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Accurate genetic evaluation of livestock is based on appropriate modeling of pheno-
typic measurements. In ruminants, fecal egg count (FEC) is commonly used to measure
resistance to nematodes. FEC values are not normally distributed and logarithmic trans-
formations have been used in an effort to achieve normality before analysis. However, the
transformed data are often still not normally distributed, especially when data are extremely
skewed. A series of repeated FEC measurements may provide information about the pop-
ulation dynamics of a group or individual. A total of 6375 FEC measures were obtained for
410 animals between 1992 and 2003 from the Beltsville Agricultural Research Center Angus
herd. Original data were transformed using an extension of the Box–Cox transformation
to approach normality and to estimate (co)variance components. We also proposed using
random regression models (RRM) for genetic and non-genetic studies of FEC. Phenotypes
were analyzed using RRM and restricted maximum likelihood.Within the different orders of
Legendre polynomials used, those with more parameters (order 4) adjusted FEC data best.
Results indicated that the transformation of FEC data utilizing the Box–Cox transformation
family was effective in reducing the skewness and kurtosis, and dramatically increased
estimates of heritability, and measurements of FEC obtained in the period between 12
and 26 weeks in a 26-week experimental challenge period are genetically correlated.
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INTRODUCTION
Gastrointestinal nematode infection causes significant losses to
livestock industries worldwide. It reduces meat and milk pro-
duction, increases mortality, requires anthelmintic use, and often
results in changes in herd management. In most cattle-producing
areas of the world, infection by helminth parasites (particularly
gastrointestinal nematodes) is a cause of substantial production
losses (Barger, 1993). In New Zealand anthelminthic expenses are
about $27.9 million/year (Bisset, 1994), and in the U.S.A. these par-
asites cost to the American livestock industry, approximately, $2
billion/year in lost productivity and increased operating expenses
(Sonstegard and Gasbarre, 2001). These authors also noted that
anthelmintics are frequently used to prevent potential economic
losses, resulting in an increased anthelmintic resistance in cattle
and increased consumer concern about drug residues in animal
products.

Selecting animals with enhanced resistance to parasites can
reduce pasture contamination, decrease the dependence on
anthelmintics, and reduce selection for drug resistance. A genetic
component to host resistance in cattle has been reported by
Gasbarre et al. (1990), where heritability of parasite resistance
was estimated to be approximately 0.30, allowing for moderate
genetic progress. Gasbarre et al. (2002) believe that QTL mapping
and marker-assisted selection (MAS) could be used to accelerate
genetic improvement.

Fecal egg count (FEC) is used to identify and quantify gas-
trointestinal parasite infestations. FEC values are not normally
distributed, and a small percentage of the herd is responsible
for the majority of parasite transmission (Gasbarre et al., 1990).
This overdispersion of FEC values was first described by Crofton
(1971a,b) and has been reported in other cattle populations. In
this overdispersed distribution, the value of the SEM frequently
exceeds the value of the mean, and as such most individuals have
relatively low fecal FEC values, and a small percentage of ani-
mals, estimated to be between 15 and 25% of the total population
(Anderson and May, 1985), exhibit high FEC values. This pattern
strongly suggests genetic management of a small percentage of the
herd could considerably reduce overall parasite transmission.

In order to produce distribution of FEC that is close to
normality, logarithmic transformations of the data have been
used before analysis (Nødtvedt et al., 2002). The most common
transformations are y = ln(FEC + 1) (Torgerson et al., 2005) and
y = ln(FEC + 100) (Morris et al., 2003), where ln is the natural
(base e) logarithm. Nevertheless, normalization of the distribution
is not achieved in most cases, especially when data are extremely
skewed (Wilson and Grenfell, 1997). In addition, type I errors are
likely to be common and type II errors are increased when using a
log-transformed method (Wilson et al., 1996).

Accurate genetic evaluation of livestock is based on appropri-
ate modeling of phenotypic measurements. Phenotypes measured
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several times over the life of the animal are called longitudinal data.
Production of milk, fat, and protein in dairy cattle and growth in
beef cattle are examples of this type of data. The ability of RRM to
model a separate lactation or growth curves for each animal and
to account for differences in shapes of permanent and temporary
environmental effects curves has made these models extremely
useful for dairy cattle evaluations (Strabel and Jamrozik, 2002).

As noted above, also used in other species, FEC is commonly
used to measure resistance or susceptibility to nematodes. A series
of repeated FEC measurements may provide information about
the population dynamics of a group or individual. An infection
curve can be calculated for each animal using weekly measure-
ments. These measures have been used to separate calves into the
following categories: Type I – resistant animals that are innately
immune and never demonstrated high FEC values, Type II –
animals that have acquired immunity over time, and Type III –
immunologically non-responsive animals that are susceptible to
infestation.

