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Cytotoxicity assays of immortalized lymphoblastoid cell lines (LCLs) represent a promis-
ing new in vitro approach in pharmacogenomics research. However, previous studies
employing LCLs in gene mapping have used simple association methods, which may not
adequately capture the true differences in non-linear response profiles between genotypes.
Two common approaches summarize each dose-response curve with either the IC50 or the
slope parameter estimates from a hill slope fit and treat these estimates as the response
in a linear model. The current study investigates these two methods, as well as four novel
methods, and compares their power to detect differences between the response profiles
of genotypes under a variety of different alternatives. The four novel methods include two
methods that summarize each dose-response by its area under the curve, one method
based off of an analysis of variance (ANOVA) design, and one method that compares hill
slope fits for all individuals of each genotype. The power of each method was found to
depend not only on the choice of alternative, but also on the choice for the set of dosages
used in cytotoxicity measurements. The ANOVA-based method was found to be the most
robust across alternatives and dosage sets for power in detecting differences between
genotypes.
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1. INTRODUCTION
Important progress continues to be made in the treatment of
most common cancers, but therapeutic benefit remains diffi-
cult to predict and severe or fatal adverse events occur fre-
quently. The Human Genome Project has fueled the notion that
genetic information can produce effective and cost-efficient selec-
tion of therapies for individual patients (Manolio et al., 2008),
but validated genetic signatures that predict response to most
chemotherapy regimens have yet to be identified. Numerous
genes potentially influence drug response, but current candidate-
gene approaches aimed at discovering and characterizing phar-
macogenetic effects are limited by the requirement of a pri-
ori knowledge about the genes involved (Auman and McLeod,
2008). While genome-wide association analyses represent unbi-
ased approaches to trait mapping, the moderate size of most clin-
ical trials often limits this avenue for cancer pharmacogenomics
discovery (Ratain et al., 2006). Furthermore, many pharmacoge-
nomic studies are performed with the unstated and untested
assumption that the drug response is a heritable trait, potentially
wasting scarce clinical and analytical resources if this assumption
proves false.

In response to these limitations, a novel in vitro assay system has
emerged as a promising new approach for gene mapping in phar-
macogenomics cancer therapy (Watters et al., 2004). This in vitro
system relies on cytotoxicity assays of immortalized lymphoblas-
toid cell lines (LCLs) to measure dose-response phenotypes of
individual cell lines (Dolan et al., 2004; Watters et al., 2004; Huang

et al., 2007; Bleibel et al., 2009; Duan et al., 2009; Peters et al.,
2009, 2011a; Gamazon et al., 2010; Stark et al., 2010; Watson
et al., 2011a,b). While the direct translational relevance of these
assays is not fully understood, LCL-based assay systems can be
used to measure interindividual response to cytotoxic drugs, and
to assess and map the genetic components that explain this vari-
ability (Zhang et al., 2008; Welsh et al., 2009). Unlike the practical
limitations of in vivo pharmacogenomic mapping, mentioned
above, family-based and population-based cohorts can be assayed
to perform heritability assessment (Stark et al., 2010; Peters et al.,
2011a; Watson et al., 2011b), linkage mapping (Peters et al., 2011a;
Watson et al., 2011a,b), and association mapping (Huang et al.,
2011).

While initial studies are exciting, there are many statistical
and computational challenges presented by such data, especially
when fine-mapping with genome-wide genotyping approaches
are considered. The large-scale of such in vitro studies presents
interesting and important analytical, computational, and statisti-
cal challenges. This model system generates high-throughput data
at several biological levels. The drug response outcomes are mea-
sured for a large number of drugs, for many dose points, and for a
large number of cell lines and replicates. There are several potential
sources of noise in this phenotype collection that need to be con-
sidered in analysis. Summarizing response across doses requires
non-linear modeling, and traditional methods may not be suit-
able for high-throughput data (Beam and Motsinger-Reif, 2010).
Additionally, there are important open questions in how best to test
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for associations of the genetic data (genome-wide association data
with millions of single nucleotide polymorphisms, SNPs) with
these non-linear dose-response outcomes.

Previous studies that have performed gene mapping have
employed simple association methods, using summary measures
from non-linear modeling of the dose-response curves (Dolan
et al., 2004; Watters et al., 2004; Huang et al., 2007; Bleibel et al.,
2009; Duan et al., 2009; Peters et al., 2009, 2011a; Gamazon et al.,
2010; Stark et al., 2010; Watson et al., 2011a,b). These studies have
summarized dose-response with either IC50 values (the interpo-
lated dose at which 50% of cells have been killed), or the hill
slope (the slope of the non-linear model) estimated for each indi-
vidual (Beam and Motsinger-Reif, 2010). While this approach is
seemingly straightforward, there are both biological and statisti-
cal assumptions that are propogated in this analysis strategy. Such
analyses assume that differential response is defined by one para-
meter of a complex non-linear model (discussed more below),
which may not capture the true array of potential differential
response. This assumption will limit the power of such approaches
to detect other types of differential response (if the assumption is
not correct), and may introduce error into the association analy-
sis by assuming a summary measure captures all information
about the dose-response curve. There are well-documented chal-
lenges in non-linear dose-response modeling, that are of particular
concern in high-throughput studies (Beam and Motsinger-Reif,
2010).

