SR708 64 3 11.5 days <0.001 18.5 days 23.5 days

SR709 54 5 12.5 days <0.001 17.5 days 24.5 days

SR710 66 2 11.5 days <0.001 18.5 days 22.5 days

SR711 58 4 11.5 days <0.001 16.5 days 23.5 days

Mean ± SD 11.7 ± 0.4 17.9 ± 0.9 23.1 ± 1.1

EXPERIMENT 2

CL2a 62 3 16.5 days – 24.5 days 30.5 days

SR705 60 3 16.5 days 0.8 26.5 days 30.5 days

SR706 55 1 15.5 days 0.7 25.5 days 30.5 days

SR707 66 2 15.5 days 0.7 25.5 days 32.5 days

Mean ± SD: 16.0 ± 0.6 25.5 ± 0.8 31.0 ± 1.0

SR701 66 2 13.5 days <0.001 18.5 days 22.5 days

SR708 58 2 12.5 days <0.001 17.5 days 22.5 days

SR709 70 7 12.5 days <0.001 19.5 days 23.5 days

SR710 60 4 12.5 days <0.001 18.5 days 23.5 days

SR711 69 6 13.5 days <0.001 20.5 days 21.5 days

Mean ± SD: 12.9 ± 0.5 18.9 ± 1.1 22.7 ± 0.8

P values were determined in each comparison of CL2a to the congenic line SR701, or to any of the SR701-derived recombinants (SR705, SR706, SR707, SR708,

SR709, SR710, or SR711) by the Cox–Mantel test (Lee and Wang, 2003). All terms are defined as in the Table 1 legend.

metazoans including mammals (Bonafe et al., 2003; Hansen et al.,
2005; Curran and Ruvkun, 2007; Smith et al., 2007; Carrano et al.,
2009; Kapahi et al., 2010).

We previously estimated the broad-sense heritability of LS (H2)
in C. elegans to be ∼0.5 (Ebert et al., 1993, 1996). It appears that
no more than three dozen polymorphic genetic loci strongly affect
nematode longevity, and have contributed to evolutionary mod-
ulation of its LS (Ayyadevara et al., 2003). Although numerous
loci have been identified in C. elegans, at which mutations can
extend LS (Kenyon et al., 1993; Lithgow et al., 1995; Wong et al.,
1995; Lakowski and Hekimi, 1996, 1998; Tissenbaum and Ruvkun,
1998; Apfeld and Kenyon, 1999; Lin et al., 2000; Wolkow et al.,
2000; Lithgow and Walker, 2002; McElwee et al., 2004; Morley and
Morimoto, 2004; Hansen et al., 2005), most such mutations are
expected to reduce fitness under natural selection. Indeed, this
must be true in at least some environments, to explain the absence
of those long-lived alleles from wild-derived populations, where
they would have quickly become fixed if they conferred any fitness
benefit. Considering that wild-type alleles have been honed by
natural selection over countless generations, the likelihood must
be quite small that any given random mutation would improve
the primary function of the gene product. QTL mapping, in con-
trast, compares the effects of naturally occurring variants that have
already“proven” their benefit (or neutrality) with respect to fitness
selection. Among quantitative trait loci, the longer-lived allele may

also show reduced Darwinian fitness, but this is not true of most
such loci (Ayyadevara et al., 2003, 2008; Shmookler Reis et al.,
2007, 2009).

We have now demonstrated that a region on chromosome IV
near marker stP35 (genetic position + 10 cM; 13.53 Mb on the
chromosome IV physical map) contains a QTL polymorphism
affecting LS in C. elegans. The two tested alleles of this lsq4 poly-
morphism differ in longevity by 14–28%, whether worms were
maintained in liquid suspension culture or on agar, and with little
apparent regard for which parent provided the genetic background
(through recurrent backcrossing). Seven independent recombi-
nant lines derived from one of these congenic lines confirmed a
marked allelic effect on longevity; i.e., median longevities in the
longer-lived lines were 24–28% greater than those observed in the
shorter-lived group.

