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One of the most popular modeling approaches to genetic risk prediction is to use a sum-
mary of risk alleles in the form of an unweighted or a weighted genetic risk score, with
weights that relate to the odds for the phenotype in carriers of the individual alleles. Recent
contributions have proposed the use of Bayesian classification rules using Naïve Bayes clas-
sifiers. We examine the relation between the two approaches for genetic risk prediction
and show that the methods are mathematically related. In addition, we study the proper-
ties of the two approaches and describe how they can be generalized to include various
models of inheritance.
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INTRODUCTION
Several statistical methods have been proposed to capture the com-
plex genetic bases of common diseases. These approaches include
standard regression models in which the contribution of several
genetic variants is summarized by a genetic risk score (GRS; Meigs
et al., 2008; Purcell et al., 2009; Paynter et al., 2010), multivari-
ate regression models and “machine learning type” approaches
such as support vector machines (Wei et al., 2009; Wu et al.,
2011), Naïve Bayes classifiers (NBC; Okser et al., 2010), classifi-
cation and regression trees, random forests (Bureau et al., 2005;
McKinney et al., 2006), rule induction (Sebastiani and Perls,
2010; Stengard et al., 2010), multifactor dimensionality reduction
(Moore et al., 2006), and Bayesian networks (Rodin and Boerwin-
kle, 2005; Sebastiani et al., 2005; Jiang et al., 2011; Kang et al.,
2011a). NBCs use a simple but surprisingly effective Bayesian
rule that classifies a subject at risk of a trait if the posterior
probability of the trait, given the individual’s genetic profile, is
maximal (Hand, 2009). The classification rule can be built using
a large number of genetic variants, such as single nucleotide poly-
morphisms (SNPs), by assuming that the SNPs are conditionally
independent given the trait (Sebastiani et al., 2012). This hypoth-
esis is often mistaken for “marginal independence” but mar-
ginal and conditional independence have no relation (Whittaker,
1990).

In this manuscript we show that there is a mathematical link
between NBCs and logistic regression models that use a GRS to
summarize the contribution of many SNPs to the susceptibility
to a genetic disease. The link between these two approaches also
highlights their limitations. We discuss how the directed graphical
model underlying a NBC can be extended to include interactions

between genes and/or environmental risk factors by maintaining
the computations scalable to genome-wide genotype data and even
whole genome sequence data.

METHODS AND RESULTS
We describe two approaches – logistic regression and Bayesian
classifier – to define a classification score and a rule to be used
for genetic risk prediction of a dichotomous trait denoted as T
or “not T.” The classification score for genetic risk prediction is a
function that maps a set of SNPs Σ = {S1, . . ., Sk} into real num-
bers. The classification rule links the output of the score function
to the events T or “not T.” Formally, with S denoting the space of
SNPs and R the real numbers:

Classification score: Sc(Σ) : S → R

Classification rule: Sc(Σ) > τ ⇒ Classify as T

LOGISTIC REGRESSION WITH A GENETIC RISK SCORE
A logistic regression model that includes the general effects
of k biallelic SNPs Σ = {S1, . . ., Sk} to model the odds for a
dichotomous trait T is defined by the logit equation:

log

(
p(T |Σ)

1 − p(T |Σ)

)
= α0 +

k∑
j=1

(α1j XjAB + α2j XjBB)

where XjAB =
{

1 if Sj genotype = AB

0 otherwise

and XjBB =
{

1 if Sj genotype = BB

0 otherwise
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We assume that the alleles of the SNPs are ordered in lexico-
graphical order (A < C < G < T), and A represents the first allele
and B the second allele regardless of their frequency. The logit
equation is the classification score that can be used to define a
classification rule based on a threshold τ:

Classification score: Sc(Σ) = log

(
p (T |Σ)

1 − p (T |Σ)

)
= α0

+
∑

j
(α1j

XjAB + α2j
XjBB)

Classification rule: Sc(Σ) > τ ⇒ Classify as T

and τ can be determined to optimize sensitivity and specificity by
receiver operating characteristic (ROC) curve analysis.

