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MicroRNAs (miRNAs) are a class of small regulatory genes regulating gene expression
by targeting messenger RNA. Though computational methods for miRNA target predic-
tion are the prevailing means to analyze their function, they still miss a large fraction of
the targeted genes and additionally predict a large number of false positives. Here we
introduce a novel algorithm called DIANA-microT-ANN which combines multiple novel tar-
get site features through an artificial neural network (ANN) and is trained using recently
published high-throughput data measuring the change of protein levels after miRNA over-
expression, providing positive and negative targeting examples.The features characterizing
each miRNA recognition element include binding structure, conservation level, and a spe-
cific profile of structural accessibility. The ANN is trained to integrate the features of each
recognition element along the 3′untranslated region into a targeting score, reproducing
the relative repression fold change of the protein. Tested on two different sets the algo-
rithm outperforms other widely used algorithms and also predicts a significant number of
unique and reliable targets not predicted by the other methods. For 542 human miRNAs
DIANA-microT-ANN predicts 120000 targets not provided byTargetScan 5.0.The algorithm
is freely available at http://microrna.gr/microT-ANN.
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INTRODUCTION
MicroRNAs (miRNAs) are ∼21 nt short RNA molecules that have
been found to confer a novel layer of genetic regulation in a
wide range of biological processes. They induce protein repres-
sion through translation repression or mRNA degradation. The
involvement of miRNAs in cellular commitment and cell cycle
regulation makes them important in both animal development
and human disease (Ambros, 2004; Filipowicz et al., 2008). The
first miRNAs and their targets were identified in 1993 via classical
genetic techniques in C. elegans (Lee et al., 1993), but it was not
until 2001 that they were found to be widespread and abundant in
human cells (Lagos-Quintana et al., 2001; Lau et al., 2001; Lee and
Ambros, 2001). This was also the impetus for the development
of the first computational target prediction programs (Enright
et al., 2003; Lewis et al., 2003; Stark et al., 2003; Kiriakidou et al.,
2004) which led to the experimental identification of dozens of
miRNA targets. Such experimentally supported and validated tar-
gets are collected in TarBase (Sethupathy et al., 2006; Papadopoulos
et al., 2009b), showing an exponential increase between 2004 and
2009.

In parallel more than a dozen target prediction programs
were developed while some of the first generation of programs

was improved (Bartel, 2009). Features common to many of the
prediction programs are the alignment of the miRNA seed region
(2–7 nt starting from the 5′ end) to the 3′untranslated region
(3′UTR) of a protein coding gene and the use of evolutionary
conservation of miRNA recognition elements (MREs). A part of
these programs combine scores of several MREs to a miRNA tar-
get gene (miTG) score using an additive or a hidden Markov
model (HMM; Krek et al., 2005). Additional features such as
structural accessibility of the target site, binding of the 3′ end
of the miRNA, nucleotide composition of the region flanking the
target site, location within the 3′UTR, and a conservation score
based on phylogeny have been added to several programs (Bren-
necke et al., 2005; Gaidatzis et al., 2007; Grimson et al., 2007;
Kertesz et al., 2007; Hammell et al., 2008). Until recently, the
evaluation of such programs was based on a limited number of
experimental validations or/and statistical approaches that calcu-
lated a signal to noise ratio (SNR) using targets of randomized
(mock) miRNA sequences as background (Krek et al., 2005; Lewis
et al., 2005).

The first high-throughput data on miRNA targets was mea-
sured in microarray gene expression experiments (Krutzfeldt et al.,
2005; Lim et al., 2005), where a miRNA was either overexpressed
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or silenced. This method may identify a group of differentially
expressed genes that are degraded through the interaction with a
miRNA but is insensitive to the targets that are affected only at the
translational level. Thus it can correctly identify only part of the
positive data (targeted genes with messenger RNA (mRNA) degra-
dation) and provides insufficient information for the negative data
(untargeted genes).

As a recent major step toward understanding the complete
effect of individual miRNAs, two groups have independently char-
acterized miRNA-mediated gene expression changes at both the
mRNA and protein level (Baek et al., 2008; Selbach et al., 2008).
Selbach et al. used microarrays and pulsed stable isotope labeling
with amino acids in cell culture (pSILAC) assays to determine the
targets of five over or under expressed miRNAs in HeLa cells, while
Baek et al. used similar methods for four miRNAs. Both methods

include a fraction of indirect targets from secondary effects, but the
accompanying computational analyses show a strong enrichment
of targets sites for the relevant miRNA, indicating analog a strong
enrichment in direct targets. This data currently provides trough
their high-throughput nature one of the best approximation for
both the positive and negative targeting information for several
miRNAs and thousands of proteins.

Additionally, high-throughput CLIP data now allows for the
direct identification and localization of MREs on the target genes
(Chi et al., 2009). This type of data is used here as an accurate
independent test set.