Fine-mapping of the seven recombinant lines by “anchor-PCR
display” (Ayyadevara et al., 2000a) expanded the initial set of three
dimorphic markers to a total of 29, covering the region from stP13
to just beyond stP35. The recombinants partition these 29 mark-
ers into 10 clusters or subregions, in a unique order, allowing the
position of lsq4 to be defined in absolute terms. Whereas inter-
val mapping can only indicate QTL location stochastically, as a
likelihood distribution (Ebert et al., 1996, 1993; Lynch and Walsh,
1998; Ayyadevara et al., 2001, 2003), mapping of congenic lines
and their recombinants sets true proximal-marker boundaries for
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FIGURE 5 | Sequencing data for single-nucleotide polymorphisms that

distinguish between parental strains Bergerac-BO and CL2a. SNPs are
shown only if informative to determine the parental origin of that site in

lsq4-congenic strain SR708. At the two indicated SNPs, Y45F10C at 13.65 Mb
and WO2A2 at 13.35 Mb, SR708 has the CL2a genotype, indicating that the
introgressed BO-like segment of SR708 must lie within that interval.

FIGURE 6 | Second-round screen for lsq4 recombinants. (A) Survivals of C.
elegans wild-type strain CL2a and three recombinant-congenic lines derived
from SR711 (see Figure 4) during three further generations of backcross to
CL2a. Recombinants were identified and endpoints mapped as described for
the initial screening cycle (see Figure 4). (B) Map based on survival data [(A)

and Figure 4], and fine-mapping of endpoints for introgressed (BO-derived)
segments. In addition to the three recombinant-congenic lines assessed in
(A), (B) summarizes fine-mapping and survival data for lines SR711, SR708,
and SR720 (Figure 4 and data not shown). Red lines a–h indicate positions of

eight informative SNPs mapped within the G7 – T6 interval; b–h correspond
to SNP triangles in Figure 4C). Lsq4 lies to the right of “c” (because
SR708 = CL2a at that marker, but carries the BO/shorter life-span trait of lsq4),
and left of stP35 (because SR723 = BO there but carries the CL2a/longer
life-span trait). PCR1 and PCR2 indicate polymerase chain reaction assays
used to genotype flanking markers G7 and T6, respectively, to ascertain
recombinants in sublines. PCR1 primers: F, 5′-ACTCTTCGAAGACAACTC-3′; R,
5′-TCTTCAGAATGCTCCGCC-3′. PCR2 primers: F,
5′-TTTGGAGAAGGGTGTAATGC-3′; R, 5′-GGAAGATTTGGAGAAGGGTG-3′.

the QTL, and allows their placement on the physical map. In this
case, lsq4 must lie between markers G7 and T6, situated at 13.15
and 14.33 Mb in the chromosome IV genomic sequence of C. ele-
gans (Figure 4), based on PCR sequencing of Tc1-flanking DNA in
the corresponding bands. Because markers G1, G2, and C4 always
agreed (i.e., were allele-concordant) with stP35, no further nar-
rowing of the interval is possible without adding new markers
and/or recombinants. We conducted simultaneous discovery and
typing of SNPs by determining genomic sequences for the initial

strains and all recombinants terminating within the G7–T6 inter-
val. The QTL interval was thus narrowed from 1.18 to 0.30 Mb, as
indicated in Figure 4C. At this level of resolution (∼0.3% of the
genome), resistance to stresses was shown to co-localize with the
lsq4 longevity QTL (Figure 7).

A second-round of recombinant screening further narrowed
the QTL interval for longevity. The introgressed, BO-derived seg-
ment in line SR706 includes snp_W02A2 from the left (Figure 4C),
while the BO-derived region in SR723 crosses stP35 from the right
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FIGURE 7 | Stress-survival assays. Worms of each line were grown as
synchronous cultures at 20˚C. Hermaphrodites were picked as L4 larvae
and tested as young adults 1–4 days later. Nematodes were scored as
dead if they failed to move spontaneously or in response to prodding.
SR701 is an lsq4-congenic line, retaining the Bergerac-BO-derived lsq4
region of chromosome IV in a CL2a background; CL2a is the parental
wild-type strain; and SR706, 708 and 710 are recombinant-congenic lines
derived from SR701 during the last two generations of backcrossing into
CL2a (see Figure 4). CB1370 is a daf-2 mutant strain bearing the e1370
hypomorphic allele (life-span ∼2× wild-type) in a Bristol-N2 background.
(A) Thermotolerance assays. Worms were picked as L4 larvae in groups of
≥50, onto agar/NGM plates, and tested as pregravid young adults 1 day
later. Survival was assessed at 2-h intervals during incubation at
35.5 ± 0.4˚C. (B) Paraquat resistance assays. Adult worms at 3 days