Advantages of RRM for FEC analysis include: (a) removal of
environmental variation in phenotypic data by considering the
specific common environmental effects of each record; (b) use of
a larger number of records per animal, rather than a single number
such as mean, peak, or maximum value, (c) more accurate estima-
tion of genetic and permanent environmental effects influencing
FEC and (d) more accurate assignment of animals into resistant,
acquired, or susceptible phenotypes.

The objectives of the present study were to use an extension of
the Box–Cox transformation to approach normality and to deter-
mine the efficiency of the transformation and random regression
models (RRM) for analyzing FEC data.

MATERIALS AND METHODS
RESOURCE POPULATION
A divergent selection program for parasite resistance was initi-
ated at the Beltsville Agricultural Research Center using parental
stock that originated from the Wye Angus herd at the University
of Maryland. Once initial breeding females were identified, semen
from high and low FEC bulls was used to produce calves of the
desired phenotypes.

Calves were kept with their dams on pastures with extremely
low numbers of parasites prior to weaning. When the median age
of the contemporary group was 205 days, calves were weaned and
placed on pastures infected with the two most common nematode
parasites of US cattle, Ostertagia ostertagi and Cooperia oncophora.
Calves were monitored weekly for the following: FEC, serum
pepsinogen level, serum antibodies of the IgG1, IgG2, IgA, and
IgM subclasses to Ostertagia and Cooperia crude antigens, blood
eosinophil levels, complete blood count (CBC; hematocrit, hemo-
globin, red blood cell count, white blood cell count, mean cell
volume), body weight, hip height, and scrotal circumference of
the bull calves. The calves were kept on pasture for a minimum
of 120 days, and animals were selected as replacement breed-
ers for re-challenge experiments, or for immediate post-mortem
collection of parasitological and immunological data. Data col-
lected post-mortem included: parasite species and numbers recov-
ered, sex, and length of worms, enumeration of Ostertagia- and
Cooperia-specific T cells in the abomasal and mesenteric lymph

nodes by limiting dilution analysis, weight of abomasal lymph
nodes, enumeration by flow cytometry of CD3, CD4, CD8, IL2-
receptor, B-cell marker, surface IgM, and T-cell receptor positive
cells in the abomasal and mesenteric lymph nodes, and semi-
quantitative competitive PCR measure of mRNA expression of
IL2, IL4, IL10, IL13, IL15, IL18, IFN, TNF, and TGF in abomasal
and mesenteric lymph nodes (Gasbarre et al., 2002).

To date, 410 progeny have been tested in this parasite challenge
system. Complete pedigree records for this population tracing
back to the original founding animals of the Wye herd have been
assembled. Initial pedigree analysis of the resource population
reveals that >90% of the animals are paternally descended from a
Wye bull born in 1944. This extreme relationship to a single bull
may have resulted from selection for a single major histocompa-
bility complex (MHC) haplotype. DNA for genetic analysis has
been acquired from all animals from the resource population and
over 70 sites in the historic pedigree (Gasbarre et al., 2002).

DATA TRANSFORMATION
In order to obtain the skewness and kurtosis, as well as in the
analyzes by REML, the response variable yi (mean or largest
value of FEC) was analyzed using ln(count + 100) or on a yλ

i
scale obtained from the Box–Cox transformation family, in which
yλ

i = (yλ − 1)/λ, (λ �= 0) or yλ
i = ln(yi), (λ = 0). An adap-

tation of the algorithm proposed by Hyde (1999) was used to
estimate the maximum likelihood estimate of λ. In the random
regression analyzes, different values of λ were used (1, 0.5, 0.14,
0, −0.5, and −1) to compare transformation efficiency, denoted,
MA, ML, ZE, M5, and M1, respectively.

ESTIMATION OF VARIANCES AND COVARIANCES BY REML
Between 1992 and 2003, 6375 observations of FEC were collected
from 410 animals from the BARC Angus herd. Only FEC data
collected 4–26 weeks after an animal entered the experiment were
considered in the analyses.

Contemporary groups were defined as groups of animals enter-
ing an experiment together. There were 17 contemporary groups
in the study. Estimation of the genetic parameters in this analysis
involved partitioning phenotypic (co)variances between relatives
into its components using the degree of relationship between ani-
mals. A linear mixed model for one trait and one record per animal
can be written as:

y = Xβ + Zuu + e, (1)

where y is a vector of observations for FEC (mean or highest
value, untransformed or transformed by log or Box–Cox); X is the
known incidence matrix relating observations to fixed effects; β is
a vector of fixed effects (contemporary groups, sex of the animal,
and age at test); Zu is a known incidence matrix relating observa-
tions to random animal effects; u is the vector of animal additive
genetic random effects, u ∼ N (0, Aσ2

a); and e is the vector of
residual effects, e ∼ N(0, I σ2

e ).
A repeated measure, mixed model analysis was used to estimate

permanent environmental variances:

y = Xβ + Zuu + Zc c + e
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where y is the vector of observations for monthly FEC (untrans-
formed or transformed by log or Box–Cox); β, u, and e are
as defined in (1), and c ∼ N (0, I σ2

c ) is a vector of random
permanent environmental effects with incidence matrix Zc.