In order for such in vitro assays to reach their full potential
for gene mapping, proper analytical strategies need to be tested
and developed to take full advantage of this complex data. In the
current study, we perform a large-scale simulation study to com-
pare and contrast analytical approaches for association analysis.
We compare the two approaches previously reported, and propose
and evaluate new approaches that use the dose-response curves.
We use real cytotoxicity data from dose-response data of Gemc-
itabine to motivate realistic data simulation, and simulate a wide
range of genetic association models to evaluate these methods.
Methods are evaluated based on power, computational simplic-
ity, and robustness and minimization of model assumptions. We
hope that these results will guide the proper application of pow-
erful association methods to detect genetic associations in in vitro
cytotoxicity data.

2. MATERIALS AND METHODS
2.1. USE OF REAL DATA TO GUIDE SIMULATION STUDY
A major challenge of many simulation studies is the generation
of data that are representative of real data and are likely to be
encountered in practice. This is especially true for cell line data,
where dose-response curves are necessarily non-linear and the dis-
tribution of error terms may not be normal, as explained below.
In addition, the non-linear effects between viability and drug
concentration can be different for every cell line.

For this reason, simulated data was modeled after real data from
264 LCLs exposed to the cancer drug Gemcitabine. See Section A1
in Appendix for experimental details. Each cell line was exposed
to six different concentrations of the drug, with four replications
at each concentration. The concentrations (in mM) used were:
1.0 × 10−4, 4.0 × 10−5, 2.0 × 10−5, 8.0 × 10−6, 5.0 × 10−6, and

2.5 × 10−6. This drug produced responses that generally had a
smooth sigmoidal shape.

Several quality control (QC) measures were used to maximize
the integrity of the real data. The dose-response data for two cell
lines were eliminated because of poor viability. Two other cell lines
had 10% dimethyl sulfoxide viability readings that were too high
to be realistic (possibly due to the chemical adhering to the side
of the plate well). These high readings were exchanged for the
same measurements with the same cell lines from another exper-
iment. In addition, whenever the coefficient of variation (CV) for
a block of four replications exceeded 0.4796, the most deviant
response was replaced with the mean of the other three. This step
was repeated, if necessary. This resulted in 0.2% of the responses
being replaced.

Briefly, these parameters were chosen based on parameter
sweeps across a large number of drug response experiments
(Motsinger-Reif et al., 2011; Peters et al., 2011b). The QC approach
was aimed to reduce noise and outliers in the data, while still
preserving meaningful variation in the data. The CV cutoffs
were chosen based on the distribution of CV seen across the
data for hundreds of cell lines across twenty eight drugs, using
the 99th percentile to determine the cutoff value. In our expe-
rience, such a high CV could generally be traced back to a
single extremely errant value (orders of magnitude away from
the others), and we feel represents technical error and not true
variation.

After preliminary QC, responses were normalized according to
the equation:

Yijk = Yijk, Raw − V i,10%DMSO

V i,0.1%DMSO − V i,10%DMSO
,

where Yijk,Raw is the raw data response for a sample from the ith
cell line exposed to the jth drug concentration for the kth replica-
tion and Yijk is the normalized response. Also, V i,10%DMSO is the
average response of four readings of the same cell line exposed
to a 10% dimethyl sulfoxide solution (thought to kill all living
cells), and V i,0.1%DMSO is the average of four readings of the same
cell line exposed to a 0.1% dimethyl sulfoxide solution. This latter
solution was the vehicle used for all experiments, and was needed
to solvate the drug.

After this normalization, a final QC measure replaced deviant
responses (similar to that above) using a CV threshold of 0.25.
This resulted in an additional 0.6% of responses being replaced.
After imputation of deviant responses and normalization, many
responses still exceeded their expected maximum of one. There-
fore, the responses for each cell line were individually scaled, if
necessary, so that the mean response of the lowest concentration
was no greater than 1.0. This resulted in 63% of response curves
being scaled.

Cell line responses from Gemcitabine were used to estimate
parameter distributions and residual distributions for the simu-
lated data. Each individual curve was assumed to follow a hill slope
function, and parameter estimates were made for each individual.
The distribution of individual curves was then modeled by esti-
mating the distributions of these (estimated) hill slope parameters.
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The hill slope equation used was used to fit dose-response curves:

E(Yijk |xj) = f (xj , βi)

= β
(0)
i + β

(1)
i − β

(0)
i

1 +
(

xj

β
(2)
i

)β
(3)
i

,

β
(0)
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i , β(2)
i > 0, β

(3)
i < 0,

where xj is the concentration of drug that response Yijk was exposed
to. All of the β i parameters have biological interpretation. The

parameter β
(0)
i represents the expected response as concentra-

tion, xj, approaches zero, while the parameter β
(1)
i represents the

expected response as concentration, xj, approaches infinity. The

parameter β
(2)
i reflects that concentration which gives a response

halfway between β
(0)
i and β

(1)
i . The parameter β

(3)
i has the inter-

pretation of being proportional to the slope of the tangent line

when concentration xi = β
(2)
i . Stated otherwise, a very negative

β
(3)
i will cause a sharp drop in response when the concentration is

near β
(2)
i . The β(2) and β(3) parameters are frequently referred

to as the “IC50” and “Slope” parameters in the literature. We
will refer to β(0) and β(1) as the “Max” and “Min” parameters,
respectively.

The curve-fitting algorithm, described in Section A2 in Appen-
dix, was used to fit hill slope curves to all 262 cell lines from the
Gemcitabine data. Generally, the fits were very good, as indicated

in a plot of fitted dose-response curves from nine random cell lines
in Figure 1.