post-hatch were transferred in groups of 30 to liquid survival medium
without E. coli. After 30 min for digestion of enteral bacteria, paraquat was
added to a final concentration of 0–85 mM and replaced daily, with
assessment after 3 days at 20˚C. (C) Hydrogen peroxide resistance assays.
Congenic and recombinant-congenic lines, and parental strain CL2a, were
exposed to varying concentrations of hydrogen peroxide (0, 4, 6, 8, 10, and
12 mM). Mature adult hermaphrodites were treated and the number of live
worms was counted after 4 h of continuous exposure. (D) Survival of
ultraviolet (UV) irradiation. Groups of 30 worms, 4 days post-hatch, were
placed on agar plates without food at 20˚C, and exposed to ultraviolet light
at 0.4 joules/cm2. Worms were transferred to fresh plates seeded with E.
coli (var. OP50); viability was assessed as above at 20.0 ± 0.4˚C, at 1-day
intervals. (E) Schematic of QTL-mapping data for resistance to
temperature shift, paraquat or UV.

(Figure 4C), yet neither line differs from CL2a in longevity. Thus,
the QTL interval must be smaller than the span from snp_W02A2
(13.35 Mb) to stP35 (13.53 Mb), i.e., roughly 180 kbp. No further
rounds were attempted because as intervals shorten, the frequency
of further narrowing by recombination declines, requiring greater
effort to achieve diminishing returns.

In terms of effect on median LS, the lsq4 alleles differ by
19 ± 1.6% (for eight comparisons of CL2a to the initial congenic
lines, SR700 and SR701) or 31 ± 7% (for 10 comparisons of CL2a
to SR701 and four further-outcrossed recombinants, as listed in
Table 1). The difference between these estimates may reflect sep-
aration of lsq4 from nearby countervailing QTLs of lesser effect
(which are suggested by the data of Figure 3). In view of the
large number of QTLs influencing a highly polygenic trait such as
LS (Ayyadevara et al., 2003; Magwire et al., 2010), QTLs with such
large allelic effects must be exceptional. To place this in perspective,
an allelic effect on LS of 19–31% is comparable to those of many
mutations to “longevity genes,” most of which increase wild-type
survival by 10–50% (Friedman and Johnson, 1988; Malone et al.,

1996; Cypser and Johnson, 1999; Yang and Wilson, 1999; McKay
et al., 2004). With respect to thermotolerance survival time, the
≥1.7-fold difference between lsq4 alleles is actually larger than
effects observed for most longevity mutants (Duhon et al., 1996;
Shmookler Reis et al., 2007; Ayyadevara et al., 2008).

The 26 genes situated in the lsq4 interval encode some inter-
esting candidate proteins for which plausible functional roles in
longevity could be proposed. FAR-6, a fatty-acid/retinol binding
protein, is intriguing because of the known role of lipid com-
position in inflammation, innate immunity and longevity (see
Shmookler Reis et al., 2011 and references therein); it actually
lies immediately outside the lsq4 interval defined by SNP analyses,
but may be involved indirectly (see below). REC-8 is a “cohesin”
required for meiotic recombination (Ayyadevara et al., submit-
ted), and AGT-1 is an O6-alkyl-guanosine DNA-methyltransferase
important in DNA repair (Jena and Bansal, 2011); each could
contribute to longevity via the maintenance of genomic stability
(Garcia et al.,2010). Three putative transcription factors, including
MEX-5 (a dual-zinc-finger protein), could underlie some of the
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transcript-profile changes observed for longevity mutants (Gems
and McElwee, 2005; Kim, 2007; Ayyadevara et al., 2009). SRSX-
25 is a 7-transmembrane receptor of the rhodopsin family, while
NLP-17 is a putative neuropeptide; either may mediate sensory
signaling implicated in nematode longevity (Apfeld and Kenyon,
1999; Greer et al., 2008; McGrath et al., 2009). RPA-2 is a large
ribosomal subunit protein, PUF-3 a translational repressor, NOL-
9 a presumed nucleolar protein, and DCAP-2 an mRNA decapping
enzyme, each with the potential to extend LS by attenuating trans-
lation (Hansen et al., 2007). RAB-19 is a presumed RAS family
member, while TBC-9 has RabGAP/TBC homology; these two
members of the RAS (small monomeric GTPase) family may be
involved in age-dependent modulation of cell-membrane signal-
ing receptors (Nanji et al., 2005; Curran and Ruvkun, 2007; Lai
et al., 2007). MAU-8, a mitochondrial inner-membrane protein,
and a ferredoxin-like oxidoreductase, are electron transporters
involved in cell energetics as well as oxidative-damage defense
(Dillin et al., 2002; Lai et al., 2007). In addition, three protein
kinases and a putative phosphatase could affect longevity via
diverse signal-transduction pathways (Greer and Brunet, 2009;
Tazearslan et al., 2009).