From the variance components, two parameters were defined:
heritability, h2 = σ2

a/(σ
2
a + σ2

c + σ2
e ), and the fraction of perma-

nent environmental variance, c2 = σ2
c /(σ

2
a +σ2

c +σ2
e ). In addition,

repeatability (r) was defined as the sum of h2 and c2.
Heritabilities were estimated using the animal model with the

Multiple Trait Derivative Free Restricted Maximum Likelihood
(MTDFREML) software program of Boldman et al. (1995). The
numerator relationship matrix, A, was constructed using complete
pedigree information among all animal in the study and relevant
ancestors using the algorithm described by Quaas (1976).

Heritabilities were estimated using single-trait analyses. Start-
ing values of the genetic and environmental variances for single-
trait analyses were estimated using results from the MIXED pro-
cedure in SAS (1996). Single-trait analyses were run using low
(10−4) and high (10−9) convergence criteria.

Estimated breeding values (EBV) for FEC records before and
after transformations (ln and Box–Cox) were compared. Cor-
relations between the three sets of EBV and percentage of ani-
mals selected with all three evaluations, under difference selection
intensities (100, 50, 25, 10, 5, and 1%), were calculated.

ESTIMATION OF VARIANCES AND COVARIANCES BY RANDOM
REGRESSION MODEL
The following RRM was utilized to estimate genetic parameters
for FEC:

yijklm = Y Ei + SAj +
n∑

m=1

βmZklm +
n∑

m=1

akmZklm

+
n∑

m=1

pkmZklm + eijklm ,

where yijkl is FEC observation of animal l during week k, within
classes i (year) and j (sex–age), YEi is the fixed effect of year of
collection (i = 1, 2,. . ., 12). SAj is the fixed effect of classes sex–
age (j = 1, 2, . . .14). βm, is the vector of regression coefficients
fixed specifically to describe the average population curve; akm and
pkm vectors of random regression coefficients which respectively
describe additive genetic and permanent environment effects,
and eijkl, random residual effect associated with yijkl; Zklm, rep-
resents the mth parameter of Legendre polynomials of order 2,
3, or 4. Residual variance was considered constant over the col-
lection period (week). Legendre polynomials were standardized
by to range from −1 and 1 as proposed by Kirkpatrick et al.
(1990).

Estimation of the (co)variance components by the RRMs pro-
duced a matrix containing (co)variances of random regression
coefficients. The variances in FEC during different weeks are
obtained from the (co)variance matrix and the vector that con-
tains (co)variables which individually describe the shape of the
FEC curve of the animals.

The estimates of genetic variance (ĝkk) and permanent environ-
mental variance (p̂kk), determined by RRM, in FEC during week

k were calculated as:

ĝkk = z ′
k Ĝ zk

and

p̂kk = z ′
k P̂ zk ,

where Ĝ and P̂ are matrices of genetic and permanent envi-
ronmental variances and covariances between random regression
coefficients, respectively; zk = (co)variables related to a specific
FEC measured during week k.

The estimation of genetic and permanent environmental
(co)variances between two FEC during week k, ĝk ′k , and p̂k ′k , for
k ′ �= k, were obtained by:

ĝk ′k = z ′
k ′ Ĝ zk

and

p̂k ′k = z ′
k ′ P̂ zk ,

where Ĝ, P̂ , and zk are as described above, and z ′
k transpose of zk,

for k ′ �= k.
Variance and (Co)variance matrices of the regression coeffi-

cients (additive genetic – Ĝ and permanent environment – P̂) too
necessary for calculation of heritability, repeatability and genetic
correlations were computed using REMLF90 package (Misztal,
2005). Convergence was declared when the change in −2log
likelihood (L) between rounds was 10−9.

ESTIMATION OF GENETIC PARAMETERS BY RANDOM REGRESSION
MODEL
The estimation of heritability for FEC during week k, using RRM
were obtained by:

ĥ2
k = ĝkk(

ĝkk + p̂kk + σ̂2
e

) .

The estimation of repeatability for FEC during week k were
obtained by:

r̂2
k =

(
ĝkk + p̂kk

)
(
ĝkk + p̂kk + σ̂2

e

) .

The estimation of genetic correlations between FEC k ′ and FEC
k were calculated by:

r ĝk ′k = ĝk ′k√(
ĝk ′k ′ × ĝkk

) ,

where k ′ and k = FEC information, σ̂2
e = estimate of residual

variance, and ĝkk , ĝk ′k , p̂kk , and p̂k ′k are as described previously.