The distributions for each of the hill slope parameters were
modeled as either gamma or Laplace. The goal was not to repro-
duce the distribution of the hill slope parameters exactly, but to
get a sense of what the distribution for these parameters would be
for a typical cancer drug. Distributional parameters for each hill
slope parameter were then estimated using maximum likelihood
via R’s “nlm” routine (R Development Core Team, 2010). Figure 2
shows histograms of the hill slope parameters with the fitted dis-
tributions overlaid. The histograms are of the estimated hillslope
parameters from the 262 viable cell lines exposed to Gemcitabine,
while the fitted distributions were used for generating realizations
of hillslope parameters as part of the simulation. In a similar
manner, the distribution of residuals were modeled as Laplace.
The distributions for the hill slope parameters and residuals were
used together for the generation of simulated data, as explained in
Section 2.2.

2.2. DATA SIMULATION
Data was simulated in sets of 496 dose-response curves. For each
null distribution, 10,000 data sets were generated, while 2500 data
sets were generated for each alternative. Each data set is character-
ized by its genetic model, minor allele frequency (MAF), affected
parameter, effect size, and set of drug concentration values. Each
dose-response curve contained twenty-four dose-response pairs,
comprised of four replications at each of six concentrations.
Genotype frequencies were calculated according to MAF using

FIGURE 1 | Hill slope functions fit to real data from nine random Gemcitabine dose-response curves.
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FIGURE 2 | Plots of individual hill slope parameters for Gemcitabine.

Histograms represent parameters estimated from observed real data, while
red lines represent the distribution for parameters used in simulation. (A–D)

represent the distributions for the Max, Min, IC50, and slope parameters,
respectively.

Hardy-Weinberg Equilibrium (Hardy, 1908; Weinberg, 1908). The
distributional means for the affected parameters were modified
according to the cell line’s genotype and the data sets’genetic model
and effect size (the distributional variances remained constant
throughout), as explained in the following paragraphs.

Let A and a represent the major and minor alleles, respectively.
For the additive model, the mean of the affected parameter was
made more extreme by the effect size for genotype Aa and by
twice the effect size for genotype aa. For the dominant model,
the mean of the affected parameter was made more extreme by
twice the effect size for genotype aa, only. A dose-response curve
was constructed by first generating hill slope parameters, accord-
ing to their estimated distributions and effect size modifications.
Responses were then simulated by calculating the mean response at
each drug concentration (using the hill slope function),and adding
residual noise. The estimation procedure of the distributions for
parameters and residuals are described in Section 2.1.

This process is illustrated below under the null, where Yijkl is
the response for the lth replication at drug concentration xk for
the jth cell line having the genotype i:

Yijkl = f
(
xk , βij

)+ eijkl ,

β
(0)
ij
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β
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ij
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0 = 0.145
)

,

β
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)

,

−β
(3)
ij
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(

shape(3)
0 = 4.15, scale(3)

0 = 1.40
)

,

eijkl
iid∼ Laplace (0, scale = 0.0286) ,

where f(xk,β ij) is the hill slope function given in Eq. 1. Although
parameters were generated independently of each other, a check

was added to the simulation that ensured that β
(0)
ij > β

(1)
ij + 0.1.

If a simulated β ij value failed this check, the parameter vector was
discarded and regenerated (this occurred with probability 0.003).
This check guaranteed that dose-response curves decreased in via-
bility as drug concentration increased, and ensured that extreme

outliers for estimates of β
(2)
ij were avoided.

Under the alternative, if β
(p)

ij is an affected parameter

(p ∈ {1,2,3}), the shape and scale parameters for the gamma dis-

tribution of β
(p)

ij are adjusted such that the mean is increased

according to the genotype, effect size and genetic model, and
the variance remains unchanged. For example, if K is the effect
size, under an additive genetic model, we see that the mean
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For data generated under the null distribution, three MAF’s
(0.1, 0.25 and 0.5) and two sets of drug concentrations were
used in data simulation. The first set uses six concentrations
equally spaced over the “action range” of the hill slope equation:
(in mM) 3.125 × 10−6, 2.75 × 10−5, 5.1875 × 10−5, 7.625 × 10−5,
1.00625 × 10−4, and 1.25 × 10−4. The second set uses six con-
centrations equally spaced on the log scale, using the same range
as the first set: 3.125 × 10−6, 6.25 × 10−6, 1.0 × 10−5, 2.5 × 10−5,
5.0 × 10−5, and 1.25 × 10−4. This latter set is the same as was used
in the real data.

For data generated under the alternative, the affected parame-
ters include β(1), β(2), and β(3). For each of these parameters and
each MAF from above, six effect sizes were used; 0.0, 0.1, 0.2, 0.3,
0.4, and 0.5. The “0.0” effect size actually simulates data under
the null distribution, using a different random number starting
seed, and is used to estimate the type I error rate. For each affected
parameter, MAF and effect size, data was simulated according to
either a dominant or additive genetic model. Finally, for each of
these combinations, one of the two sets of drug concentrations
was used. All of these simulations are described in Table 1.
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Table 1 | Simulations performed in the current study.