Here we introduce DIANA-microT-ANN, the first artifi-
cial neural network (ANN) miRNA target prediction algo-
rithm, trained and tested on this type of high-throughput data
(Figure 1A). The ANN is designed with a recurrent architecture

FIGURE 1 |The DIANA-microT-ANN algorithm pipeline. (A) A schematic
overview of the algorithm. The miRNA extended seed sequence is aligned to
the 3′UTR of protein coding genes and identifies putative miRNA recognition
elements (MREs) based on structure specific binding rules. For weak binding
sites the algorithm additionally applies a free binding energy filter. For all
identified MREs the conservation and structural accessibility profile is
retrieved. The final prediction score is calculated by a recurrent artificial neural
network (ANN) which combines all the features of the MREs on the 3′UTR.
(B) Calculation of the relative MRE conservation and ANN design. An example
is illustrated where the maximum number of species showing any
conservation within the 3′UTR is 5. The MRE relative conservation is the
number of species in which the MRE is conserved divided by this maximum.
All MRE features are presented to the ANN in the MRE layer using a vector
with seven components. The first component is the structural accessibility

value of the MRE. The following six components correspond to the binding
structure classes and have as value the relative conservation score. This
vector is the input to a linear neuron that assigns the MRE score by
multiplying the features with seven weights. The MRE score is the input to a
non-linear neuron in the miTG layer to collect the miTG score. Using a
feedback connection, this neuron simulates a saturation effect through a
non-linear integration of the MRE scores. The network processes sequentially
each MRE as it occurs on the 3′UTR. At each MRE the activity collected as
the pre-miTG score from the previous MREs is multiplied with the weight on
the feedback connection, added to the current MRE score and passed
through a non-linear threshold function. The output is the current pre-miTG
score at this particular MRE. After processing the last MRE, this activation is
assigned as the final miTG score and reflects the degree of downregulation of
the coding gene based on the particular UTR.
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which has been shown to be effective in financial (Quek et al.,
2008), speech recognition (Robinson et al., 2002), and other
biosequence analysis applications (Reczko and Hatzigeorgiou,
2004). One neural layer recognizes an MRE and the recur-
rent layer integrates the targeting signals for the whole 3′UTR
(Figure 1B).

The program identifies putative miRNA binding sites through
alignment of an extended seed region (1–9 nt from 5′ of the
miRNA; Figure 2A) and calculates the selected features of these
sites (binding type, minimal thermodynamic energy, evolutionary
conservation, and structural accessibility). The ANN is trained
to reproduce experimentally measured protein repression rates
and thus its final output better reflects the strength of the
miRNA:target gene (miTG) interaction. Different user require-
ments with respect to the prediction sensitivity are supported with
three optimized score cutoffs that may also be used to adjust an

additional functional analysis tool based on target enrichment in
pathways.

The program is tested on the proteomics data (using crossval-
idation) and on an independent high-throughput dataset from a
HITS-CLIP experiment. In these tests microT-ANN outperforms
other frequently used miRNA prediction algorithms.

MATERIALS AND METHODS
PROTEOMICS DATA
The miRNA-mediated protein expression changes of Selbach et al.
(2008) available at http://psilac.mdc-berlin.de are used. From this
set, the changes while overexpressing the miRNAs hsa-mir1, hsa-
mir16, hsa-mir30a, hsa-mir155, and hsa-let-7b as well as the
changes after knockdown of hsa-let-7b are used. Each RefSeq
protein ID is converted to the corresponding Ensembl Gene ID
(Ensembl release 48; Flicek et al., 2008). There are only 120 RefSeq

FIGURE 2 | Features of the miRNA binding region. (A) A schematic
overview of the miRNA binding on the 3′UTR of protein coding genes. The
seed and the extended seed sequence of the miRNA have been noted in
the graph. (B,C) Identification of significant regions in terms of structural
accessibility. The structural accessibility of different regions flanking the
predicted MREs is compared between targeted and non-targeted genes
through a Wilcoxon two-sided test. Each point on the heatmap corresponds
to a region whose start position is indicated on the x axis and stop position

on the y axis. Heatmap B has been created by randomly categorizing the
genes as targeted or not targeted, serving as an estimate of the
randomness in the analysis. In both heatmaps the seed of the miRNA
corresponds to region 0–8. Heatmap C indicates four significant regions
(−51 to −40, −3 to −1, 2 to 3, 8 to 9) which have significant accessibility
differences between putative MREs of targeted and non-targeted genes.
The average accessibility of these regions has been used as an MRE
property in the artificial neural network training.
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protein IDs that corresponded to multiple Ensembl IDs, and of
these 20 corresponded to multiple Ensembl IDs with different
3′UTR lengths. For these cases, the Ensembl ID correspond-
ing to the longest 3′UTR is used. In total 15806 measurements
for potential miRNA:gene interactions are identified for all five
datasets.

MiRNA SEQUENCES
MiRNA sequences used for all predictions in DIANA-microT-
ANN are taken from miRBase Build 10.0.

GENE SEQUENCES
The 3′UTR sequences for each gene used are the longest annotated
transcript from Ensembl 47.