COMPARISON OF THE MODELS IN RANDOM REGRESSION ANALYSIS
Selection of models was based on Akaike’s information criterion
(AIC; Akaike, 1973). Akaike (1973) proposed a simple and use-
ful criterion for selecting the best-fit model among alternative
models: AIC = −2logL + 2.p Differences among AIC values are
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important, not the absolute size of AIC values. The model with
the lowest AIC is considered the best. Some experiences ver-
ify the applicability of AIC in model selection (Burnham and
Anderson, 1998). Another widely used information criterion is
the Bayesian–Schwarz information criterion (BIC), which takes
into account model uncertainty as well. The Bayesian–Schwarz
information criterion is stricter than the AIC, and is defined as
BIC −2logL + p.ln(n − r) where p refers to the number of model
parameters, where n is equal to the number of records used in
the analysis and r is the rank of the matrix X, which is the inci-
dence matrix for fixed effects (Burnham and Anderson, 1998).
Both tests permit comparisons between non-nested models and
penalize models with more parameters, but the BIC favors more
parsimonious models. Lower values to AIC and BIC indicate best
adjusting.

RESULTS
OPTIMUM BOX–COX TRANSFORMATION
Descriptive statistics of FEC for each week and overall data are
presented in Table 1 and Figure 1. Weekly data were distrib-
uted uniformly from the 4th to 17th week. Estimates of variability
within-weeks were large. Variability was associated with the mean;
SD tended to be larger and coefficients of variation smaller as the
mean decreased. The overall mean, SD, and coefficient of variation
were 61.86 ± 83.79 and 135.46%.

Skewness and kurtosis coefficients for the variables analyzed
are presented in Table 2. Positive skewness and kurtosis are

typical in FEC data. Values for non-transformed FEC values and
those transformed using the Box–Cox (BC) are shown for all
three functions of FEC. Estimates of λ obtained by ML were:
0.139 (mean value), 0.149 (largest value), and 0.132 (all val-
ues), indicating that the logarithmic transformation typically used
for FEC data is not optimal, as λ was greater than 0 for all
variables.

The effectiveness of FEC transformation using yλ
i is illustrated

in Table 2. Transformation reduced coefficients of asymmetry in
all the variables studied, thereby improving the distribution of
FEC. Although expected values for skewness and kurtosis for a
normal distribution are zero, in a general way, the values from
data after Box–Cox transformation were closer to zero than those
for non-transformed and log-transformed.

(CO)VARIANCE COMPONENTS AND GENETIC PARAMETERS
ESTIMATED BY REML FOR FEC
Summaries of the (co)variance components and genetic parame-
ters estimated by different models and methodologies are shown in
Tables 3 and 4. The heritabilities for FEC (mean and largest values)
using data transformed by Box–Cox were greater than those esti-
mates obtained for non-transformed or ln transformation using
the same model. Comparing all the results, it seems that when the
normality distribution was not met, the conventional method of
estimation failed. Increases in the heritability after use of Box–Cox
transformation were related by Besbes et al. (1993) and Ünver et al.
(2004), in egg production.

Table 1 | Descriptive statistics for fecal egg count (FEC) for weeks and overall data for Angus cattle.

Week n Percent Mean SD CV Minimum Maximum

4 406 6.37 30.71 54.12 176.23 0 450.00

5 408 6.40 48.95 75.40 154.03 0 666.00

6 408 6.40 57.82 101.36 175.30 0 1.000.00

7 409 6.42 63.26 86.29 136.41 0 702.00

8 406 6.37 65.99 97.62 147.93 0 780.00

9 360 5.65 64.70 86.07 133.03 0 642.00

10 362 5.68 76.45 124.09 162.32 0 1.296.00

11 362 5.68 64.34 82.41 128.09 0 800.00

12 364 5.71 66.12 81.03 122.55 0 524.00

13 363 5.69 77.76 110.71 142.37 0 880.00

14 364 5.71 72.48 138.94 191.69 0 2.212.00

15 362 5.68 71.24 98.86 138.77 0 884.00

16 359 5.63 75.36 109.79 145.69 0 1.154.00

17 328 5.15 69.55 87.61 125.97 0 614.00

18 197 3.09 65.52 83.48 127.41 0 490.00

19 144 2.26 50.34 60.34 119.86 0 358.00

20 145 2.27 34.26 37.44 109.28 0 196.00

21 142 2.23 36.46 40.36 110.70 0 242.00

22 145 2.27 40.12 43.16 107.58 0 240.00

23 110 1.73 39.86 46.89 117.64 0 256.00

24 110 1.73 48.83 72.74 148.97 0 496.00

25 79 1.24 47.03 52.81 112.29 0 274.00

26 42 0.66 23.24 28.55 122.85 0 126.00

Total 6375 100.00 61.86 83.79 135.46 0 2212.00
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FIGURE 1 | Distribution of fecal egg count (FEC) samples (n = 6375).

Table 2 | Values of skewness and kurtosis for non-transformed (Non), log, and Box–Cox (BC) transformed data.