Evidence presented elsewhere (Ayyadevara et al., submitted)
strongly implicates rec-8 as a dimorphic gene which (based on
transcript levels and the effects of their disruption by RNA inter-
ference, (RNAi) could account for all of the traits associated with
lsq4. Curiously, interference with expression of the far-6 gene
(lying only 20 kbp from rec-8) also increases longevity – although
somewhat less than rec-8 RNAi. It is not known whether life exten-
sion actually results from the combined effects of two dimorphic
longevity-affecting genes that are phase-coupled via tight link-
age, or arises solely from dimorphic rec-8 expression, with far-6
“artifactually” implicated through an indirect mechanism such as
transcriptional coupling (Wang et al., 2011).

MATERIALS AND METHODS
STRAINS
Caenorhabditis elegans strain CL2a (DR1345), isolated in Cali-
fornia in 1972, is a wild-type strain with 28 Tc1 transposons
embedded in its genome. Bergerac-BO (RW7000), isolated in
France in 1949, is a “high-copy” strain with ∼500 Tc1 elements.
Stock samples of Bergerac-BO (RW7000) and CL2a (DR1345)
were obtained from the Caenorhabditis Genetics Center (St. Paul,
MN, USA).

GENERAL METHODS
Worms were grown on plates of 1.7% agar in nematode growth
medium (NGM; Sulston and Hodgkin, 1988) at 20˚C. The plates
were spotted with freshly grown E. coli (strain OP50, a leaky aux-
otroph for uracil) as described previously (Sulston and Hodgkin,
1988).

GENERATION OF BACKCROSSED LINES
We constructed crosses in which 4–5 CL2a males were placed
on each 35-mm agar/NGM plate (Sulston and Hodgkin, 1988),
with a single immature (L4 larval-stage) Bergerac-BO hermaph-
rodite. Parental worms are transferred to fresh plates each 24 h,
and the percent of males is assessed at maturity for each progeny

plate. Although the predominant form of C. elegans is hermaph-
roditic (XX), mating occurs preferentially over self-fertilization in
the presence of males (XO) and is indicated by the appearance
of ∼50% males among the progeny. In subsequent “backcross”
generations, four CL2a males are mated to single L4 hermaph-
rodites from the previous generation, on each of 10–12 35-mm
plates. After successful mating, parental hermaphrodites are lysed
for genotyping to determine the strain of origin for markers of
the implicated QTL interval. Genotypes are determined by Tc1-
dependent multiplex PCR, as described previously (Williams et al.,
1992; Ebert et al., 1993). Progeny of tested worms, that retain the
Bergerac-BO (Tc1+) allele at all three QTL markers, are used
in subsequent backcross generations, for a total of 20 genera-
tions. Two lines constructed in this way, SR700 and SR701, were
maintained as independent lineages for the final 10 generations.
Homozygotes are not directly distinguished from heterozygotes
in this PCR assay, but were identified by genotyping four progeny,
followed by a further eight if all of the initial four were Tc1+ for all
QTL markers. The probability of observing 12/12 Tc1+ progeny
by chance from a heterozygote is 0.7512 or ∼0.03 (0.75 being the
chance that any given offspring of a heterozygous worm will have
one or two Tc1+ alleles).