Parameter Drug dosage Genetic model

β (1) Equal Additive

β (1) Equal Dominant

β (1) Log Additive

β (1) Log Dominant

β (2) Equal Additive

β (2) Equal Dominant

β (2) Log Additive

β (2) Log Dominant

β (3) Equal Additive

β (3) Equal Dominant

β (3) Log Additive

β (3) Log Dominant

None Equal Null

None Log Null

Parameter refers to the hill slope parameter that causes differences between

genotypes, Drug Dosage refers to the spacing of the six drug concentrations

(where equal means equally spaced and log means equally spaced on the log

scale), MAF stands for the minor allele frequency and Genetic Model can either

be additive or dominant. For each row, each combination of effect size {0.1, 0.2,

0.3, 0.4, or 0.5} and MAF {0.1, 0.25, or 0.5} was used, as described in Section 2.2.

The last two rows illustrate the distributions that were generated under the null

for each MAF and for each of two random number starting seeds. One seed was

used for estimation of the null distribution, and the other to estimate the type I

error rate (i.e., effect size of 0.0).

2.3. STATISTICAL METHODS
Previously, investigators of LCL cytotoxicity data have used two
primary methods in searching for meaningful single nucleotide
polymorphisms (SNPs; Dolan et al., 2004; Watters et al., 2004;
Huang et al., 2007; Bleibel et al., 2009; Duan et al., 2009; Peters
et al., 2009, 2011a; Gamazon et al., 2010; Stark et al., 2010; Watson
et al., 2011a,b). These two methods summarize the dose-response
curve by the IC50 and Slope parameters estimated by the best-
fit hill slope curve. Both methods can be considered to fall into
the same class of methods (see Section 2.3.1 below). The current
study compares the performance of these two methods, along with
a new class of methods, with two novel methods from each class,
on simulated data.

2.3.1. Univariate and multivariate methods
All methods considered make some use of analysis of variance
(ANOVA). One class of methods, univariate methods, makes a
univariate summary of each dose-response curve and performs
ANOVA against genotype:

s
(
Yij , xij

) = αi + eij , (1)

where (Yij, xij) represents the jth dose-response curve for geno-
type i, αi represents the fixed effect for genotype i, and s(Yij,
xij) ∈ R. The advantage of these methods is that the error terms
are independent, and typical tests of significance using the F-
distribution are valid. A disadvantage is the assumption that dif-
ferential response between genotypes is defined by one parameter

of a complex non-linear model. This may not capture the
true array of potential differential response and may limit the
power of such approaches to detect other types of differential
response.

Another class of methods, multivariate methods, attempts to
make use of all of the information contained in (Yij, xij) by
comparing a full model, that uses genotype and drug concen-
tration to predict the response, to a reduced model that only uses
drug concentration. The full model and reduced models can be
characterized by:

Yijkl = g
(
xijkl , βi

)+ eijkl , Full Model

Yijkl = g
(
xijkl , β

)+ eijkl , Red. Model.

In this case, an F-statistic can be calculated:

F∗ = (SSER − SSEF )
/ (

dfR − dfF
)

SSEF
/

dfF
,

where SSER, SSEF, dfR, dfF, are the sums of squared errors, and
degrees of freedom for the full and reduced models. The disad-
vantage with this method is that the error terms are correlated
within individuals (i.e., Cov[eijkl, eijk′l ′] �= 0).

2.3.2. IC50 and slope
The first two methods considered are univariate, and summarize
(Yij, xij) with either the β(2) or β(3) parameter that is estimated
by the best-fit hill slope curve. If the true difference in curves
between genotypes is due to differences between β(2) or β(3) val-
ues, and these parameters can be estimated accurately, then these
methods can be expected to perform well in detecting differences
between genotypes. Here, the ANOVA model is:

s
(
Yij , xij

) = β̂
(p)

ij = μi + eij ,

where β̂
(p)

ij is the estimated β(2) or β(3) parameter for (Yij, xij).

With a slight abuse of notation, the methods using estimated β(2)

and β(3) parameters will be referred to as the IC50 and Slope
methods, respectively. This is not to be confused with alterna-
tive distributions created by differences in the IC50 and Slope
parameters between genotypes.

2.3.3. Area under the curve
The next two methods are also univariate, and summarize (Yij,
xij) with the area under the dose-response curve (AUC) for some
maximum concentration value M and minimum value m:

AUCij =
∫ M

m
f (x , βij)dx ,

where f(x, β ij) is given in Eq. 1. In the current study, M was cho-
sen to be 1.5 times the maximum dose from the dose-response
curve (in this case 1.875 × 10−4), and m was the minimum
dose (3.125 × 10−6). The closed form solution for this integral is

www.frontiersin.org December 2011 | Volume 2 | Article 86 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive


Brown et al. Association methods for cytotoxicity mapping

complicated, so it was approximated in two ways. First, the integral
can be approximated by its Riemann sum:

∫ M

m
f (x , β)dx ≈ 1

P

P−1∑
p=0

f (tp , β̂ij)

∝
P−1∑
p=0

f (tp , β̂ij)

= ÂUC
para
ij ,

where

tp = m + p(M − m)

P − 1
,

and P is any large integer (P = 20 in the current simulation). Here,

ÂUC
para
ij is the parametric approximation to AUCij. For equally

spaced drug concentrations, the integral can also be approxi-
mated by the average of the mean of the response for each of
the concentrations:

∫ M

m
f (x , β)dx ≈ 1

6

6∑
k=1

ȳijk

∝
6∑

k=1

4∑
l=1

yijkl = ÂUC
emp
ij ,

where ÂUC
emp
ij is the empirical approximation to AUCij. In

either case, these methods involve substituting either ÂUC
para
ij or

ÂUC
emp
ij for s(Yij, xij) in Eq. 1.