Parameter Mean Largest All (repeatability)

Non Transform Non Transform Non Transform

Log BC Log BC Log BC

Skewness 3.82 0.64 0.13 4.07 0.26 0.15 5.48 0.86 0.65

Kurtosis 28.41 0.16 −0.16 32.88 0.38 −0.07 67.54 0.42 −0.09

Table 3 | Additive genetic, residual (co)variance and heritabilities estimates, obtained using non-transformed (Non) and log and Box–Cox (BC)

transformed data for Angus cattle.

Components (Co)variance components

Mean Largest Repeatability model

Non Transform Non Transform Non Transform

Log BC Log BC Log BC

Additive genetic 1443.20 0.232 0.659 4513.07 0.236 2.501 660.64 0.180 0.500

Residual 1830.98 0.342 0.665 18320.71 0.339 1.779 4701.04 0.733 2.031

Permanent environment – – – – – – 1553.92 0.149 0.428

h2 ± EP 0.21 ± 0.08 0.40 ± 0.08 0.50 ± 0.08 0.20 ± 0.08 0.40 ± 0.08 0.58 ± 0.08 0.10 ± 0.03 0.17 ± 0.03 0.17 ± 0.03

r – – – – – – 0.31 0.30 0.31

EFFECT OF THE BOX–COX TRANSFORMATION ON SELECTION
DECISIONS
Spearman correlation coefficients between EBV of candidates
for selection were estimated using non-transformed and ln- and

Box–Cox transformed data. In all intensities of selection (100,
50, 25, 10, 5, and 1%) the correlations between non-transformed
data and ln or Box–Cox transformations were lower than the cor-
relations between ln and Box–Cox, decreasing linearly from 91%
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(non-transformed and Box–Cox) and 86% (non-transformed and
ln), when intensity of selection was 100%, to 0%, when 1% of the
population was selected.

The correlations between ln and Box–Cox transformation had
a similar tendency. The correlations in all intensities of selection
(100, 50, 25, 10, 5, and 1%) were 0.97, 0.91, 0.88, 0.64, 0.63, and
1.0, respectively. Despite this last correlation being equal 1.0, only
two animals were present in both ranks (ln and Box–Cox). In
all other situations, the ranks between both transformations dis-
agree as well; in other words, some animals were present in a
rank by ln and were not present in a rank by Box–Cox. The
percentage of disagreement were equal to 10, 10, 15, 25, and

Table 4 | Additive genetic, permanent environment and residual

(co)variance estimates of the regression coefficients, obtained using

different random regression models.

Components (Co)variance components

LEG2 LEG3 LEG4

ADDITIVE GENETIC REGRESSION COEFFICIENTS

a1a1 1.188 1.021 1.081

a1a2 0.2204 0.1564 × 10−1 0.3694 × 10−1

a1a3 – −0.1699 −0.1303

a1a4 – – 0.6759 × 10−1

a2a2 0.1987 0.9777 × 10−1 0.8531 × 10−1

a2a3 – −0.1090 × 10−1 −0.2153 × 10−1

a2a4 – – −0.1468 × 10−1

a3a3 – 0.4567 × 10−1 0.4183 × 10−1

a3a4 – – −0.4178 × 10−2

a4a4 – – 0.1813 × 10−1

PERMANENT ENVIRONMENT REGRESSION COEFFICIENTS

p1p1 1.029 0.6856 0.6621

p1p2 0.4968 0.2267 0.7022 × 10−1

p1p3 – −0.1424 −0.1439

p1p4 – – −0.5036 × 10−1

p2p2 0.9721 0.8035 0.3857

p2p3 – 0.1404 × 10−1 −0.1556

p2p4 – – −0.2041

p3p3 – 0.1214 0.2486

p3p4 – – 0.1074

p4p4 – – 0.1755

RESIDUAL VARIANCE

e 1.507 1.469 1.398

60%, when the intensities of selection were 50, 25, 10, 5, and 1%,
respectively.

The percentage of animals which would be selected in these
three evaluations follows a different trend. Also that the higher the
selection intensity, the lower these percentage are. Consequently,
non-normality has a major effect on the selection decisions when
a small proportion of animals have to be selected.

(CO)VARIANCE COMPONENTS AND GENETIC PARAMETERS
ESTIMATED BY RANDOM REGRESSION MODELS FOR FEC
The summary of the analysis in relation to the log of likelihood
function to random regression analysis is presented in the Table 5.
Akaike (AIC) and Bayesian (BIC) information criteria for polyno-
mial models of orders 2, 3, and 4 were as follows: 10109, 10051,
and 9961; 10157, 10138, and 10103. The quality of the adjustments
generally improved with the number of parameters in the model
(Table 5). Based on these values, a polynomial model of order 4
was used.

In total, 7, 13, and 21 (co)variance components were simulta-
neously estimated by model LEG2, LEG3, and LEG4, respectively.
Estimates of residual variance decreased as the order of Legendre
polynomial in model increased and were as 1.507, 1.469, and 1.398.