RECOMBINANTS ON CHROMOSOME IV
Recombinants were identified among SR701 progeny during the
two final backcross generations to CL2a, essentially as described
in the preceding section, by PCR screening for loss of either the
stP13 (left-boundary) or stP35 (right-boundary) BO/Tc1 marker.
Seven independent lineages were found harboring recombinations
within the lsq4 interval: SR705, 706, and 707 retaining the stP13
and stP44 Tc1 markers from the BO parent (but losing stP35),
SR711 retaining stP44 and stP35 (losing stP13), and SR708, 709,
and 710 retaining only stP35 (see Figure 4C). From each of these
lineages, 12 F3 hermaphrodites were picked to individual plates
and allowed to self-fertilize in order to create homozygous lines as
detailed above.

Second-round recombinants were screened for loss of either the
G7 (left) or T6 (right) Tc1 marker of Bergerac-BO parental origin.
DNA for each marker was excised from Anchor-PCR display gels,
extracted and sequenced, allowing physical locations to be estab-
lished by BLAST interrogation of the C. elegans genome. PCR
assays were then designed (see the Figure 6B legend for details).
Three new recombinants were found that had lost the BO-origin
G7 marker (SR721, 722, and 723), and one that had lost the T6
marker (SR720), as depicted in Figure 6B.

SURVIVAL PROCEDURES
After worms had been grown for several generations without
depletion of bacteria, they were harvested by washing with S buffer
(Sulston and Hodgkin, 1988) into 15-mL plastic tubes (Falcon).
Adults and older larvae were allowed to settle for 5 min, and then
100-μL aliquots of suspension containing only L1 larvae were
transferred to fresh agar plates containing the OP50 strain of E.
coli. These were monitored and transferred daily onto fresh plates
with bacterial lawns. Survival cultures were set up 1 day after the
L4/adult molt, incubated at 20˚C, and were counted and trans-
ferred daily to fresh survival medium. Worms were considered
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dead when they failed to move, either spontaneously or in response
to touch. Survival calculations exclude worms that die from surface
desiccation (stranding) or internal hatching of progeny (bagging),
or that are lost by burrowing or in transfer.

For assessment of survival in liquid medium, groups of ∼30
worms were transferred to 60-mm plates containing 3 mL of
survival medium (S-basal + 10 μg/mL cholesterol + 109 bacte-
ria/mL). To block development of progeny, 100 μM each of 5-
fluoro-2′deoxyuracil (FUdR, Sigma) and uridine monophosphate
(UMP, as 2′,3′ mixed isomers, Sigma) were added to the survival
medium through day 10. For survivals on solidified agar medium,
adult worms were picked as above in sets of 30, to 35-mm plates
containing 1.7% agar in NGM as described above. These plates had
been allowed to absorb a small volume of FUdR/UMP stock (to
100 μM each, final concentration) just before seeding with OP50
E. coli, 24 h before adding worms.

MULTIPLEX PCR REACTIONS TO ASSESS lsq4 GENOTYPES
Worms were picked individually to 0.5-mL microfuge tubes con-
taining 10 μL of lysis solution (50 mM KCl, 10 mM Tris pH 8.3,
2.5 mM MgCl2, 0.45% NP40, 0.45% Tween-20, 0.01% gelatin,
60 μg/mL proteinase K) and processed as described (Williams
et al., 1992). Tubes were incubated at −70˚C for 1 h, followed
by 65˚C for 75 min, and then 94˚C for 30 min; finally, tubes
were briefly centrifuged (15 s at 3000 rpm) to remove conden-
sation. PCR buffer consists of 50-mM Tris–Cl pH 8.5, 1.5-mM
MgCl2, 20-mM KCl, 0.5 mg/mL bovine serum albumen, 2.5%
(w/v) Ficoll (Sigma), and 1-mM tartrazine. PCR was performed
on an Idaho Technology hot-air thermal cycler, in sealed capil-
lary tubes containing a final volume of 10 μL. Oligonucleotide
primers, synthesized by Integrated DNA Technologies, include
three “flanking” primers specific for the stP13, stP44, and stP35
Tc1-insertion sites in Bergerac-BO (Williams et al., 1992), and a
common opposing primer from a conserved subterminal sequence
of Tc1, “Tc1-20.” These three site-specific primers span the lsq4
region of chromosome IV, as most broadly defined from QTL-
mapping. PCR reactions, in 10 μL, contain 1.0 μL worm lysate (0.1
worm-equivalent), 2.0 μL PCR buffer, 1.0 μL dNTPs, 1.4 μL com-
mon primer Tc1-20 (final concentration, 1.4 μM), 1.0 μL each of
flanking primers (final concentration, 1.0 μM each), 0.1 μL Taq
DNA polymerase (GIBCO/BRL), and 4.7 μL ddH2O.