2.3.4. ANOVA and GenoCurve
The third model tests the combined significance of the genotype
(Gi) and genotype-concentration interaction effects ((GXC)ij) in
the ANOVA model:

yijkl = Cj + Gi + (GXC)ij + eijkl

where Cj is the drug concentration and Gi is the genotype for
response yijkl. Here, test statistics are calculated by comparing
the full model above to the reduced model yijkl = Cj + eijkl. The
corresponding F-statistic is:

F∗ = (SSER − SSEF )
/

12

SSEF
/
(24N − 18)

.

The last model calculates SSEF using:

yijkl = f (xj , βi) + eijkl ,

and calculates SSER using:

yijkl = f (xj , β) + eijkl .

The F-statistic is then:

F∗ = (SSER − SSEF )
/

8

SSEF
/
(24N − 12)

.

These last two methods will be referred to as the ANOVA and
GenoCurve methods, respectively.

2.4. PERMUTATION TESTING
Because the error terms in the multivariate methods are not
independent, the constructed F-statistics do not follow the typ-
ical F-distribution (see Figure 3). For this reason, these methods
would require an estimation of the null distribution in order to
calculate p-values under the alternative. In practice, permutation
(or some equivalent) testing would be necessary. However, due
to the sheer computational time involved with permutation test-
ing within a simulation study, the null distribution was estimated
by simply sampling 10,000 test statistics under the null distribu-
tion. For consistency, this was done for all six methods, although in
practice it would only be necessary for the ANOVA and GenoCurve
methods. In this way, p-values for each observed test statistic were
estimated by the proportion of test statistics under the appropriate
null distribution that were larger than the observed statistic.

2.5. IMPLEMENTATION
All of the analysis was performed using either the R statistical pack-
age (R Development Core Team, 2010) or Java. Implementation of
all code was performed either on a MacBook Pro (2.66 GHz Intel
Core 2 Duo processor with 4 GB 1067 MHz DDR3 memory) or on
a computing cluster [two Intel(R) Xeon(R) CPU E5450 processors
with 32 GB RAM].

3. RESULTS
Test statistics were generated in two ways for each of the simu-
lation conditions described in Section 2.2. In the first way, hill
slope parameters were estimated using the simulated data, while
in the second, the true parameter values (generated as part of the
simulation) were used for calculating test “statistics.” The quo-
tations reflect that the true parameter values are not a function
of the data, and are not typically known in practice. True para-
meter values were used to calculate the loss in power involved in
hill slope parameter estimation. Since only the IC50, Slope, and
AUC para methods use individual hill slope parameter estimates in
calculating test statistics, differences will only be observed for these
methods. For each of these methods, scatterplots and correlations
of test statistics between estimated and true parameter values are
shown in Figure 4 for data generated under the null with a MAF of
0.25. The left hand column of Figure 4 has test statistics calculated
using equally spaced drug concentrations, while the right hand
column uses concentrations equally spaced on the log scale (see
Section 2.2 for details). The correlation between these statistics are
strong (0.97, 0.94, and >0.99) for the IC50, Slope, and AUC para

methods for the equally spaced drug concentrations, but the cor-
relations drop to 0.88 and 0.39 for the IC50 and Slope parameters
when the concentrations are equally spaced on the log scale. These
results are fairly representative for test statistics drawn from the
other alternatives, as well as the null distributions, considered in
this study.
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FIGURE 3 | Quantile-quantile plots of test statistics for each method,

under H 0 with a MAF of 0.25 and equally spaced drug concentrations.

Plots (A–F) represent the methods GenoCurve, ANOVA, IC50, Slope, AUCemp,

and AUCpara, respectively. The red dotted line in each plot represents an
idealized case where theoretical test statistic quantiles match simulated test
statistic quantiles.

There are also correlations for the test statistics between meth-
ods (see Figure 5). Here, only the test statistics calculated using
estimated parameters are shown, since true parameter values are
not typically known in practice. The statistics shown in Figure 5
use the same data (null distribution, with MAF of 0.25) as the
ones used in Figure 4, again, with the left hand column repre-
senting equally spaced drug concentrations and the right hand
column representing drug concentrations equally spaced on the
log scale. The most dramatic comparison is between the ANOVA
and GenoCurve methods, whose correlation is essentially one for
both sets of drug concentration choices. Also the correlations were
high between the test statistics for the two AUC methods (0.96
and 0.75 for the two sets of drug concentrations), with more mod-
est correlations between test statistics for the IC50 method and
ANOVA methods (0.48 and 0.60 for the two sets of drug concen-
trations). Again, these results are fairly representative for the other
conditions in the study.

The reason for the higher correlations for the equally spaced vs.
the log-equally spaced concentrations is that parameter estimates
are more accurate for the former. This makes sense, intuitively,
because when the drug concentration sampling scheme is not
dense near the “action region,” curves with very different para-
meter values can still give good fits for the data. However, the total
area under the curve tends to be somewhat similar for these dif-
ferent curves. As a dramatic example of this, consider Figure 6,

whose data was generated under the null distribution with drug
concentrations log-equally spaced. The black and red curves give
essentially the same sum of squared errors. However, the percent
change from the black curve to the red curve for the Min, IC50,
and Slope parameters are (− 111%, 91%, and − 83%), respectively,
while percent change for the AUC para statistic is only 12% and
AUC emp is identical for the two curves (since it is estimated using
only the data).