Estimates of the additive genetic variance of FEC for differ-
ent values of λ across the time using model LEG4 is shown in
Figure 2. In general, the transformations M1, M5, ZE, and MA
showed similar tendencies and low values during the entire eval-
uation period, with opposite tendencies in ML transformation
or in the non-transformed data. These last two datasets showed
crescent values in relation to additive genetic variance until week
12; so, they decreased significantly from that until week 24 before
increasing again. The increase during the final period may have
occurred because of the reduced number of available FEC data
points (Table 1). This tendency has been observed in studies
involving RRMs and different traits, i.e., milk production (Kach-
man, 2004). Permanent environmental variance obtained for the
different transformations follow a similar trend to the additive
genetic variance (Figure 3), however, with larger magnitudes.
Estimates of the residual variance of FEC for different values of
λ across the time are shown in Figure 4. As a consequence of
the transformation, the scale of measurement has changed. Thus,
the additive genetic, permanent environment and residual vari-
ances on the transformed and the non-transformed data are not
comparable.

Figure 5 presents estimates of FEC heritability for different val-
ues of λ across the time that data were collected. Estimates of h2

Table 5 | Number of parameters (NP), −2log value of the likelihood function (−2log L), Akaike (AIC), and Bayesian information criterion (BIC),

according differents random regression models.

Model1 NP −2log L AIC BIC OC2

LEG2 7 10095.6924360777 10109.6924361 10157.01450962 3

LEG3 13 10024.8308108467 10050.8308108 10138.71466171 2

LEG4 21 9919.4883181071 9961.4883181 10103.45453874 1

1LEG2, LEG3 e LEG4 are the specific models using Legendre polynomials of orders 2, 3, or 4 describing the fixed and random effects included in the models;
2OC = rank according AIC and BIC.
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FIGURE 2 | Estimates of additive genetic variance of fecal egg count (FEC) over time for different values of λ.

FIGURE 3 | Estimates of permanent environment variance of fecal egg count (FEC) over time for different values of λ.

vary with values of λ used in transforming FEC. Greater values
of heritability for weekly counts were found for values of λ equal
to 0.14 (obtained by ML), 0 (log transformation), and 0.5, indi-
cating that FEC is a trait with moderate heritability and possible
to select for. When the estimates of λ obtained by ML and log
were used, the value of h2 for whole period (weeks 4–26, con-
sidering as one trait) was 0.58 for both of them. This result was
expected because analyzing all records by an animal using RRMs,
the distribution is nearly normal. These estimates were greater

than those typically estimated (0.3–0.4) from traditional evalua-
tion of the trait (Sonstegard and Gasbarre, 2001) and similar to
estimates obtained using mean and largest values transformed data
by Box–Cox in this study. Comparison between results should be
made with caution because of differences in models and methods
used to estimate variance components as well as the data trans-
formation. In a comparison of estimates of breeding values based
on non-transformed and Box–Cox transformed data, Savas et al.
(1998) found Box–Cox transformed data was more accurate. The
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FIGURE 4 | Estimates of residual variance of fecal egg count (FEC) over time for different values of λ.

FIGURE 5 | Estimates of heritability of fecal egg count (FEC) over time for different values of λ.

shape of the heritability curve with lower values at the beginning
of the experiment was predictable, as response to the challenge
was highly variable.

Estimates of FEC repeatability for different values of λ across
the time shown in Figure 6. Similar to the heritability, estimates of
the repeatability also varied with values of λ used in transforming
FEC. Smaller values of repeatability for weekly counts were found
for values of λ equal to −0.5 (M5) and −1. (M1). The exception

to this observation was the initial and final period of collection
FEC recording. Values maintained constant up to the 12th week
and then came high. In general, these values indicated that FEC is
a trait with high repeatability, which is an important characteristic
for implementation into an animal breeding program. Selection is
likely more efficient when it is based on records between weeks
7 and 22. When the estimate of λ obtained by ML was used,
the value of repeatability for whole period (weeks 4–26, when

Frontiers in Genetics | Statistical Genetics and Methodology January 2012 | Volume 2 | Article 112 | 8

http://www.frontiersin.org/Genetics
http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive


da Silva et al. Random regression models for FEC data

FIGURE 6 | Estimates of repeatability of fecal egg count (FEC) over time for different values of λ.

considered as one trait) was 0.93. A similar result was obtained
using ln transformation. Using ln-transformed data, or cube root-
transformed data, may increase the repeatability estimate relative
to using non-transformed values (Morris et al., 2004). These esti-
mates are higher than the results from Morris et al. (2004). Those
authors, using least squares, obtained a repeatability estimate for
FEC in dairy calves equal to 0.45, was somewhat higher than that
found in grazing beef calves (0.21) in an previous study (Morris
et al., 2002).