After initial denaturation (45 s at 94˚C), 38 PCR cycles each
comprised denaturation (3s at 94˚C), annealing (30 s at 54˚C),
and extension (30 s at 72˚C), followed by final extension for 7 min
at 72˚C. Amplification products were electrophoresed 1.5 h at
10 V/cm on 2% agarose gels – a 3:1 mixture of NuSieve (FMC) and
low-melting-point agarose (Sigma) – and stained in ethidium bro-
mide, 0.5 μg/mL. Fragment sizes were determined by comparison
to a 100-bp DNA ladder (GIBCO/BRL).

ANCHOR-PCR DISPLAY FOR FINE-MAPPING
An anchor comprising two partial–duplex oligonucleotides is lig-
ated to cohesive ends generated by restriction cleavage of genomic
DNA (employing, in this case, Sau3AI endonuclease). Tc1-specific
primers were selected from subterminal sequences conserved
among most or all Tc1 elements; in principle, any conserved, inter-
spersed repeat sequence could be similarly employed provided its

insertion sites differ among strains. PCR must initiate from the
Tc1-specific primers, because an anchor primer, identical to one
strand of the anchor (but non-complementary to the other strand
due to intentional mismatch), can anneal only after full-length
extension from the Tc1 primer creates its true complementary
strand. Each anchor primer is designed to extend one base beyond
the anchor sequence, terminating in a 3′ C, G, or T which thus
reduces the complexity of PCR products fourfold.

Nematode DNA was purified using a Puregene kit and protocol,
digested with Sau3A restriction enzyme (6 units per μg DNA, 1 h
at 37˚C), and then ligated to an “anchor” partial duplex consisting
of oligonucleotides 5′UAW and 5′UAC (Ayyadevara et al., 2000a).
PCR for fine-mapping of initial recombinants followed a two-
stage, nested-primer protocol to increase specificity (Ayyadevara
et al., 2000a). (1) Ligated DNA, isolated using QIAquick™PCR
purification (Qiagen), was amplified using a universal anchor
primer (UAP) and“Tc1-20”primer (Ayyadevara et al., 2000a), thus
specifying targets adjoining Tc1-insertions. Rapid thermal cycling
(Idaho Technology ATC™) comprised an initial denaturation step
(45 s at 94˚C), then 12 cycles each consisting of 10 s at 94˚C, 30 s
at 58˚C, and 60 s at 72˚C, followed by a final extension of 15 min
at 72˚C. (2) For the second amplification stage, full-length DNA
products were recovered (QIAquick, as above), diluted 1000-fold,
and further amplified with a fluor-tagged Tc1-E primer (anneal-
ing to Tc1 terminal-repeat sequence distal to Tc1-20) and one
of three UAP anchor primers, modified by addition of a 3′ C, G,
or T to reduce the complexity of PCR products. Products from
parental and recombinant PCRs were combined, electrophoresed
(with the three different base extensions loaded in separate lanes),
and visualized by differential fluorescent labeling of parental vs.
recombinant amplimers.

For the second-round of recombinants, only a single UAP

anchor primer was needed due to the already limited complexity
of Tc1-derived bands in the starting material.