MULTIPLE ALIGNMENTS
Multiple genome alignments (Karolchik et al., 2007) are down-
loaded from UCSC Genome Browser. Human (hg18) alignment to
the following 16 vertebrate genomes are used: panTro1, rheMac2,
rn4, mm8, oryCun1, bosTau2, canFam2, dasNov1, loxAfr1, ech-
Tel1, monDom4, galGal2, xenTro1, tetNig1, fr1, danRer3, and
Mouse (mm9) alignment to the following 16 vertebrate genomes
are used: rn4, oryCun1, hg18, panTro2, rheMac, canFam, bosTau3,
dasNov1, loxAfr1, echTel, monDom4, galGal3, xenTro2, tetNig, fr2,
danRer5.

MRE IDENTIFICATION
A dynamic programming algorithm identifies the best alignment
between the miRNA extended seed sequence and every 9 nt win-
dow on the 3′UTR. The alignment is initially restricted so as
the pairing of the miRNA extended seed with the 9 nt window
begins at position 1 or 2 of the miRNA extended seed. A mini-
mum of four consecutive Watson–Crick (WC) binding nucleotides
is required starting at position 1 or 2 of the miRNA extended
seed. A single G:U wobble pair is allowed for binding sites with
more than six consecutive WC binding nucleotides. A single bulge
or mismatch is allowed for binding sites with eight WC bind-
ing nucleotides. Table A1 in Appendix summarizes the allowed
binding categories.

HYBRID ENERGY RESTRICTIONS FOR THE IDENTIFICATION OF
PUTATIVE miRNA BINDING SITES
All binding sites with less than six consecutive WC matches (4mers,
5mers) as well as sites containing a binding imperfection (wobble,
bulge, mismatch) are filtered based on their free binding energy.
The free binding energy between the mature miRNA sequence and
the corresponding 3′UTR sequence is calculated using RNAhy-
brid (Rehmsmeier et al., 2004). The binding energy of the duplex
of a miRNA and its reverse complement sequence is considered
as the perfect complement energy. The site under consideration
is only selected if the ratio of its free binding energy versus the
perfect complement energy is higher than a threshold determined
for each binding category as described below. The threshold for
a 7mer binding site with a wobble for is 0.7. For all other bind-
ing sites with imperfections it is 0.6. For 4mers and 5mers the
threshold is 0.4.

CALCULATION OF ENERGY THRESHOLDS FOR COMPLEMENTARY
MATCHES
Energy thresholds are calculated based on the comparison of
real miRNA sequences versus shuffled miRNA sequences. Shuf-
fled miRNA sequences are designed to have the same extended
seed sequence as the real miRNA but a shuffled 3′ end with the
same nucleotide composition as the real miRNA. The free bind-
ing energy ratio e is defined as the ratio of the free binding
energy of the miRNA:3′UTR heteroduplex at this position over
the theoretical free binding energy between the mature miRNA
sequence and its reverse complement. For each binding category,
and for each free binding energy ratio e, the number of puta-
tive binding sites of real miRNAs Nr(e) and shuffled miRNAs
Ns(e) that have energy ratios equal or greater than e are counted.
The ratio R(e) = Nr(e)/Ns(e) indicates how much more prevalent
the free binding energy e for real binding sites is, compared to
the shuffled ones. The energy thresholds for each binding cate-
gory are chosen at the point where the ratio R(e) becomes greater
than 2.

CONSERVATION ASSESSMENT
The algorithm assesses the evolutionary conservation of all identi-
fied MREs by calculating a conservation score based on 16 species.
An initial filter retains only MREs that are conserved at all match-
ing positions of the seed in at least three species. For these MREs
the conservation score is defined as the ratio of the number of
species in which the binding positions of the extended seed region
are conserved versus the respective number using the maximal
number of species having any conservation in the whole 3′UTR
region.

STRUCTURAL ACCESSIBILITY ESTIMATION
To provide an accurate estimate of structural accessibility with
reasonable computational complexity the statistical sampling for
the occurrence of single stranded regions as implemented in the
Sfold program (Ding et al., 2004) is used. To reduce computational
complexity, long transcripts (>800 nt) are divided in regions of
450 nt in length with an overlap of 150 nt between consecutive
regions. The structural accessibility for each nucleotide located in
the overlapping part between two consecutive regions is selected
from the closest 450 nt region.

ARTIFICIAL NEURAL NETWORK DESIGN AND TRAINING
Artificial neural networks are algorithms using simplified mod-
els of natural neurons to simulate their classification and learn-
ing capabilities. These models usually map patterns onto neural
activities that can be interpreted as class probabilities. An ANN
is characterized by a collection of neurons that are inter-
connected with adaptable weights. For their successful appli-
cation in miRNA target prediction, a suitable selection and
representation of the features used as input patterns has to
be found. For a miRNA mi targeting a gene k, this inter-
action is denoted as miTGmi,k . It has a total of nMREs(mi,k)

MREs conserved in all extended seed positions of at least
three other species and each MRE is assigned an MRE scorei
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using

MRE scorei = wacc,categ · acci

+ wcateg · relconsi , i = 1, . . . , nMREs(mi,k), (1)

where categ is the binding category and acci the average acces-
sibility of the MRE, relconsi is the conservation score of the
MRE and is defined as the ratio of the number of species in
which the binding positions of the extended seed region are
conserved versus the respective number using the maximal num-
ber of species having any conservation in the whole 3′UTR
region. The weight wacc, categ for the accessibility vanishes for
the 4mer and 5mer categories. This score is used to accumu-
late an internal value corresponding to the neural activity called
pre_miTG_scorei using a non-linear feedback function defined by

pre_miTG_score1 = tanh(MREscore1)

pre_miTG_scorei = tanh(MREscorei

+ wfeedback · pre_miTG_scorei−1), i = 2, . . . , nMREs(mi,k).