Figure 7 represents the estimates of genetic correlations among
all FEC measurements in the whole period (weeks 4–26). This
was obtained using the RRM and adjusting by the fourth order
Legendre polynomial to the different transformations in the FEC
(λ values). It can be observed that the magnitudes of the correla-
tions follow similar tendencies, when λ values equal to 0.14 (ML),
zero (ZE), or one (MA) were used. When all the correlations gen-
erated by FEC transformed using λ values equal to 0.5 (M5) and
−1 (M1) were compared together, the behavior was analogous.
However, larger genetic correlations (>0.9) were obtained using
non-transformed data (raw data). In general, genetic correlations
obtained using data transformed by ML, ZE, and MA suggested
that the FEC between 12th and 26th are correlated through the
genetic component (0.80–1.00).

The curves of the EBV, predicted by the LEG4 model for 5 dif-
ferent animals, during the whole period analyzed are illustrated
in Figure 8. These EBV curves indicate that there are genetic dif-
ferences among animals in relation to parasite resistance. These
results that show the EBV mean curve to the 410 animals of the
population. It can be observed that from week 12, the mean of
the EBV decreased constantly to week 22, probably because the
animals with acquired immunity and immune are the most at this
population. Therefore, they can be influencing the mean by an
overrepresentation of low values. The curve ascends from weeks

22 to 26, and is probably an artifact caused by a lack of information
about FEC in these last 3 weeks.

In the Figure 9, animals 144 and 185 showed curves with low
and constant values during the whole period. These can classify
them as immune. By the other hand, the animals 75 and 132
showed curves with higher values in the beginning of the experi-
ment, but their values were reducing over time. So, these animals
can be classified as Type III or acquired immunity. Finally, animals
25 and 112 can be characterized as susceptible, because their FEC
values increased over time, especially the animal 112, in which all
the measurements are bigger than the mean value in all weeks.

DISCUSSION
BOX–COX TRANSFORMATION
The assumption of normality is very important from the sta-
tistical point of view, but there is not much information about
non-normality of data and its effect on the (co)variance compo-
nents and genetic parameters. In the variance component analysis
there is evidence that lack of normality influenced the estimates
as described by Brownie et al. (1990). Small values of kurtosis and
asymmetry in the analysis of variance also are important indica-
tors about how the normality deviation can influence the estimates
(Scheffé, 1959). The lack of normality can also influence negatively
the estimates of fixed effects and heterogeneity of error variance
(Cochran and Cox, 1978). Savas et al. (1998) noted that lack of nor-
mality is a possible source of error when (co)variance components
and genetic parameters are estimated, while Ibe and Hill (1988)
affirmed that non-linearity and heterogeneity may lead to biased
estimates of parameters and reduce the efficiency of selection index
and best linear unbiased prediction (BLUP).

Box–Cox transformation of FEC data should also enhance QTL
mapping sensitivity and accuracy, based on the observation by Ibe
and Hill (1988) that non-linearity and heterogeneity may lead to
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FIGURE 7 | Estimates of genetic correlation among fecal egg count (FEC) weekly measures, according different kinds of transformations (λ values).

biased estimates of parameters and reduce the efficiency of selec-
tion index and BLUP. According to Tilquin et al. (2001), most
QTL mapping methods assume that phenotypes are normally

distributed, and this assumption is clearly violated for many mea-
sures of disease resistance. Therefore, improving normality should
improve behavior of the statistical tests. In targeting the normality
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FIGURE 8 | Estimates breeding values of FEC (EBVFEC) over time for different animals (λ = ML).

FIGURE 9 | Estimates of the resistance using the random regression curves over time for different animals.

of the random effects of the model, the Box–Cox transforma-
tion should provide improved estimates of the random effects
(Gurka et al., 2006). Mostly importantly, since previous research
has indicated that accurate estimation and inference on the ran-
dom effects is dependent on the assumption of normality (Verbeke
and Molenberghs, 2000).

The Box–Cox transformation produced data which followed a
normal distribution more closely than the original and ln transfor-
mation (Table 2). While this transformation does not guarantee
that the transformed data are normal, it does reduce problems
with estimation, prediction, and inference (Hyde, 1999). Since the

proposed model is based on the Box–Cox family of power trans-
formations, the advantage of this approach is its applicability to
a larger class of problems where normality of distributions, con-
stancy of error variance and/or simplicity of the model structure
are required. In the variance component analysis there was evi-
dence that lack of normality influenced the estimates as described
by Brownie et al. (1990). Transformation of this type of data
may result in more precise estimates of fixed effects in analyses
of variance, as well as reduced proportion of residual variance
and larger fraction of the total variance attributed to random
effects.
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GENETIC PARAMETERS ESTIMATED BY REML FOR FEC
The results of this study indicate that the use of a power transfor-
mation of the response variable in components of variance model
improves the quality of prediction of FEC genetic parameter esti-
mates. The proposed model provides a reasonable (if not perfect)
fit to the data considered in this study. Therefore one should be
comfortable to use the Box–Cox power transformations in FEC
analysis.

