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Prostate cancer is the most diagnosed cancer among men in the United States. While the
majority of patients who undergo surgery (prostatectomy) will essentially be cured, about
30–40% men remain at risk for disease progression and recurrence. Currently, patients
are deemed at risk by evaluation of clinical factors, but these do not resolve whether adju-
vant therapy will significantly attenuate or delay disease progression for a patient at risk.
Numerous efforts using mRNA-based biomarkers have been described for this purpose,
but none have successfully reached widespread clinical practice in helping to make an adju-
vant therapy decision. Here, we assess the utility of non-coding RNAs as biomarkers for
prostate cancer recurrence based on high-resolution oligonucleotide microarray analysis
of surgical tissue specimens from normal adjacent prostate, primary tumors, and metas-
tases. We identify differentially expressed non-coding RNAs that distinguish between the
different prostate tissue types and show that these non-coding RNAs can predict clinical
outcomes in primary tumors. Together, these results suggest that non-coding RNAs are
emerging from the “dark matter” of the genome as a new source of biomarkers for charac-
terizing disease recurrence and progression. While this study shows that non-coding RNA
biomarkers can be highly informative, future studies will be needed to further characterize
the specific roles of these non-coding RNA biomarkers in the development of aggressive
disease.

Keywords: prostate cancer, prognosis, microarrays, clinical progression, non-coding RNA

INTRODUCTION
Prostate cancer is a major public health concern, with over 240,000
newly diagnosed men in the United States alone (Siegel et al.,
2011). This clinically heterogeneous disease ranges from indolent
forms of cancer with good long term prognosis to life-threatening
disease associated with only a couple of months of survival (Rubin
et al., 2011). After initial diagnosis, one of the most successful
treatments with curative intent is radical prostatectomy, i.e., the
complete removal of the prostate gland. It is, however, known that
patients who present with aggressive clinical features after surgery,
such as positive surgical margins (SM), extracapsular extension
(ECE),and seminal vesicle invasion (SVI) likely will require further
therapy in order to delay the onset of life-threatening metastasis
(Bolla et al., 2005; Thompson et al., 2009; Wiegel et al., 2009). The
efficient delivery of such therapies after prostatectomy is currently
hampered by a lack of predictive tools to assess the risk of clinically
significant recurrence and progression.

Biochemical recurrence (BCR), defined as a detectable prostate
specific antigen (PSA) level above a certain threshold or as a ris-
ing PSA level after surgery, is a widely used surrogate for disease
progression and prostate cancer specific mortality (PCSM). Still,
BCR has been deemed an unreliable surrogate since, even though
BCR always precedes metastatic progression and PCSM, not every
patient with BCR will experience metastatic disease (Simmons

et al., 2007). Given this, numerous efforts using mRNA-based bio-
markers as a tool to assess the risk of recurrence and progression
have been described, but none have successfully reached wide-
spread clinical practice (Sorensen and Orntoft, 2010). Recently, the
clinical utility of micro RNAs (or miRNAs) as potential biomark-
ers for disease diagnosis and prognosis has been assessed (Schaefer
et al., 2010; Sevli et al., 2010; Catto et al., 2011; Martens-Uzunova
et al., 2011). miRNAs have shown altered expression in prostate
cancer and were found to be involved in the regulation of key path-
ways such as androgen signaling and apoptosis (Catto et al., 2011).
In general, recent evidence showing that a much larger fraction of
normal and cancer transcriptomes are composed of non-coding
RNAs (or ncRNAs) than previously anticipated (Kapranov et al.,
2010) has driven researchers towards exploring the utility of not
only short ncRNAs but also long ncRNAs as biomarkers. For
example, Chung et al. (2011) identified PRNCR1 (prostate cancer
non-coding RNA 1) as a long intergenic ncRNA (or lincRNA) tran-
scribed in the gene desert of the prostate cancer susceptibility locus
8q24. The same genomic region was found to be transcribed into
PCAT-1, a lincRNA highly expressed in metastatic tissue specimens
from prostate cancer patients (Prensner et al., 2011).