(2)

The final miTG_score is obtained from the last pre_miTG_score
with

miTG_scoremi,k = pre_miTG_scorenMREs(mi,k)
+ bias. (3)

To use the available high-throughput data measuring protein-
fold changes (proFCmi,k ) induced by overexpression of miRNA
mi, the networks scores are required to approximate the measured
fold changes by minimizing the error

protFCsse =
∑

mi,k∈trainingset

(
g

(
protFCmi,k

) − miTG_scoremi,k
)2

,

(4)

where g (fc) = min[max(−2.5fc, 0),1] is a clamping function to
consider only the initial range of downregulation and minimiz-
ing the effect of outliers. All weights and the bias in this network
are adapted with a generating set search method (Kolda et al.,
2003) by using a fivefold leave-one-out crossvalidation of the
measurements in the overexpressed miRNA data sets of Selbach
et al. (2008) to minimize (4). Performance measurements on
this data was obtained from each single network not containing
the tested miRNA in its training set. Final testing on novel data
is performed by using the average score of the jury of the five
different networks. For each predicted miTG we report also a pre-
cision metric which corresponds to the probability of a prediction
being a true target. This is calculated by comparing the predic-
tions to a random background as described in (Maragkakis et al.,
2009a).

RESULTS
DESIGN OF ARTIFICIAL NEURAL NETWORK MODEL FOR miRNA
TARGETED GENES
Artificial neural networks are algorithms using simplified models
of natural neurons to simulate their classification and learning

capabilities. These models usually map patterns onto neural
activities that can be interpreted as class probabilities. An ANN
is characterized by a collection of neurons that are intercon-
nected with adaptable weights. For their successful application
in miRNA target prediction, a suitable selection, and represen-
tation of the features used as input patterns has to be found.
To generate these features a collection of potential MREs is cal-
culated by aligning the extended miRNA seed to each 3′UTR
and retaining all matches between 4 and 9 nt that pass a
binding energy filter. MRE binding sites are mapped to six
classes based on their structure (see Supplementary Material).
Each MRE can be characterized by a large number of fea-
tures such as: local AU composition, location on the 3′UTR,
minimal thermodynamic energy of the miRNA:mRNA duplex,
conservation, and structural accessibility. Extensive training is
performed to identify the most significant feature combina-
tion characterizing a miRNA:target gene interaction (data not
shown). The three features identified are the binding structure
type of the MRE, the conservation, and the structural accessi-
bility of the MRE. The resulting network architecture shown in
Figure 1.

The MRE conservation score is based on a normalization pro-
cedure to adjust to the overall conservation of the 3′UTR region.
This relative conservation information is collected at the binding
positions of the extended seed in 16 different species (see Materials
and Methods).

Target site accessibility has been shown to be a common pre-
requisite of effective MREs (Kertesz et al., 2007; Long et al., 2007).
In order to assess its effect on MRE functionality, we scan for
regions with significant differences in accessibility between puta-
tive MREs of targeted and non-targeted genes. Structural acces-
sibility is predicted in a 300 nt region around each MRE using
the Sfold (Ding et al., 2004) program. The measurements pro-
duced by Selbach et al. (2008) are divided into a downregulated
set consisting of predicted MREs of genes having a log2(protein-
fold change) < −0.2 and a control set with log2(protein-fold
change) > 0.2. All possible regions flanking each putative MRE
from 50 nt upstream to 12 nt downstream of the miRNA extended
seed binding position are tested by calculating the average acces-
sibility of the nucleotides within the region. These averages are
then compared between the targeted and non-targeted set using
Wilcoxon rank sum tests to assign significance scores to each
region. This analysis as shown in (Figures 2B,C) identifies four
significant regions which relative to the start of the MRE extended
seed binding position are located at: −51 to −40 nt, −3 to −1 nt,
2 to 3 nt, and 8 to 9 nt. The interesting enrichment of acces-
sible sites at the 11 nt region starting 51 nt upstream of the
start of the MRE and the absence of any significant accessibil-
ity between this region and the end of the MRE together with the
higher accessibility on and close to the MRE, suggests a poten-
tial presence of closed structural elements on the UTR that may
guide further experimental studies. Selecting and averaging the
accessibility in these specific locations leads to higher prediction
accuracy than using an average accessibility over regions of various
sizes.