The coefficients of the logistic score are typically estimated by
maximum likelihood (McCullagh and Nelder, 1989), or Bayesian
methods using large sample approximations or Gibbs sampling
(Balding, 2006). By definition, the intercept α0 represents the log-
odds for the trait T for the referent group with all SNPs genotypes
equal to AA, while each parameter α1j represents the log-odds ratio
for the trait T between the AB genotype and the AA genotype of
the jth SNP, and each parameter α2j represents the log-odds ratio
for T between the BB and AA genotype of the jth SNP, assuming
the other SNP genotypes fixed. When α2j = 2α1j for all j = 1, . . .,
k, then the logistic regression encodes the additive effects of the
SNPs, and each parameter α1j represents the log-odds ratio for
T for each additional copy of the B allele relative to the referent
genotype AA.

It is well known that when the data are from a case–control
study design, the intercept does not provide the correct estimate of
the odds for T in the populations and several corrections have been
proposed to limit this problem (Jewell, 2003). Bias of the intercept
term is not a problem when the logistic regression model is meant
to be used for classification because different intercepts will sim-
ply shift the logistic function and classification scores that differ
only by the intercept term lead to equivalent classification rules.
We state this property formally because it will be used further.

Property 1: Irrelevance of the intercept term of a logistic regression
model for classification
Let Sc1(Σ) and Sc2(Σ) be two classification scores defined as:

Sc1(Σ) = log

(
p (T |Σ)

1 − p (T |Σ)

)
= α0 +

∑
j
(α1j XjAB + α2j XjBB)

Sc2(Σ) = log

(
p (T |Σ)

1 − p (T |Σ)

)
= β0 +

∑
j
(α1j XjAB + α2j XjBB)

The two classification scores can be used to define equivalent
classification rules by using the relation:

“if Sc1(Σ) > τ ⇒ classify as T” if and only if

“if Sc2(Σ) > τ + β0 − α0 ⇒ classify as T” �

We note however that the correct estimate of the intercept term
is necessary to be able to interpret the prediction from the logistic
model in terms of prevalence of the trait in the population.

One of the limitations of multivariate logistic regression is that
the number of covariates is bounded above by the sample size. It is
expected that many common genetic complex traits may be deter-
mined by hundreds of genetic variants (Kraft and Hunter, 2009),
so that the sample size needed to build reliable logistic regression
models for risk prediction can be prohibitively large.

A naïve but very popular alternative is to collapse the contri-
bution of the k SNPs into a GRS to be used in a univariate logistic
model. A GRS is typically defined as the weighted sum of the
genotypes:

GRS = GRS(Σ) =
k∑

i=1

(wiXiAA + viXiAB + ziXiBB)

with weights that can be appropriately chosen. The variables XiAB

and XiBB are defined as above, and XiAA = 1 if the ith SNP geno-
type is AA and 0 otherwise. See Table 1 for a summary of three
possible weighting schemes. The GRS is then used as risk factor to
define a classification score using a univariate logistic regression:

Sc(Σ) = log

(
p(T |GRS)

1 − p(T |GRS)

)
= γ0 + γ1 GRS

Case 1. Although this is often referred to as the “unweighted
genetic score,” the heterozygote genotype is always assigned a
weight 1, while the homozygous genotype for the risk allele is
assigned weight 2 and the other genotype is assigned weight 0. By
adopting this weighting scheme, we are simply counting the num-
ber of risk alleles each subject carries. The risk allele of each SNP
is determined by a “one-SNP-at-a-time” association analysis, typ-
ically under an additive genetic model. Using the same notation
and lexicographical order of the SNPs that we used earlier, the risk
allele of each SNP will be the A allele if the regression coefficient
αi of the logistic regression model

log

(
p(T |Si)

1 − p(T |Si)

)
= α0i + αi(XiAB + 2XiBB)

is negative, and the B allele if αi is positive. In the first case (αi < 0),
each copy of the B allele decreases the odds for T, while in the sec-
ond case (αi ≥ 0) each copy of the B allele increases the odds for
T. With this definition, the GRS is only a function of the different
number of risk alleles regardless of their individual genetic effects,
and two identical GRS values can represent genetic profiles that
are substantially different. See Figure 1 for an example.

The slope γ1 in the classification score:

Sc(Σ) = log

(
p(T |GRS)

1 − p(T |GRS)

)
= γ0 + γ1 GRS (1)

measures the association of the GRS with the trait T in terms of
log-odds ratio for T between two GRS that differ by 1, and it is
often estimated to test whether the GRS is significantly associated
with T. However, the value of γ1 is irrelevant for classification
because two classification scores defined as in Eq. 1 that differ by
the slope will produce equivalent classification rules. This is stated
in the next property.
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Table 1 | Example of choice of weights for the weighted genetic risk score.