While there is increasing knowledge of the importance of
ncRNAs in cancer, their clinical usefulness for diagnosis and prog-
nosis is limited. To date, only one ncRNA is routinely used in
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the clinical setting in prostate cancer: prostate cancer antigen 3
(PCA3), a non-coding antisense transcript that is highly overex-
pressed in prostate cancer compared to benign tissue (Bussemakers
et al., 1999). PCA3 is used in a urinary-based diagnostic test for
patient screening in conjunction with PSA serum testing and other
clinical information (Day et al., 2011).

In this study, we perform high-resolution oligonucleotide
microarray analysis of a publicly available dataset (Taylor et al.,
2010) from different types of normal and cancerous prostate tissue.
We find, by analysis of the entire set of exonic and non-exonic fea-
tures, differentially expressed ncRNAs that accurately discriminate
clinical outcomes such as BCR and metastatic disease.

MATERIALS AND METHODS
MICROARRAY AND CLINICAL DATA
The publically available genomic and clinical data was gener-
ated as part of the Memorial Sloan–Kettering Cancer Center
(MSKCC) Prostate Oncogenome Project, previously reported
by (Taylor et al., 2010). The Human Exon arrays for 131 pri-
mary prostate cancer, 29 normal adjacent, and 19 metasta-
tic tissue specimens were downloaded from GEO Omnibus
at http://www.ncbi.nlm.nih.gov/geoseries GSE21034. The patient
and specimen details for the primary and metastases tissues used
in this study are summarized in Table 1. For the analysis of the
clinical data, the following ECE statuses were summarized to be
concordant with the pathological tumor stage: inv-capsule: ECE−,
focal: ECE+, established: ECE+.

MICROARRAY PRE-PROCESSING
Normalization and summarization
The normalization and summarization of the 179 microarray
samples (cell line samples were removed) were done with the
frozen Robust Multiarray Average (fRMA) algorithm using custom
frozen vectors (McCall et al., 2010). These custom vectors were

Table 1 | Summary of the clinical characteristics of the dataset used in

this study.

Primary tumor Metastasis

N 131 19

Median age at Dx (years) 58 58

PRE-OP PSA (ng/ml)

<10 108 7

≥10 < 20 16 1

≥20 6 9

NA 1 2

PATHOLOGICAL GLEASON SCORE

≤6 41 0

7 74 2

≥8 15 7

NA 1 10

PATHOLOGICAL STAGE

T2 85 1

T3 40 7

T4 6 2

NA 0 9

created using the vector creation methods described in (McCall
and Irizarry, 2011) including all MSKCC samples. Quantile nor-
malization and robust weighted average methods were used for
normalization and summarization, respectively, as implemented
in fRMA.

Sample subsets
The normalized and summarized data was partitioned into three
groups. The first group contains the matched samples from pri-
mary localized prostate cancer tumors and normal adjacent tis-
sues (n = 58; used for the normal vs. primary comparison). The
second group contains all the samples from metastatic tumors
(n = 19) and all the localized prostate cancer tumors that were
not matched with normal adjacent tissues (n = 102; used for the
primary tumor vs. metastasis comparison). The third group corre-
sponds to all samples from metastatic tumors (n = 19) and all the
normal adjacent tissues (n = 29; used for the normal vs. metastasis
comparison).

Feature selection
Probe sets (or PSRs) annotated as “unreliable” by the xmapcore
package (Yates, 2010; defined as one or more probes that do not
align uniquely to the genome) as well as those defined as class 2 and
class 3 cross-hybridizing by Affymetrix annotation were excluded
from further analysis. The remaining PSRs were subjected to uni-
variate analysis to identify those associated to features differentially
expressed between the labeled groups (primary tumor vs. metasta-
tic, normal adjacent vs. primary tumor, and normal vs. metastatic).
For this analysis, features were selected as differentially expressed if
their Holm–Bonferroni adjusted (Holm, 1979) t -test p-value was
significant (<0.05). The t -test was applied as implemented in the
rowttests function of the genefilter package.1

The multiple testing correction was applied using the p.adjust
function of the stats package in R.

This multiple testing correction was performed for the exonic
(353k PSRs) and non-exonic (931k PSRs) sets independently due
to differences in cardinality of the PSR sets. Data A1 in Appen-
dix provides the detailed steps for the generation of differentially
expressed features.