The ANN sequentially processes the relative conservation and
accessibility of each MRE as they occur on the 3′UTR and assigns

www.frontiersin.org January 2012 | Volume 2 | Article 103 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


Reczko et al. Accurate microRNA target prediction

an MRE score by multiplying its features with the respective adap-
tive parameters (weights). In parallel it integrates all MRE scores
into the final “miRNA targeted gene score” (miTG score) using
a non-linear feedback loop (Figure 1B). More specifically, for a
miRNA targeting a gene, each MRE is assigned an MRE score
using the binding category, the average accessibility, and the con-
servation score of the MRE. This score is used to accumulate an
internal value called pre_miTG_score using a non-linear feedback
function. The final miTG_score is the last pre_miTG_score with
an additive bias.

To use the available high-throughput data measuring protein-
fold changes induced by the overexpression of a miRNA, the
networks scores are required to approximate the measured fold
changes. The log2 of the fold changes are mapped such that values
smaller than −0.2 correspond to a score 1, values larger than 0
correspond to a score of 0 and all values between 0 and −0.2 are
mapped linear to the scores between 0 and 1.

In this way, only the initial range of downregulation is consid-
ered and the effect of outliers is minimized. This approximation
approach avoids the difficult assignment of a hard fold change
cutoff for targeted proteins and performs better than group-
ing the proteins into a targeted and non-targeted class using
this type of fixed threshold (data not shown). We are aware
of the fact that not all downregulated proteins are direct tar-
gets of miRNA targeting. Using the threshold of −0.2 increases
the likelihood to have a higher enrichment of direct targets
in the positive data. During training, all weights and the bias
in this network are optimized to minimize the error of the
approximation.

An important issue in the application of machine learning
methods is the assessment of generalization performance of the
trained system. It has to be verified that the memory capacity of
the learning system can perform equally well on novel data and
does not only memorize feature combinations specific for the used
training data. Therefore we use crossvalidated training, in which
the available data is split into several partitions. Multiple learning
systems are obtained by training on one partition and validating
the performance on another partition. For the ANN described here
a fivefold crossvalidated training and testing is performed, where
five ANNs are trained with targets of four miRNAs and tested on
the targets of the fifth. For the DIANA-microT-ANN web server,
the five network prediction scores are averaged to form a jury
prediction.

The straightforward architecture of the neural network with
nine adaptable parameters facilitates an interpretation of the
learned values, as seven weights correspond to the features of
the MRE and the weight on the feedback connection corre-
sponds to the importance of multiple, potentially weaker target
sites on the UTR. The weights (shown in Figure A2 in Appen-
dix) for the short (non-canonical) seeds binding only with 4 or
5mers have small negative values, suggesting that the presence
of non-functional target sites has an overall negative influence
on the effectivity of downregulating the protein levels, poten-
tially interfering with other functional sites. This observation
is confirmed by excluding all sites of the 4 and 5mer cate-
gories and retraining, which leads to significantly worse prediction
performance.

DETERMINATION OF USEFUL SCORE THRESHOLD CUTOFFS
In order to provide the choice of multiple reasonable predic-
tion sensitivities, we use different criteria to determine a loose,
medium, and strict score cutoff with increasing prediction preci-
sion (fraction of predicted targets that are correct) and decreasing
sensitivity. For all threshold calculations the crossvalidated results
on the training data are used, selecting always the network that has
not been trained on the tested miRNA. During testing we consider
as positive data the 2406 genes that have a respective log2 protein-
fold change below −0.2 after the overexpression of a miRNA. The
loose threshold is obtained from the score distribution of targeted
and non-targeted genes that shows a bimodal shape that can be
separated at a cutoff of 0.33 (see Figure A1 in Appendix). The
medium threshold of 0.41 is determined to achieve precision at
approximately 50% while the strict threshold of 0.6 is chosen to
provide the highest precision of 65%. The relation of prediction
sensitivity and precision for different score cutoffs is visualized in
Figure 3. It has to be noted that the fold change threshold of −0.2
used here differs from the one used by Selbach et al. (2008) (−0.1)
and therefore produces differences in the comparison measure-
ments. In detail, using a fold change threshold of −0.1 to define
the number of targets considered as positive increases the pre-
cision values to 62 and 74% for the loose and strict threshold
respectively.