Case wi vi zi Comments

1 2δ(A = R) 1 2δ(B = R) R denotes the risk allele and δ(X =Y ) = 1 if X =Y is true and 0 otherwise

2 0 vi = log

p(T |Xi = 1)

1 − p(T |Xi = 1)

p(T |Xi = 0)

1 − p(T |Xi = 0)

2vi Xi = 0 when the i th SNP genotype is AA, and Xi = 1 when the genotype is

AB. This is the standard coding for an additive model

3 0 log

p(T |Si = AB)

1 − p(T |Si = AB)

p(T |Si = AA)

1 − p(T |Si = AA)

log

p(T |Si = BB)

1 − p(T |Si = BB)

p(T |Si = AA)

1 − p(T |Si = AA)

The two weights represent the log-odds ratio relative to the referent genotype

AA. This is the coding for genotypic model.

Case 1 is known as the “unweighted score” and case 2 is typically referred to as the “weighted genetic risk score.” Case 3 is the most general and flexible but it

does not seem to be used.

FIGURE 1 | Example of GRS (case 1 and case 2 inTable 1) based on

three SNPs associated with exceptional longevity. The table on top
reports the A/B alleles for the three SNPs, the frequencies of A allele in
cases and controls, and the p-value for the additive model (Column
PVAL.AA) and the odds ratio (OR) for exceptional longevity in carriers of
the B allele. The two bottom panels show the calculations of the GRS
with weights as in case 1 (left), and case 2 (right). Note that the GRS on

the left is only a function of the different number of risk alleles regardless
of their individual genetic effects, so the genetic profiles Σ2, Σ3, and Σ4

have the same score while the case 2 GRS assigns different weights to
non-referent genotypes and the scores are different. The profile ΣR1

denotes the referent group in case 1, while ΣR2 denotes the referent
group in case 2. The data for this example are taken from Sebastiani et al.
(2012).

Property 2: Irrelevance of the slope of a univariate logistic
regression model for classification
Let Sc1(Σ) and Sc2(Σ) be two classification scores defined as:

Sc1(Σ) = log

(
p (T |GRS)

1 − p (T |GRS)

)
= γ0 + γ1 GRS

Sc2(Σ) = log

(
p (T |GRS)

1 − p (T |GRS)

)
= β0 + β1 GRS

The two classification scores can be used to define equivalent
classification rules by using the relation:

“Sc1(Σ) > τ ⇒ classify as T”, if and only if

“Sc2(Σ) > β0 + β1
τ − γ0

γ1
⇒ classify as T” �

The GRSs labeled 2 and 3 in Table 1 weight SNP alleles in
different ways to reflect their individual associations with the
trait T.

Case 2. The GRS can be written as:

GRS =
k∑

i=1

vi(XiAB + 2XiBB)

where each weight vi is the maximum likelihood estimate of the
regression coefficient in the univariate logistic regression:

log

(
p(T |Xi)

1 − p(T |Xi)

)
= αi0 + viXi ; Xi =

⎧⎪⎨
⎪⎩

1 if Si = AB

2 if Si = BB

0 otherwise

www.frontiersin.org February 2012 | Volume 3 | Article 26 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive


Sebastiani et al. Naïve Bayes classifiers and genetic risk

that measures the association between SNP Si and the trait T with
an additive genetic model. Therefore, each weight

vi = log

p(T |Xi = 1)

1 − p(T |Xi = 1)

p(T |Xi = 0)

1 − p(T |Xi = 0)

estimates the log-odds ratio for T for each copy of the B allele in
an additive genetic model. Note that this formulation of the GRS
does not require the specification of the risk allele of the SNPs, and
the weighted genetic score will increase by vi for each copy of the
B allele of SNP Si, if this is a risk allele, and decrease by vi for each
copy of the B allele if this is the protective allele. See the example
in Figure 1.

The classification score based on this GRS is computed using
the logistic regression in Eq. 1, with parameters γ0, γ1 that can
be estimated by maximum likelihood or Bayesian methods. The
slope represents the odds ratio (OR) for T for a unit change of
the GRS. In general, the OR for T between two genetic profiles
Σ1 = {S11, . . ., Sk1} and Σ2 = {S12, . . ., Sk2} associated with GRS1

and GRS2 is

log

(
p(T |GRS1)/(1 − p(T |GRS1)

p(T |GRS2)/(1 − p(T |GRS2)

)

= γ1

k∑
i=1

log

(
p(T |Si1)/(1 − p(T |Si1)

p(T |Si2)/(1 − p(T |Si2)

)

and this equation shows that the log-odds ratio for T between two
weighted GRSs is an average of log-odds ratios of the individual
genetic effects rescaled by the coefficient γ1.