SINGLE-NUCLEOTIDE POLYMORPHISM (SNP) ASSAYS
Single-nucleotide polymorphisms and restriction–cleavage–
differential SNPs (snip-SNPs) in the lsq4 vicinity were
tested for dimorphism between parental strains CL2a and
Bergerac-BO. Candidate sites were selected from a SNP data-
base (http://www.wormbase.org/db/searches/strains). We utilized
primers, as listed in the C. elegans SNP database, to amplify the
snip-SNP DNA fragment from strains Bergerac-BO, CL2a, and
SR708. PCR was performed in a thermal cycler (MJ Research)
for 30 cycles, each comprising the following steps: denaturation
at 94˚C for 10 s, annealing at 58˚C for 20 s, and extension at
72˚C for 30 s. The 30 PCR cycles were preceded by a 45 s initial
denaturation at 94˚C, and followed by a final 15-min extension at
72˚C. Snip-SNP PCR products were digested with the appropri-
ate restriction enzyme and electrophoresed in 1% agarose gels
to resolve the resulting DNA fragments. The following snip-
SNPs were indeed dimorphic between strains Bergerac-BO and
CL2a (and were used to map congenic recombinants thereof):
snp_F58D2[2] (13.18 Mb, in gene gadr-1), pkP4058 (13.35 Mb,
in the rec-8 gene, W02A2), pkP4059 (13.49 Mb, in Y45F10A.6),
pkP4091 (13.81 Mb, in Y45F10D), and pkP4092 (13.95 Mb, in
C27H2.2/C27H2.3).
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Clones carrying a reported conventional SNP (F09E8, F78D2,
C48D1, JC8, Y52G2, Y45F10B, C08F11, Y45F10C, T23G4, F52D4,
Y37A1A, C52H2, and Y37A1B) were PCR-amplified using primers
flanking the SNP. Sequence information for primers was obtained
from the same SNP database (see above); amplification condi-
tions were the same for conventional SNP-containing targets as
for snip-SNP PCR (see above).

SNP DISCOVERY BY DNA SEQUENCING
Typing strains for known SNPs enabled further narrowing of
the recombination break-points in the lsq4 interval, but left sev-
eral gaps devoid of markers. To seek additional SNPs in those
residual intervals, we determined sequences of DNA fragments
amplified by PCR, reading 600–750 nucleotides by capillary elec-
trophoresis every ∼50 kbp. Amplified SNP fragments were elec-
trophoresed in a 1% agarose gel and bands were eluted with a
DNA gel extraction kit (Qiagen). The DNA obtained from gel
purification was used for sequence determination on a CEQ8000
(Beckman) or ABI 3100 (Perkin-Elmer) capillary electrophore-
sis system, with both forward and reverse primers. Sequencing
was used both to determine marker typing in fine-mapping
of recombinants, and to confirm key results obtained by PCR
assays.

THERMOTOLERANCE ASSAY
Assay conditions were modified from Lithgow et al. (1995). After
propagation for several generations without depletion of bacteria,
L1 larvae of strains/lines CL2a, SR701, SR706, SR708, and SR710
were synchronized by settling (see above) and allowed to mature at
20˚C. One day after the L4/young–adult molt, worms were picked
into 60-mm agar plates and incubated by immersion to a depth
of 0.5 cm in a 35.5˚C water bath, supported by a perforated metal
stand. Plates were removed individually at 4 h and at 2-h inter-
vals thereafter, and worms were scored (in the same sequence)
for spontaneous motility, provoked movement, and pharyngeal

pumping. Worms failing to display any of these traits were scored
as dead.

PARAQUAT RESISTANCE ASSAY
Worms were exposed as 3-day old adults, in groups of 30, to varying
concentrations of paraquat (0–85 mM) in liquid survival medium
at 20˚C. Medium with paraquat was replaced daily, and the num-
ber of live worms was counted after 3 days of exposure (conditions
modified from Ishii et al., 1998 and Cypser and Johnson, 1999).

HYDROGEN PEROXIDE RESISTANCE ASSAY
At 5 days post-hatch, replicate groups of 50 adult worms were
washed in magnesium-free M9 medium (Sulston and Hodgkin,
1988) and then incubated 4 h at 20˚C with 4–12 mM H2O2 (freshly
diluted from a newly opened bottle of 3% peroxide, Sigma) in fresh
magnesium-free M9 with gentle agitation; conditions of exposure
were modified from (Ebert et al., 1996). Viability was assessed as
above, immediately after the 4-h exposure period.

ULTRAVIOLET RESISTANCE ASSAY
Young adult worms (4 days post-hatch), in groups of 30 from each
strain, were transferred onto 60-mm dishes without bacteria and
were irradiated from above with UV light (Stratagene Model 1800
Stratalinker, at 0.4 J/cm2) while on the surface of NGM/agar plates
without E. coli at 20˚C. Worms were then transferred to fresh agar
plates seeded with E. coli strain OP50. Survival of the worms was
assayed at 24-h intervals until all worms were dead.
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