Feature evaluation and model building
Classical multidimensional scaling (MDS, Pearson’s distance) was
used to evaluate the ability of the selected features to segregate
primary tumor samples into clinically relevant clusters based on
metastatic events and Gleason scores. MDS was applied as imple-
mented in the cmdscale function of the stats package in R. The
significance of the segregation in these two-dimensional MDS
plots was assessed using permutational ANOVA as implemented
within the vegan package in R2.

A custom implementation of the k-nearest-neighbor (KNN)
model (k = 1, Pearson’s correlation distance metric) was trained
on the normal and metastatic samples (n = 48) using only the
features found to be differentially expressed between these two
groups. Unmatched primary tumors were used as an independent
set for validation.

1http://www.bioconductor.org/packages/2.3/bioc/html/genefilter.html
2http://cran.r-project.org/web/packages/vegan/index.html
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Re-annotation of the human exon microarray probe sets
Affymetrix Human Exon 1.0 ST Arrays3 have about 1.4 million
probe sets, with most probe sets containing four probes each. In
order to properly assess the nature of the probe sets found differ-
entially expressed in this study, we re-annotated them using the
xmapcore R package4 (Yates, 2010) as follows: (i) exonic, if the
probe set overlaps with the coding portion of a protein-coding
exon or an untranslated region (UTR), and (ii) non-exonic if
the probe set overlaps with an intron, an intergenic region, or
a non-protein-coding transcript.

Annotation of non-coding transcripts was pursued using
Ensembl Biomart available at http://www.ensembl.org

STATISTICAL ANALYSIS
Biochemical recurrence and metastatic disease progression end
points are used as defined by the “BCR Event” and “Mets Event”
columns of the supplementary material provided by (Taylor et al.,
2010), respectively. Survival analysis for BCR was performed using
the survfit function of the survival package5. Logistic regression
for metastatic disease progression was performed using the lrm
function of the rms package6.

RESULTS
RE-ANNOTATION AND CATEGORIZATION OF CODING AND
NON-CODING DIFFERENTIALLY EXPRESSED FEATURES
Previous transcriptome-wide assessments of differential expres-
sion using prostate tissues in the post-prostatectomy setting have
been focused on protein-coding features (see Nakagawa et al., 2008
for a comparison of protein-coding gene-based panels). Recent
evidence based on the characterization of transcriptomes from
normal and cancerous tissues has shown that most of it is of
non-coding nature (Kapranov et al., 2010). Human Exon Arrays
provide a unique opportunity to explore the differential expres-
sion of non-coding parts of the genome, as 75% of their probe
sets cover regions other than protein-coding sequences. In this
study, we use the publicly available Human Exon Array data set
from normal adjacent, localized primary tumors, and metastatic
tissues generated as part of the MSKCC Prostate Oncogenome
Project to explore the potential of non-coding regions in prostate
cancer prognosis. Previous attempts on this dataset focused only
on mRNA and gene-level analysis and concluded that expression
analysis was inadequate for discrimination of outcome groups in
primary tumors (Taylor et al., 2010). In order to assess the con-
tribution of ncRNA probe sets in differential expression analysis
between sample types, we re-assessed the annotation of all probe
sets found to be differentially expressed according to their genomic
location and categorized them into exonic and non-exonic (see
Materials and Methods). Briefly, a probe set is classified as exonic
if it falls in a region that encodes for a protein-coding transcript
or an UTR; otherwise, it is annotated as non-exonic.

Based on the above categorization, we assessed the exonic and
non-exonic sets for the presence of differentially expressed features
for each possible pairwise comparison (i.e., primary vs. normal,

3www.affymetrix.com/
4http://www.bioconductor.org/packages/2.6/bioc/html/xmapcore.html
5http://cran.r-project.org/web/packages/survival/index.html
6http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/RmS