The classification rule

if Sc1(Σ) = log

(
p(T |GRS)

1 − p(T |GRS)

)
> τ ⇒ classify as T ,

based on the score

Sc1(Σ) = log

(
p (T |GRS)

1 − p (T |GRS)

)
= γ0 + γ1 GRS

is equivalent to:

if
k∑

i=1

log
p(T |Si)/(1 − p(T |Si)

p(T |Si = AA)/(1 − p(T |Si = AA)
>

τ − γ0

γ1

⇒ classify as T

So the classification rule that uses the weighted GRS in case 2
is essentially based on an average of the individual log-odds ratio
for T of each SNP genotype relative to the referent genotypes.

Case 3. The GRS is:

GRS =
k∑

i=1

(viXiAB + ziXiBB)

where vi and zi are the MLE estimate of the regression coefficients
of the univariate logistic regression

log

(
p(T |Si)

1 − p(T |Si)

)
= αi0 + viXiAB + ziXiBB;

XiAB =
{

1 if Si = AB

0 otherwise
; XiBB =

{
1 if Si = BB

0 otherwise

that measures the genotypic association between SNP Si and the
trait T. Therefore

vi = log

p(T |Si = AB)

1 − p(T |Si = AB)

p(T |Si = AA)

1 − p(T |Si = AA)

; zi = log

p(T |Si = BB)

1 − p(T |Si = BB)

p(T |Si = AA)

1 − p(T |Si = AA)

are the log-odds ratio for T between the AB and AA genotypes, and
BB and AA genotypes. See Figure 2 for an example. The classifi-
cation score and classification rule are derived as in case 2 and can
be interpreted as average of the log-odds ratios of individual SNPs
genotypes. Compared to case 2, the weights based on genotype
associations allow for more general model of associations that are
not restricted to linear increase of the log-odds for T. Note also that
when the SNPs included in a GRS (case 2 and 3) are independent,
the two scores should be approximately equivalent to multivariate
logistic regression with additive (case 2) or genotypic association
(case 3). In addition, if the SNPs included in the GRS have simi-
lar effects, then the GRS in case 1 and 2 should be approximately
equivalent.

NAÏVE BAYES CLASSIFIERS
The classification score based on a NBC is the posterior probability
of the trait T that is calculated using the formula:

Sc(Σ) = p(T |Σ) = p(T )
∏k

i=1 p(Si |T )

p(T )
∏k

i=1 p(Si |T )

+(1 − p(T ))
∏k

i=1 p(Si |notT )

where p(T ) and 1 − p(T ) are the prior probabilities of having the
trait T or not. The conditional probabilities p(Si | T ) and p(Si | not
T ) represent the distribution of the ith SNP genotype in subjects
with and without the trait T. They are typically estimated assum-
ing genotypic association (Sebastiani et al., 2012), but they could
also be estimated using an additive genetic model. The formula
is derived using Bayes’ theorem and assuming that the SNPs are
independent, conditionally on T (Hand, 2009). The usual Bayesian
classification rule is to classify a subject with the most probable
outcome

if Sc(Σ) > 0.5 ⇒ classify as T .

This rule is based on a 0–1 loss that assigns the same weight to
misclassification errors. A general loss function that weights dif-
ferently sensitivity and specificity would lead to the classification
rule:

if Sc(Σ) >
λ

1 + λ
⇒ classify as T for λ > 0
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FIGURE 2 | Example of GRS (case 3 inTable 1). The table on top reports the
A/B alleles for the three SNPs, the frequencies of A allele in cases and
controls, and the odds ratio for exceptional longevity in carriers of the AB
allele relative to carriers of the AA allele (OR.AB.AA), and the odds ratio for

exceptional longevity in carriers of the BB allele relative to carriers of the AA
allele (OR.BB.AA). The bottom panel shows the calculations of the GRS with
weights as in case 3. The profile ΣR denotes the referent group.

that can also be written as:

Sc(Σ) >
λ

1 + λ
⇔ log

(
p(T |Σ)

1 − p(T |Σ)

)
> log(λ)

and simple algebra shows that this is equivalent to:

log

(
p(T |Σ)

1 − p(T |Σ)

)
= log

(
p(T )

∏k
i=1 p(Si |T )