This intuition is substantiated with m-estimation theory. Con-
sider a single dose-response curve {(Yi, xi)}, with f (yi, β) = fi.
Because of least-squares estimation, β̂ is an m-estimator:

β̂ = arg min
∑

(Yi − fi)
2 ⇔

β̂ solves
∑ ∂fi

∂β

(
Yi − fi

) = 0,

and E(∂fi/∂β(Yi − fi)) = 0. Therefore:

√
n
(
β̂ − βT

)
d−→ N (0, �),

where

Var
(
β̂|βT

)
= � , E

(
β̂|βT

)
= βT ,
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FIGURE 4 | Correlations between test statistics generated

using estimated and true parameters. All scatter plots are
between test statistics generated under the null hypothesis and a
MAF of 0.25. The plots (A,C,E) are of statistics generated from

data with equally spaced drug concentrations, while plots (B,D,F)

used log-equally spaced data. Plots (A,B) are of the IC50 method,
plots (C,D) are of the Slope method, and (E,F) are of the AUCpar

method.

and βT is the true value for the parameter β. However, βT varies
between cell lines. It follows that:

Var
(
β̂
)

= Var
[

E
(
β̂|βT

)]
+ E

[
Var

(
β̂|βT

)]
= Var (βT ) + E (�) .

The first term is the variation in βT between cell lines, while
the second term is the variation due to estimating βT. From
m-estimation theory, we have that (Cox and Hinkley, 1974):

� = Var
(
β̂|βT

)
= A (βT )−1 B (βT ) A (βT )−T

where,

A (βT ) = E −
{

∂

∂βT

(
∂fi
∂β

(ei)

)}

B (βT ) = E

{(
∂fi
∂βT

(ei)

)(
∂fi
∂β

(ei)

)}
,

where ei =Yi − fi. Given a value of βT, these expressions can be
evaluated analytically. Therefore generating βT,i repeatedly from
its distribution, calculating Var(β̂|βT ,i) , and averaging is a way to
approximate E(�). This was done for both the equally spaced and

log-equally spaced drug concentrations. The percent difference in
variance between these concentration choices is given in Table 2.
Equal spacing on the log scale gives higher variances than equal
spacing for the Min, IC50, and Slope parameters (86, 16, and 10%
increases, respectively) and gives a lower variance for the Max
parameter (51% decrease).

3.1. POWER COMPARISONS
A p-value was calculated for each test statistic under the alternative,
by comparison with its appropriate null distribution as described
in Section 2.4. Power was approximated by the proportion of p-
values below 0.05. Using STATA (StataCorp, 2011), power was fit
as the response in a mixed model analysis, with main effects for
genetic model, affected alternative parameter, MAF, dosage, effect
size, and method, resulting in a p-value of 0.0299 for the method
term.

Power curves for a dominant genetic model, with a minor allele
frequency of 0.25, with IC50 as the affected parameter, and with
equally spaced drug concentrations, are given in Figure 7A, and
also in Table 3. Using an additive genetic model, or increasing the
MAF to 0.5 raised powers modestly (results not shown for MAF
effects). However, the qualitative implications were the same, with
the IC50 method being most powerful, followed by the GenoCurve
and ANOVA methods (which had identical power curves), and
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FIGURE 5 | Correlations between test statistics. All scatter plots are
between test statistics generated under the null hypothesis and a MAF of

0.25. The plots (A,C,E) are of statistics generated from data with equally
spaced drug concentrations, while plots (B,D,F) used log-equally spaced data.

FIGURE 6 | Dramatic example of how very different hill slope curves

can give near identical fits for data when drug concentration choices

are not well-designed. The legend provides the set of hill slope
parameters for each of the lines.

then by the AUC emp and AUC para methods. The Slope method
never produced power significantly above 0.05 for any method
when the affected parameter was IC50. These power curves match

Table 2 | Estimated percent change in variation when switching from

equally spaced to log-equally spaced drug concentrations.

Parameter β0 β1 β2 β3

Percent error (%) −51 86 16 10

well with the power curves produced under the same alternatives
using the test statistics derived using true parameter values. This
is shown in Figure 7C, with powers being slightly higher for the
IC50 method (the ANOVA, and AUC emp will be identical, since no
hill slope parameters are estimated with these methods). Because
p-values were calculated by comparison with an empirically gen-
erated null distribution (see Section 2.4 for details), the nominal
type I error rate was calculated by comparing test statistics under
the null, and using a different random number starting seed, to
the same empirically generated null distribution. This resulted in
a type I error rate that was within standard error of 0.05 for all
methods.

The situation is similar for the same alternative using log-
equally spaced drug concentrations, as seen in Figure 7. Here,
the power for the IC50 method is somewhat lower when using
estimated parameters (Figure 7B), than when using the true
parameter values (Figure 7D) for the calculation of test sta-
tistics. In both cases of drug concentrations, as expected, it
appears that when the true differences between genotypes is
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FIGURE 7 | Power plots showing the effects of drug spacing. All
plots consider an alternative with IC50 as the affected parameter,
with a dominant genetic model and a MAF of 0.25. Plots (A,C)

show results for equally spaced drug concentrations, while plots

(B,D) show results for log-equally spaced drug concentrations.
Plots (C,D) use the true data-generating parameters in calculating
test statistics, while in plots (A,B) these parameters are estimated
using the data.