normal vs. metastatic, and primary vs. metastatic). The majority of
the differentially expressed features are labeled as exonic for a given
pairwise comparison (81%, 81%, and 75% for normal-primary,
primary-metastatic, and normal-metastatic comparisons, respec-
tively; see Table S1 in Supplementary Material for the top 100
differentially expressed features for each pairwise comparison).
For each category, the number of differentially expressed features
is highest in normal vs. metastatic tissues, which is expected since
the metastatic samples are a heterogeneous group that has likely
undergone major genomic alterations through disease progression
and through effects of therapy on the genome (Figure 1). Addi-
tional variation in expression may be due to contamination with
metastatic site tissue as well as host cell-metastatic cell interactions
for metastases that include distant lymph nodes (seven sam-
ples), bone (five samples), and brain (three samples). As expected,
assessment of all gene loci with features found to be differen-
tially expressed between normal and metastatic samples shows
that those up-regulated in metastatic tissue compared to normal
are enriched in cellular processes such as cell division, spindle
check point, and cytokinesis, whereas those down-regulated are
enriched in terms like cell adhesion, muscle contraction, neuron
development, and urogenital system development (Table S2 in
Supplementary Material).

For each category of exonic and non-exonic features there is a
significant number that are specific to each pairwise comparison.
For example, 21% of the exonic features are specific to the differ-
entiation between normal tissue and primary tumors and 10% are
specific to the primary tumor vs. metastatic comparison. The same
proportions are observed for the non-exonic category, suggesting
that different genomic regions may play a role in the progression
from normal tissue to primary tumor and from primary tumor to
metastatic tumor.

Within the non-exonic category, the majority of the features are
“intronic” for all pairwise comparisons (see Figures 2A–C). Also, a
large proportion of features correspond to intergenic regions. Still,
hundreds of features lie within non-coding transcripts, as reflected
by the “NC Transcript” segment in Figure 2. These non-coding
transcripts found to be differentially expressed in each pairwise
comparison were categorized using the“Transcript Biotype”anno-
tation of Ensembl. For all pairwise comparisons the “processed
transcript”, “lincRNA”, “retained intron”, and “antisense” are the
most prevalent (Figures 2D–F; see Table 2 for a definition of each
transcript type). Even though “processed transcript” and “retained
intron” categories are among the most frequent ones, they have a
very broad definition.

Previous studies have reported several long non-coding RNAs
to play a role in prostate adenocarcinoma (Srikantan et al., 2000;
Berteaux et al., 2004; Petrovics et al., 2004; Lin et al., 2007;
Poliseno et al., 2010; Yap et al., 2010; Chung et al., 2011; Day
et al., 2011). Close inspection of our data reveals that four of
them (PCGEM1, PCA3, MALAT1, and PTENP1) have associated
differentially expressed features in at least one pairwise compar-
ison based on a 1.5 Median Fold Difference (MFD) threshold
(Table 3). After adjusting the p-value for multiple testing how-
ever, only two ncRNA transcripts, PCA3 and MALAT1, remain
significant (Table 3). In addition, we found three differentially
expressed microRNA-encoding transcripts in primary tumor vs.
metastatic (MIR143, MIR145, and MIR221) and two in normal
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FIGURE 1 | Venn diagram of exonic (A) and non-exonic (B) features found differentially expressed in the following comparisons: normal vs. primary

tumor tissue (N vs. P), primary tumor vs. metastatic tissue (P vs. M), and normal vs. metastatic tissue (N vs. M).

FIGURE 2 | Distribution of non-exonic features (left) and overlapping

annotated non-coding transcripts (right) found to be differentially

expressed between normal and primary tumor (A,D), primary tumor

and metastatic tissue (B,E), and normal vs. metastatic tissue (C,F).

Features in the NC TRANSCRIPT slice of each pie chart (left) are assessed
for their overlap with non-coding transcripts to generate the distribution of
transcripts (shown at the right for each pairwise comparison). AS,
antisense. UTR, untranslated region; lincRNA, long intergenic ncRNA.
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Table 2 | Definitions of Ensembl “Transcript Biotype” annotations for non-coding transcripts found differentially expressed.

Name Definition

Processed transcript Non-coding transcript that does not contain an ORF

Retained intron Non-coding transcript containing intronic sequence

LincRNA Large intergenic non-coding RNA, or long non-coding RNA, usually associated with open chromatin signatures

such as histone modification sites

Antisense Non-coding transcript believed to be an antisense product used in the regulation of the gene to which it belongs

Sense overlapping Has a long non-coding transcript that contains a coding gene in its intron on the same strand

Processed pseudogene Non-coding pseudogene produced by integration of a reverse transcribed mRNA into the genome

Table 3 | Long non-coding RNAs previously reported as differentially expressed in prostate cancer.