CROSS VALIDATED TESTING ON pSILAC MEASUREMENTS AND ON
HITS-CLIP DATA
In order to evaluate the performance of DIANA-microT-ANN
with other frequently used target prediction programs we per-
formed two extensive tests. First we used the data from Selbach
et al. (2008) and the five trained ANNs. As mentioned before the
crossvalidation training used here omits four of the five trained
ANNs during testing and therefore serves for an unbiased com-
parison. At the medium threshold where all three programs have
a similar prediction precision (or positive predictive value) of
around 49% DIANA-microT-ANN achieves the highest sensi-
tivity of 14% compared to 9.9% for PicTar (Lall et al., 2006)
and 12.7% for TargetScan 5.0 (Friedman et al., 2009). Assessing
the uniqueness of each program’s predictions, DIANA-microT-
ANN has with 14% the largest fraction of correct targets not
predicted by any other program (Figures 4A,B). When we fur-
ther analyze the 245 miTGs predicted by DIANA-microT-ANN
but missed by TargetScan 5.0 we identify that 106 of them
are predicted correctly by our approach. These targets consti-
tute the novel predictions and amount to around 20 targets per
miRNA when tested on the genes for which pSILAC measure-
ments were available. These genes are only 1/5 of all known
genes and we thus expect around novel 80 targets per miRNA
for all genes. Extrapolating this fraction to the predicted targets
for 542 miRNAs for which both our approach and TargetScan
5.0 provide predictions, we identify approximately 120000 miTGs
predicted by DIANA-microT-ANN alone, expecting more than
40000 to be correct. In a comparison with three other target
prediction programs DIANA-microT-ANN constantly achieves
the best results (Figure 3) and at the strict threshold its perfor-
mance exceeds even the commonly used intersection of predic-
tions of TargetScan 5.0, PicTar, and the miRanda program used in
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FIGURE 3 |The precision and sensitivity of representative target

prediction methods tested on the proteomics data. The tested programs
are: Pictar, TargetScan 5.0, and DIANA-microT-ANN using the suggested
three different score cutoffs denoted as strict (S), medium (M), and loose
(L). Additionally the performance of a seed occurrence measure, detecting
genes containing at least one occurrence of the miRNA seed is shown as a
very sensitive prediction criterion, and the commonly used intersection of
the predicted targets of Pictar, TargetScan 5.0, and miRBase as a very strict
and precise measure. Three groups are highlighted indicating the methods
with high sensitivity, medium, and high precision (from left to right).

miRBase-Targets (Enright et al., 2003), obtaining both a slightly
increased precision as well as an almost twofold sensitivity. In
addition, assessing the performance of DIANA-microT-ANN on
the hsa-let-7b pSILAC knockout data (see Materials and Meth-
ods) yields analogous results to those derived for the five miR-
NAs already mentioned. At a similar prediction precision for all
three programs of around 23% corresponding to the medium
threshold of DIANA-microT-ANN, our approach achieves a sen-
sitivity of 12% in comparison to 10% for PicTar, and 11% for
TargetScan 5.0.

Additionally we noticed that the training of the ANN using the
relative fold changes results in a biologically meaningful ranking
of the targets and helps in the interpretation of the score. Com-
paring the predicted scores with measured fold changes for all
proteins predicted as targeted, an almost linear relation can be
observed for DIANA-microT-ANN using a loose score threshold

(Figure 4C). When considering the targets predicted by the pro-
gram at the medium threshold that results in a total number
of predictions comparable to PicTar and TargetScan 5.0, the top
third predictions of DIANA-microT-ANN are significantly more
responsive than the middle third (P < 0.005, Mann–Whitney U -
test), indicating the value and higher relevance of the top-scoring
predictions.

With the jury ANN we perform an additional independent
evaluation on a high-throughput data set. In (Chi et al., 2009),
the authors use Ago HITS-CLIP data to identify binding sites of
miRNAs expressed in the mouse brain. In their analysis they iso-
lated two different sets of data. The first corresponds to miRNA
binding sites and the second one to miRNA sequences. Mapping
the above mentioned data to the genome and analyzing them
we identified 30 miRNAs which are most probably expressed in
the specific tissue. In order to identify the binding sites of each
of these miRNAs we performed a seed match prediction on the
3′UTRs of the genes and the identified matches were filtered to
keep only those which overlap with any of the 356743 identi-
fied peaks of the HITS-CLIP data. Overall this analysis resulted
in 2065 positive miRNA:gene interactions which have been used
for the evaluation of the target prediction algorithms. The sensi-
tivity and precision of the predictions of DIANA-microT-ANN,
Tagetscan 5.0, and PicTar, averaged of all miRNAs contained
in the test set are shown in Figure 5, where in comparison
with the other programs both a higher precision for the top-
scoring targets and a higher final sensitivity can be observed for
DIANA-microT-ANN.

DISCUSSION
A commonly used strategy to increase the specificity of pre-
dicted targets is to use the intersection of the outcome of
more than one target prediction program. A frequent combina-
tion is the intersection of TargetScan, PicTar, and the miRanda
method of miRBase-Targets (Liang, 2008; Tian et al., 2008), as
these programs are currently available at miRBase (Griffiths-
Jones et al., 2008). In an extended comparison on the Selbach
et al. (2008) data using a fold change cutoff of −0.2 to distin-
guish between targeted and non-targeted genes, we tested the
prediction sensitivity and precision of all possible combinations
of 10 different target prediction programs either for the union
or the intersection of their results. Figure 6 shows the sensi-
tivity and precision of all union and intersection combinations
of the programs and the performance of DIANA-microT-ANN
alone at various score cutoffs. Generally, even the best perform-
ing combinations do not significantly exceed the performance
of the program described here alone. As an example for a pos-
sible improvement, the union of TargetScan 5.0 and DIANA-
microT-ANN at the medium score cutoff achieves the same pre-
cision and a 3% higher sensitivity than DIANA-microT-ANN
alone.