Table 3 | Power estimates at α = 0.05 under the alternative using estimated parameters for various effect sizes.

Null β3 + 0.10σ β3 + 0.20σ β3 + 0.30σ β3 + 0.40σ β3 + 0.50σ

GenoCurve 0.047 0.108 0.378 0.773 0.972 0.999

ANOVA 0.046 0.103 0.372 0.763 0.972 0.998

IC50 0.049 0.201 0.668 0.955 0.998 1.000

Slope 0.050 0.048 0.044 0.050 0.048 0.051

AUC Emp 0.049 0.096 0.272 0.568 0.820 0.952

AUC Para 0.051 0.078 0.179 0.378 0.589 0.794

The alternative is with IC50 as the affected parameter parameter, an additive genetic model, a MAF of 0.25 and equally spaced concentrations. All standard errors

are less than 0.01.

due to the IC50 parameter, that the IC50 method is most
powerful.

When the alternative involves changes to the Slope parameter
between genotypes, the power curves are very different. In this case
the Slope method uniformly performed best under every alterna-
tive as shown in Figure 8C, with ANOVA/GenoCurve as the only
other methods ever having power substantially above 0.05. Inter-
estingly, when Min is the affected parameter under the alternative,
as shown in Figure 8D, all methods seem to perform similarly
except the IC50 and Slope methods, both of which perform poorly.
These qualitative results for Min and Slope as the affected para-
meters remain unchanged under the two genetic models and three

MAFs (Figure 8 actually shows results for an additive model with
a MAF of 0.5).

4. DISCUSSION
The current study gave some interesting insight to the performance
of various methods used for detecting differences between geno-
types for dose-response curves of LCLs. However, there is also a
need for improvement in both methods and simulation.

None of the methods considered was especially powerful for all
three affected parameters (IC50, Slope, and Min). However, the
ANOVA method may be the most robust method for the current
choice of alternatives and distribution of hill slope parameters.
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FIGURE 8 | Power plots under various alternatives, effect sizes, and drug

concentration spacings. Each plot shows power curves under alternatives
with a single affected parameter, with plots (A,B) using the IC50 parameter,

plot (C) using the Slope parameter and plot (D) using Min parameter. Plot (B)

uses drug concentrations equally spaced on the log scale, while all others are
equally spaced. All plots show for an additive genetic model and a MAF of 0.5.

Although this method was often not the most powerful, it was
consistently at least the second most powerful method for every
set of alternatives.

The GenoCurve method gave essentially identical power as
ANOVA for every alternative. However, the GenoCurve method is
computationally less efficient for genome-wide association studies
(GWAS). This is because non-linear curve fits must be performed
for each genotype, and for each SNP in the GWAS.

The choice for the fixed set of drug concentrations that each
LCL is exposed to may be very important for maximizing power
to detect differences between genotypes. It is especially impor-
tant to choose concentrations in the neighborhood of the mean
for the population IC50 value, when the true difference between
genotypes is IC50. Unsurprisingly, the power of the IC50 method
drops when a poor choice of drug concentrations is chosen. When
drug concentrations are equally spaced across the expected range
of IC50 values from the population, test statistics created from
parameters estimated using the data are nearly as powerful as the
same “statistics” created with the true parameter values. This indi-
cates that equal spacing may be optimal, or nearly optimal, for
this scenario. This result is supported using asymptotic variance
arguments.

The current study attempted to simulate data that was similar in
spirit to real dose-response data. In this effort,hill slope parameters
and residual distributions were estimated from dose-response data
from LCLs exposed to the drug Gemcitabine. However, not all of

Table 4 | Sample Spearman rank correlations between hill slope

parameter estimates for dose-response curves of LCLs exposed to

Gemcitabine.

Parameter β0 β1 β2 β3

β0 1.00 0.17 0.19 0.05

β1 1.00 −0.24 −0.42

β2 1.00 0.41

β3 1.00

the complexity of the real data was captured in this simulation. For
example, the current study assumes that hill slope parameters were
independently distributed. However, moderate correlations actu-
ally exist, at least between the parameter estimates (see Table 4) in
the real data. All of the correlations were significant (with p-values
< 0.01), except between β0 and β3.

However, it is unclear whether the origin of these correlations
are due to actual correlations between parameters in the popu-
lation, or between the estimated parameters from the data. It is
possible to have high correlations between estimated parameters,
even if the true parameters are not correlated (for example, the
slope and intercept estimates are correlated in simple linear regres-
sion). This was also demonstrated by generating 1000 random
dose-response curves, whose hill slope parameters were generated
(independently) according to Section 2.2. For each of these curves,
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hill slope functions were fit and the resulting hill slope parame-
ters had significant Spearman rank correlations (p-value < 10−6)
between every pair, except β2 and β3 (see Table 5).

A second limitation is that data was simulated with an assump-
tion of equal variances for error terms among all cell lines. How-
ever, in the real data this is not the case, as indicated by highly
significant Brown-Forsythe test (p-value <0.0001).In addition,
residuals variance was substantially different at different drug con-
centrations (see Figure 9). Ignoring how variation changes as a
function of drug concentration, by using ordinary least-squares
(OLS) estimation leads to estimators that are unbiased, but ineffi-
cient relative to generalized least-squares (GLS) estimators (Bates
and Watts, 1988). It would be interesting to simulate data that
captures this pattern of variability, and then compare methods
employing OLS estimators to methods using GLS estimators for
calculating hill slope parameters.