Gene type Gene Probe set ID Comparison t -Test p-value MFD ratio Reference

LncRNA ANRIL 3165014 Primary vs. normal <0.01 −1.17 Yap et al. (2010)

3165015 Metastatic vs. normal <0.01 1.49

3165015 Metastatic vs. primary <0.02 1.33

H19 3359101 Primary vs. normal <0.01 1.32 Berteaux et al. (2004)

3359097 Metastatic vs. normal <0.01 1.43

3359095 Metastatic vs. primary <0.01 −1.12

PCA3 3175541 Primary vs. normal <0.01 14.3 Bussemakers et al. (1999)

3175545 Metastatic vs. normal <0.01 4.46

3175541 Metastatic vs. primary <0.01 −3.44

MALAT1 3335195 Primary vs. normal <0.01 −1.64 Lin et al. (2007)

3335195 Metastatic vs. normal <0.01 −3.33

3335195 Metastatic vs. primary <0.01 −2.63

PCGEM1 2520747 Primary vs. normal <0.01 1.75 Srikantan et al. (2000)

2520749 Metastatic vs. normal <0.2 −1.58

2520749 Metastatic vs. primary <0.01 −4.00

PTENP1 3203669 Primary vs. normal <0.01 −1.34 Poliseno et al. (2010)

3203666 Metastatic vs. normal <0.6 −1.09

3203669 Metastatic vs. primary <0.04 1.50

miRNA MIR143 2835118 Metastatic vs. primary <0.01 −1.78 Clape et al. (2009)

MIR145 2835126 Metastatic vs. primary <0.01 −4.77 Zaman et al. (2010)

2835126 Metastatic vs. normal <0.01 −7.98

MIR221 4006597 Metastatic vs. primary <0.01 −1.52 Porkka et al. (2007)

4006597 Metastatic vs. normal <0.01 −2.11

MFD: median fold difference in this dataset in various comparisons. The MFD value is computed as the ratio of the median between the first tissue type and the

second tissue type in the “Comparison” column. Gray cells indicate statistical significance after multiple testing correction. Genes PCAT-1 (Prensner et al., 2011) and

PRNCR1 (Chung et al., 2011) are not included as there is no gene model associated.

vs. metastatic (MIR145 and MIR221) that have been previously
reported as differentially expressed in prostate cancer (Porkka
et al., 2007; Clape et al., 2009; Zaman et al., 2010).

Therefore, in addition to the handful of known ncRNAs, our
analysis detected many other ncRNAs in regions that have yet to
be explored in prostate cancer and that may play a role in the
progression of the disease from normal glandular epithelium to
distant metastases.

ASSESSMENT OF CLINICALLY SIGNIFICANT PROSTATE CANCER
RISK GROUPS
Using MDS we observed that both exonic and non-exonic sub-
sets of features present a statistically significant segregation of

primary tumors from patients that progressed to metastatic disease
(Figure A1 in Appendix), in contrast to the findings of Taylor et al.
(2010). Similarly, we found the exonic and non-exonic subsets to
discriminate high and low Gleason score samples (Figure A2 in
Appendix). In order to assess the prognostic significance of dif-
ferentially expressed exonic and non-exonic features, we trained
a KNN classifier for each group using features from the com-
parison of normal and metastatic tissue samples (see Materials
and Methods). Next, we used unmatched primary tumors (i.e.,
removing those tumors that had a matched normal in the training
subset) as an independent validation set for the KNN classifiers.
Each primary tumor in the validation set was classified by KNN
as either more similar to normal or metastatic tissue. Subsequent
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Kaplan–Meier analysis of the classified primary tumor samples
using BCR as end point showed that, as expected, primary tumors
classified as belonging to the metastatic group had a higher rate of
BCR (Figure 3). However, the KNN classifier trained on the exonic
subset of features showed no statistically significant difference in
BCR-free survival using a log-rank test (p < 0.08) whereas the dif-
ference was highly significant for the non-exonic KNN classifier
(p < 0.00003).