The proteomics data used for training contains a certain
amount of false negative targets. This depends directly on the
used thresholds for the log2 of the level of protein expression
changes. In Selbach et al. (2008) the threshold chosen was −0.1.
We systematically tested this and two more cutoffs (−0.2, −0.3).
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FIGURE 4 | Performance comparison on the proteomics data.

(A) Percentage of targets predicted by DIANA-microT-ANN, PicTar, or
TargetScan 5.0 alone or in different combinations of them. The whole pie
corresponds to the correct targets [log 2 (fold change) < −0.2, as measured
by Selbach et al., 2008) predicted by any of the three programs. For PicTar and
TargetScan 5.0 all of their suggested targets are used while the “medium”
score threshold (0.41) is used for DIANA-microT-ANN giving all programs
approximately equal precision (or positive predictive value, the fraction of
predicted targets that are correct) levels. The number of predicted targeted
genes (miTGs) corresponding to the fractions in the pie chart are shown next
to the legend. (B) Coverage of each program in all combined predictions.
DIANA-microT-ANN misses 21% of all predictions, compared to PicTar and

TargetScan 5.0 which miss 35 and 29% respectively. (C) Significance of the
prediction scores of DIANA-microT-ANN, PicTar and TargetScan 5.0 in relation
to the protein repressions. All predicted targets [mT(L) = DIANA-microT-ANN
(loose threshold, 1036 targets), mT(M) = DIANA-microT-ANN (medium
threshold, 733 targets), TS =TargetScan5 (612 targets), PT = PicTar (483
targets)] are sorted according to their prediction scores and divided into three
equal-sized bins. Significant differences between adjacent groups are
indicated (asterisk, P < 0.005, Mann–Whitney U -test). The predictions of
DIANA-microT-ANN are the only showing significant differences between the
middle and top third, both at loose and medium threshold. For PicTar and
TargetScan 5.0 only the lower and middle third of the predictions have
significant differences in their protein-fold changes.

We finally chose −0.2 as the cutoff which provides the best com-
promise of correct and false positive targets for training. The
influence of the small amount of false positive data due to indi-
rect targets in the proteomics data is assessed by the additional
tests on the HITS-CLIP data, that serves to indicate only direct
targets.

The majority of users of target prediction programs inspect
only a few top-scoring predictions. For these users, our predic-
tions obtained with a strict score cutoff are most useful. Averaged
over 555 human miRNAs, 54 genes will be predicted as targeted
with a strict cutoff, compared to 398 genes at the medium cutoff.
Comparing to TargetScan 5.0 as the second best program on the
tested proteomics data, DIANA-microT-ANN has a 10.1% higher
precision at the same sensitivity and a threefold higher sensitivity
to obtain the same prediction precision.

The algorithm is embedded in a user friendly web environ-
ment (Maragkakis et al., 2009a,b) that visualizes the scores for
each target site on a gene, the species the site is conserved and
the binding structure of the miRNA to the site and allows the
adjustment of the score cutoff depending on the required sensitiv-
ity/specificity relations. The latter is not only useful for defin-
ing predicted targets with high specificity (strict threshold) as
mentioned above but also equally important for defining targets

of a miRNA with high sensitivity (loose threshold). For exam-
ple DIANA-microT-ANN can predict with the medium score
threshold 338 out of the 2226 genes that are showing a pro-
tein repression of fold change −0.2 in the Selbach et al. (2008)
data. With the loose threshold the programs provides 125 more
correct targets (463 out of 2226) with a prediction precision of
45%.

To integrate the predictions for miRNA repression within a
systems biology framework, we provide the information regard-
ing cellular pathways that are enriched in targets of one or more
miRNAs (Papadopoulos et al., 2009a). Using the sensitive score
this option can act also as a functional filter of larger sets of
predicted miTGs and leads to smaller and functionally related
miTG subsets with a graphical representation of their pathway
relations. In the example shown in Figure 7, mir155 has an ini-
tial list of more than 600 targets that is reduced to around 10
targets on the enriched pathways. Interestingly when we eval-
uate the precision of the targets predicted with the loose score
cutoff and mapped to the pathways with highest enrichment for
each miRNA we measure a performance of 64% which matches
almost the specificity using the strict threshold and is nearly 20%
higher than if we consider all the targets independent of the
pathways.
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FIGURE 5 | Sensitivity – precision plot for DIANA-microT-ANN, PicTar,

andTargetScan 5.0 predictions on the HITS-CLIP dataset of Chi et al.

(2009). By lowering the score cutoff, the precision of each algorithm (the
fraction of the supported targets correctly predicted, averaged over all
miRNAs) is shown versus the sensitivity for that cutoff. The performance of
DIANA-microT-ANN at the strict, medium, and loose score cutoffs are also
indicated.