When more than one record per animal was analyzed by a
repeatability model, both ln and Box–Cox transformations pro-
vided similar results. Banks et al. (1985) reported that REML is
robust, in terms of expectation, to skewed distribution in esti-
mating variance components. Results obtained in this study show
that this robustness is verified only for slight skewness, as is the
case for FEC using all records by animal. However, it is interest-
ing to note that all heritability estimates were smaller than those
obtained in the previous analysis, using just one record per animal.
Estimates of repeatability were near those cited by Morris et al.
(2003). Repeatability model can not adjust correctly to the het-
erogeneity of variance and the general pattern of the correlations
while the interval between two measures increases. Consequently,
it is not the best model to modeling the genetic (co)variances
of FEC.

Both estimates (0.50 and 0.58) are superior in relation to the
range of heritability estimates reported by many authors, which
shown that the heritability of single FEC (as mean or largest value
in a time-serial sampling) following natural or deliberate infection
is in the range of 0.2–0.4 in cattle (Stear et al., 1990; Burrow, 2001;
Morris et al., 2003; Furlong et al., 2004), indicating relatively rapid
responses to selection for reduced FEC. In general, all the stud-
ies reported used FEC transformed to natural logarithms, because
of their skewed distributions on the original scales of measure-
ment; in the case of FEC the data included zeros and the smallest
non-zero value was 100 eggs per gram, so the transformation ln
(FEC + 100) was commonly used.

Fecal nematode egg counts are fairly imprecise and taking mul-
tiple counts on each sample or taking samples from animals at
different ages would increase the heritability and hence the rate of
response to selection (Stear et al., 1996). When multiple samples
are summarized in a single egg count by animal (as in analysis of
the mean or largest value), most part of the genetic variation can
be lost. Moreover, the results from modeling need to be treated
with some caution. The weather can affect the intensity of nema-
tode infection and, as acknowledged by the authors, the model
cannot take variations in the weather into account (Stear et al.,
2006). Therefore, methodologies as RRMs can adjust better than
repeatability models for fixed effects and heterogeneity of variance.

GENETIC PARAMETERS ESTIMATED BY RANDOM REGRESSION
MODELS FOR FEC
Based on the genetic correlations, it is not necessary to collect
FEC data for more the 12-weeks. On the other hand, it would
also be possible to increase the collection intervals between the
FEC counts to longer than a week without disrupting phenotypic
classification. The low estimated values of the genetic correlations
in the beginning of the FEC challenge experiment can be attrib-
uted to differences in exposure to parasites during the start of the

challenge. Also, the interval between the ingestion of the larvae by
the animal until the elimination of the eggs in the feces should
be considered, because production of eggs from the sub-family
Strongyloidea can take up to 21 or 28 days.

Random regression model have been recognized as the most
appropriate model for studies of longitudinal data in animal
breeding (Strabel and Misztal, 1999; Jamrozik and Schaeffer,
2000). These models permit the researcher to study the changes in
the genetic variability over time and to select individuals to change
the general pattern of time response, in which the variation may
be different in shape or appearance from the phenotypic relation-
ships (Schaeffer, 2004). Another advantage of those models is to
predict breeding values at any time along a specific period, favoring
the selection process. There will likely be many more applications
of RRM in the future.

In studies related to FEC, however, there is another advantage to
using RRM related to EBV and based on additive genetic solutions
(random regression coefficients). At any time during the infection
period, the curve of the EBV can be used to classify the animals in
relation to resistance (or susceptibility) to the nematode infection.
Thus, these curves have been used to separate calves into three
phenotypes: Type I – resistant animals that are innately immune
and never demonstrated high FEC values. Type II – animals that
have acquired immunity over time and, Type III – immunological
non-responsive animals that were susceptible to infestation.

Substantial variation in the trajectory of the curves either
obtained considering the additive genetic solutions of each animal
or based on the EBVs, indicating that the curve of nematode infec-
tion to the sires, dams, and offspring can show genetic variation
(Figures 8 and 9).

Results of this study showed that the RRM can be used in genetic
and non-genetic studies of FEC and they are a useful tool to rank
the animals based on their genetic resistance in relation to the
nematode infection. However, in the future, more studies are nec-
essary to trying to find the polynomials or parametric functions
adjusting the FEC data better.

The Box–Cox transformation resulted, for FEC, in an increase
in estimated heritability. The results showed that REML is robust
only to slight departure from normality. RRM may be used as
a new tool for genetic and non-genetic studies of FEC. Within
the different orders of Legendre polynomials used, those with
more parameters (order 4) adjusted FEC data best. The Box–
Cox transformation has direct influence on the (co)variances
and genetic parameters and the λ value, estimated by ML, is
the more accurate. Results indicated FEC to be a moderately
heritable characteristic and, the measurements between weeks
12 and 26, are more genetically associated. Strong evidence was
shown that genetic differences exist among animals for resis-
tance to nematode infection. We recommend that when working
with non-normal data, such as count data, Box–Cox should be
considered. If working with longitudinal data RRM should be
evaluated.
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