Next, we used logistic regression analysis to determine the
odds ratio of metastatic disease progression (i.e., castrate or
non-castrate resistant clinical metastatic patients) for the exonic
and non-exonic KNN classifiers. The univariable analysis shows
that, while the exonic set is significant (OR = 8.57, p < 0.04),
the non-exonic set had more than double the odds ratio
(OR = 18.13, p < 0.0003). Multivariable logistic regression fur-
ther revealed that, after adjusting for clinicopathological vari-
ables using the Kattan nomogram (Kattan et al., 1999), the
non-exonic KNN classifier retains a significant odds ratio for
predicting metastatic disease progression (OR = 11.7, p < 0.003)
whereas the exonic KNN classifier does not (OR = 9.8, p < 0.07;
Table 4). These results suggest that additional prognostic infor-
mation can be obtained from analysis of non-exonic RNAs
and that these may have the potential to be used as biomark-
ers along with individual clinical variables and nomograms to

enhance the prediction of metastatic disease progression post-
prostatectomy.

DISCUSSION
One of the key challenges in prostate cancer is clinical and mole-
cular heterogeneity (Rubin et al., 2011); therefore this common
disease provides an appealing opportunity for genomic-based per-
sonalized medicine to identify diagnostic, prognostic, or predictive
biomarkers to assist in clinical decision making. There have been
extensive efforts to identify biomarkers based on high-throughput
molecular profiling such as protein-coding mRNA expression
microarrays (Sorensen and Orntoft, 2010). While many differ-
ent biomarkers signatures have been identified, none of them are
actively being used in clinical practice. The major reason that no
new biomarker signatures have widespread use in the clinic is
because they fail to show meaningful improvement for prognosti-
cation over PSA testing or established pathological variables (e.g.,
Gleason).

In this study, we assessed the utility of ncRNAs, and particu-
larly non-exonic ncRNAs as potential biomarkers to be used for
patients who have undergone prostatectomy but are at risk for
recurrent disease and hence further treatment would be consid-
ered. We identified thousands of exonic and non-exonic RNAs
differentially expressed between different tissue specimens from

FIGURE 3 | Kaplan–Meier plots of the two groups of primary tumor samples classified by KNN (“normal-like” vs. “metastatic-like”) using the BCR end

point for exonic (A) and non-exonic (B) features.

Table 4 | Multivariable logistic regression analysis for prediction of the probability of metastatic disease progression.

Classifier Exonic Non-exonic

Predictor OR OR CI (95%) P -value OR OR CI (95%) P -value

KNN-positive* 9.76 0.9–109.8 <0.07 11.7 1.7–80.8 <0.02

Nomogram§ 14.8 2.4–92 <0.004 9.12 1.4–61.1 <0.03

Gray cells indicate statistical significance at the 5% significance level.

*KNN-positive: metastatic-like.
§Greater than 50% probability of BCR was used as cut-off.

OR, odds ratio; CI, confidence interval.
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the MSKCC Oncogenome Project. Of the non-exonic features,
the majority fall within intronic regions. This further confirms
the potential utility of intronic transcripts as biomarkers, given
that previous studies have shown differential expression of these
ncRNAs to correlate with Gleason score (Reis et al., 2004) and
with tumor vs. benign prostate tissue types (Romanuik et al.,
2009). In a more focused analysis of these feature subset groups
(derived from comparison of normal adjacent to primary tumor
and metastatic prostate cancer) three lines of evidence showed
that the non-exonic feature subset contained substantial prog-
nostic information as measured by its ability to discriminate two
clinically relevant end points. First, we observed clustering of those
primary tumor samples from patients that progressed to metasta-
tic disease with true metastatic disease samples when using the
non-exonic features. Second, Kaplan–Meier analysis showed that
only the KNN classifier trained on the non-exonic feature set pre-
dicts risk groups (i.e., “normal-like” and “metastatic-like”) with
statistically significant differences in BCR-free survival. Finally,
multivariable analysis showed that only the non-exonic KNN clas-
sifier had a statistically significant odds ratio of 11.7 for predicting
metastatic disease progression in primary tumors after adjustment
for Kattan nomogram.

Based on these three main results, we conclude that non-exonic
RNAs contain previously unrecognized prognostic information
that may be relevant in the clinic for the prediction of cancer pro-
gression post-prostatectomy. This goes in hand with the increasing
evidence of ncRNAs being involved in metastasis, their key role in
the regulation of protein-coding genes (Gibb et al., 2011) and
their significantly higher tissue-specific expression compared to
protein-coding genes (Cabili et al., 2011).