In conclusion, we introduce a novel approach for miRNA target
prediction based on a machine learning approach trained on both
positive and negative protein data from high-throughput pro-
teomics experiments in order to optimize the separation of miTGs
and non-miTGs and achieving highest performance. Through
an iterative learning procedure a novel algorithm for miRNA
target prediction learns to determine the best weights for each
class of target sites on a UTR. The architecture of the recur-
rent ANN allows a better integration of multiple binding sites
and together with the additional accessibility feature DIANA-
microT-ANN improves sensitivity and is able to correctly pre-
dict a large fraction of target genes which are not reported by
other frequently used programs. When we closer inspect the tar-
gets predicted only by DIANA-microT-ANN we notice signifi-
cantly higher site accessibility and a significantly larger number
of MREs.

The flexibility and scalability of the approach supports the
straightforward implementation of several generations of miRNA
target predictions programs. In particular, it can easily tackle the
advent of other high-throughput miRNA induced proteomics
data and the expected huge amounts of Argonaute tagged deep
sequencing data that will pinpoint orders of magnitudes of
real MREs.

FIGURE 6 | Sensitivity – precision plot for 10 target-predictors (red)

and all possible combinations of their predictions (black). The
performance of DIANA-microT-ANN is measured at the three suggested
score cutoffs (blue squares) as well as at all other score cutoffs (blue line).
Union combinations contain all target genes predicted by any of the
combined programs and intersection combinations contain target genes
predicted commonly by all of the combined programs. The investigated
programs are PicTar (Lall et al., 2006), TargetScanS (Lewis et al., 2003),
TargetScan 5.0 (Friedman et al., 2009), PITA (Kertesz et al., 2007), ElMMo
(Gaidatzis et al., 2007), RNA22 (Miranda et al., 2006), miRanda (John et al.,
2004; obtained from mirna.org), miRBase-Targets (Enright et al., 2003;
miRanda algorithm provided by microrna.sanger.ac.uk),
DIANA-microT-ANN, and additionally genes containing at least a single 6 nt

long miRNA seed. Seed based predictions achieve a much higher
sensitivity compared to some of the programs (the two miRanda programs
and RNA22), without sacrificing precision. The seed measure is a good
choice for a low-precision but very sensitive prediction. The remaining
target prediction programs (PicTar, TargetScan 5.0, PITA, ElMMo, and
DIANA-microT-ANN) achieve precision and sensitivity values of a similar
range among them. It should be mentioned that although TargetScan 5.0
and DIANA-microT-ANN are very recent programs, PicTar is performing
comparable using the same algorithm over the last few years. Their online
predictions have not been updated regarding the number of new miRNAs
reported in miRBase. Interesting combinations are marked in the figure
and an exhaustive list of all combinations can be found in Table S1 in
Supplementary Material.
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FIGURE 7 | Integration of DIANA-microT-ANN and DIANA-mirPath. The
functional filtering performed by DIANA-mirPath produces much smaller,
functionally related, subsets of miTGs. The visualization of the miTG
subsets in the pathway maps provides a direct indication of the overall
influence of the miRNA in the pathway. Each set of genes predicted as
targeted for a single miRNA are analyzed with DIANA-mirPath and the
results are integrated in the DIANA-microT-ANN web server to illustrate

the biological pathways enriched this set. The functional relation and
interplay of the miTGs are provided in a graphically annotated network
where only those few targets of the specific miRNA, implicated in the
process of interest, are presented instead of the usually overwhelming list
of predicted miTGs. The results of this enrichment analysis focus the set
of targeted genes to a few pathways and usually increase prediction
precision.
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APPENDIX
Table A1 | Graphical examples for the allowed binding categories.

Binding category Description Graphic Binding structure class

9mer 9 Consecutive matches 9mer

8mer 8 Consecutive matches 8mer

7mer 7 Consecutive matches 7mer

6mer 6 Consecutive matches 6mer

9mer with wobble (G:U) 8 Matches + wobble + 3′ binding 6mer

8mer with wobble (G:U) 7 Matches + wobble + 3′ binding 6mer

7mer with wobble (G:U) 6 Matches + wobble + 3′ binding 6mer

8mer with miRNA bulge 8 matches + bulge + 3′ binding 6mer

8mer with mismatch 8 Matches + mismatch + 3′ binding 6mer

8mer with target bulge 8 Matches + bulge + 3′ binding 6mer

5mer 5 Matches + 3′ binding 5mer

4mer 4 Matches + 3′ binding 4mer
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FIGURE A1 | Determination of loose score threshold cutoff. The loose threshold is obtained from the score distribution of targeted and non-targeted genes
on the Selbach et al. (2008) data that shows a bimodal shape that can be separated at a cutoff of 0.33. Score distributions on positive and negative data.

FIGURE A2 | Average weights of the ANN after fivefold crossvalidation.

Weights of the ANN averaged over the five validations. The error bars show
the SE. The “4mer” to “9mer” weights are used to multiply with the relative

conservation of the corresponding seed match size. “acc” Denotes the
weight to the structural accessibility feature, “feedback” is the weight on the
feedback connection and “bias” the bias term in Eq. 3.
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