Additionally, the simulations did not take into account mea-
surement error in data, either in the genotyping, or in the con-
centration levels (Berkson errors). Future studies should evaluate
the impact of sure error on the performance of the association
analysis methods.

Another interesting method that was not considered is a multi-
variate ANOVA (MANOVA) approach, where a vector of summary
statistics, s(yij, xij) = {s1(yij, xij),. . .,sn(yij, xij)}, is the response
(Timm, 2002). This vector could include any combination of
the univariate summary statistics considered in this study. This
approach attempts to partition the covariance matrix of the
response into an effect due to genotype and an effect due to residual
error. The partition due to genotype effects can be summarized as
a function of its eigenvalues, for example using Wilk’s λ. Because
each vector s(yij, xij) is generated from a single dose-response
curve, the vectors are independent and typical F-distributions
apply, unlike the ANOVA/GenoCurve methods considered in this
study. In addition to multivariate analysis, interactions should also
be considered. The current approach only check for univariate
genotype effects, but both gene-gene and gene-dose (exposure)
effects could be considered. It is reasonable to assume that dose-
response outcomes are due to complex genetic etiologies, and

Table 5 | Sample Spearman rank correlations between estimates of

hill slope parameters for dose-response curves simulated under H0

with a MAF of 0.25 and equally spaced drug concentrations.

Parameter β0 β1 β2 β3

β0 1.00 0.55 0.27 0.15

β1 1.00 0.15 0.37

β2 1.00 0.04

β3 1.00

FIGURE 9 | Plots of residual variance vs. concentration for

dose-response data of LCLs exposed to Gemcitabine and fit with a hill

slope function.

future studies should consider interaction effects as one potential
genetic architecture.
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A APPENDIX
A1 LYMPHOBLASTOID CELL LINE EXPERIMENTAL METHODS
Epstein-Barr virus immortalized lymphoblastoid cell lines (LCLs)
were the generous gift of Ronald Krauss, Children’s Hospital Oak-
land Research Institute. The 264 lymphoblastoid cell lines used
were of Caucasian decent and obtained from the Pharmacoge-
nomics and Risk of Cardiovascular Disease study. LCL’s were
cultured in RPMI medium 1640 containing 2 mM L-glutamine
(Gibco) and 15% fetal bovine serum (Sigma). No media antibiotics
were used for these studies.

Forty-five microliter of fresh cultures of cells were seeded in
384-well plates (Corning) at a density of 4000 cell/well containing
5 μl of six dilutions of each drug in quadruplicate wells. All liq-
uid handing was performed using a Tecan EVO150 (Tecan Group
Ltd.) with a 96 head MCA. Plates were incubated for 72 h at 37˚C,
5% CO2 before the addition of 5 μl of Alamar Blue (Biosource
International). Plates were incubated an additional 24 h. Fluores-
cence intensity measurements at EX535 and EM595 nm were read
on an Infinite 200 microplate reader with Connect Stacker (Tecan
Group Ltd.) using iControl software (Version 1.6).

A2 NON-LINEAR CURVE-FITTING ALGORITHM
The creation of a fast and accurate non-linear curve-fitting algo-
rithm (that always converges) was important in this study because
the entire simulation study required over 280 million curve fits
(180 data sets of size 2500, and twelve data sets of size 10,000, with
each data set having 496 dose-response curves, see Table 1). The
proposed algorithm operates well for fitting hill slope curves to
dose-response data. Essentially, the simplified pseudo-code is:

while(j < maxIter) {
for(I in 1 to numParams) {

dir = sign(cost(param(i))
-cost(param(i) + eps(i)))

stepSize = stepSizes(i) * dir
while(stepNum < maxSteps &&

stepSize < tolerance(i)){
if(cost(param(i) + stepSize)

< cost(param(i))) {
parameter(i) += stepSize

} else
parameter(i) += stepSize
stepSize *= -0.5

}
stepNum ++

}
}
iterations ++

}.

Table A1 | Estimated percent errors of the curve-fitting algorithm for

1000 simulated curves.

Parameter β0 β1 β2 β3

Percent error 0.18 0.69 0.95 0.13

Here, cost (the cost function) was the sum of squared residuals
between response and hill slope predicted values. The above algo-
rithm works well when good starting values are used. Generally,
good starting values for β0 is max yi + δ, while β1 is min yi − δ,
for some small δ > 0. Then, estimates for β2 and β3 can be found
using the following identity:

yi = β0 + β1 − β0

1 +
(

xi
β2

)β3
⇔

log (xi) = log (β2) + 1

β3

yi − β1

β0 − yi
,

and regressing log(xi) on yi − β1/β0 − yi. The speed and accuracy
of the algorithm was tested on data that was simulated to be similar
to the Gemcitabine data. Fitting 1000 dose-response curves, each
containing 24 points, took approximately 5 s on a MacBook Pro
(2.66 GHz Intel Core 2 Duo processor with 4 GB 1067 MHz DDR3
memory). When residual error was negligible and concentrations
were equally spaced, under the null with a MAF of 0.25, the algo-
rithm had good accuracy in calculating the true parameters, with
errors averaging less than 1% for all parameters (see Table A1).
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