Perhaps the reason that previous efforts to develop new
biomarker-based predictors of outcome in prostate cancer have

not translated into the clinic is the focus on mRNA and proteins,
therefore largely ignoring the wealth of information contained
within the non-coding transcriptome. As more high-resolution
data sets of the prostate cancer transcriptome become available
(e.g., by new technologies such as RNA-Seq; Prensner et al., 2011)
and as expression profiles of specific ncRNA transcripts are further
validated, the results presented here can be further tested. While
the clinical utility of these results require further validation on
larger numbers of patients, they do show the potential of prog-
nostic information encoded within ncRNAs, a part of the genome
largely ignored in the immediate post-human genome project era.

These results add to the growing body of literature showing
that the “dark matter” of the genome has potential to shed light on
tumor biology, characterize aggressive cancer and improve in the
prognosis and prediction of disease progression.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at http://www.frontiersin.org/Non-Coding_RNA/10.3389/fgene.
2012.00023/abstract

Table S1 |Top 100 differentially expressed exonic and non-exonic features

for each pairwise comparison. The features were ranked according to their
adjusted p-value.

Table S2 | Gene ontology and pathway enrichment analysis for all,

up-regulated and down-regulated features.
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APPENDIX
STEPS FOR THE DETECTION OF DIFFERENTIALLY EXPRESSED FEATURES
1) Download raw CEL files from http://www.ncbi.nlm.nih.gov/geo

/query/acc.cgi?acc = GSE21034
2) Pre-process all exon arrays using the fRMA algorithm (McCall

et al., 2010; McCall and Irizarry, 2011) with custom fRMA
vectors created from the files obtained in step 1.fRMA can be
obtained from http://www.bioconductor.org/packages/release/
bioc/html/frma.html

3) Exclude all probe selection regions (PSRs) annotated as“unreli-
able”by the xmapcore package (Yates, 2010; one or more probes
do not align uniquely to the genome) as well as those not
defined as class 1 cross-hybridizing by Affymetrix annotation
(http://www.affymetrix.com).

4) Classify each PSR as “exonic” if they overlap with protein-
coding regions or UTRs according to the xmapcore package
annotation, and as “non-exonic” if they do not (this can be
achieved with the “coding.probe sets” and “utr.probe sets”
functions).

Then, the following steps need to be pursued separately for
each pairwise comparison: (i) normal vs. primary, (ii) primary

vs. metastatic, and (iii) normal vs. metastatic. For the normal
vs. primary comparison, only matched samples were used and
for the primary vs. metastatic comparison the matched samples
were excluded.

5) Calculate the background expression level by taking the
median of the Affymetrix defined anti-genomic PSRs (http://
www.affymetrix.com/Auth/support/downloads/library_files/
HuEx-1_0-st-v2.r2.zip; file HuEx-1_0-st-v2.r2.antigenomic.
bgp). For each PSR, calculate the median expression level for
each group. Filter PSRs where the median expression levels for
both groups are below the background expression level.

6) Apply the rowttests function of the genefilter R package
available at http://www.bioconductor.org/packages/2.3/bioc/
html/genefilter.html in order to perform a t -test on each
PSR.

7) Adjust the obtained p-values using the p.adjust function of
the stats package in R for each group of PSRs (exonic and
non-exonic) separately. Select the Holm–Bonferroni method
for this purpose (Holm, 1979).

8) Filter out those PSRs that have an adjusted p-value higher than
0.05.
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FIGURE A1 | Multidimensional scaling plots of the distribution of

primary tumor samples with (yellow) and without (blue)

metastatic events compared to metastatic (red) and normal

(green) tissues for exonic (A) and non-exonic (B) features.

Metastatic and normal data points are included in the figure for
illustrative purposes only.

FIGURE A2 | Multidimensional scaling plots of the distribution of

primary tumor samples with Gleason score of 6 (blue), 7 (purple), 8

and 9 (both in yellow) compared to metastatic (red) and normal

(green) tissues for exonic (A) and non-exonic (B) features. Metastatic
and normal data points are included in the figure for illustrative purposes
only.
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