(1 − p(T ))
∏k

i=1 p(Si |not T )

)
=

log

( ∏k
i=1 p(T )p(Si |T )∏k

i=1(1 − p(T ))p(Si |not T )

)
=

log

(∏k

i=1

p(T |Si)

1 − p(T |Si)

)
=

k∑
i=1

log

(
p(T |Si)

1 − p(T |Si)

)
> log(λ)

As long as the log-odds ratios are calculated using the same
genetic model, this classification rule is equivalent to the classifi-
cation rule based on the GRS (either case 2 or 3)

if
k∑

i=1

log
p(T |Si)/(1 − p(T |Si))

p(T |Si = AA)/(1 − p(T |Si = AA))
>

τ − γ0

γ1

⇒ classify as T

by setting the threshold

τ = γ0 − γ1

k∑
i=1

log

(
p(T |Si = AA)

1 − p(T |Si = AA)

)
+ γ1 log(λ)

We state this relation formally.

Property 3: Equivalence of classification rules based on the GRS and
the NBC
The classification rules based on a logistic model of a GRS(case 2
or 3) and a NBC are equivalent when the same genetic models are
used to link individual SNPs to the trait.

The details of the algebraic manipulations are in Section
“Appendix.” �

Note that the equivalence between the classification rules based
on a NBC and a logistic regression model with a GRS as in case 2
or 3 is a simple consequence of the fact that both models base the
prediction on a weighted average of ORs of the individual SNPs.
This equivalence is independent of the choice of the prior for T
because different prior distributions will lead to equivalent classi-
fication rules but with different classification thresholds. Also, the
equivalence of classification rules based on GRS and NBC implies
that when alternative classifiers are compared by the area under
the receiving operator curve they must reach the same value. This
is shown in the next example.

Example. To demonstrate the connection between the NBC
and the GRS in case 3, we performed a simple simulation. We
simulated a dataset with 3000 cases and 3000 controls, and geno-
type data from 75 causal SNP and 500,000 null SNPs. For the
null SNPs, we randomly selected frequencies of the minor allele
(p) from a uniform (0.05, 0.5) distribution and genotype fre-
quencies were generated assuming Hardy–Weinberg equilibrium
[p2,2p(1 − p),(1 − p)2]. The causal SNPs were simulated with ORs
of 1.2, 1.3, 1.4, 1.5, and 1.6 and minor allele frequencies (MAFs) of
0.1, 0.2, 0.3, 0.4, and 0.5. A causal SNP was simulated for each com-
bination of the above ORs and MAFs (25 combinations) under an
additive, recessive and dominant mode of inheritance (25 com-
binations × 3 modes of inheritance = 75 SNPs). The genotype
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frequencies in controls were generated to follow Hardy–Weinberg
equilibrium [p2,2p(1 − p),(1 − p)2]. The genotype frequencies
in cases for the additive, recessive, and dominant models were
[p2,2ORp(1 − p),OR2(1 − p)2], [p2,2p(1 − p),OR(1 − p)2] and
[p2,2ORp(1 − p),OR(1 − p)2], respectively. For the cases, the
genotype frequencies were divided by the sum of the frequencies
so that the frequencies add up to 1. Using the genotype frequencies
for each SNP, we simulated a discovery set of 3000 cases and 3000
controls and a replication set with the same sample sizes.

The data in the discovery set were analyzed to generate genetic
risk models based on GRS and NBCs in the following way. A
Bayesian genome-wide association study was performed on the
discovery set and SNPs were ordered according to the posterior
probability for the genotypic association to build nested NBCs
with increasing number of SNPs as in Sebastiani et al. (2012).
To obtain the weights for the three GRSs, we ran two logis-
tic regression models for each SNP, using an additive mode of
inheritance and a genotypic mode of inheritance. The results of
these analyses were used to detect the risk alleles of SNPs for
nested GRS as in case 1; and to estimate the weights of GRS as
in cases 2 and 3. Using SNPs ordered by the posterior proba-
bility for the genotypic association, we then built three sets of
classification models based on logistic regression and the three
different GRS, with increasing number of SNPs. The predic-
tion models were tested on the replication set to avoid issues
of over-fitting. The simulation described above was repeated five
times and the mean AUC across the replicates was used to assess
accuracy.

Figure 3 (left panel) shows the mean AUC across five repli-
cates for the NBCs and logistic regression models for different
GRSs, with increasing number of SNPs. As expected based on
our mathematical calculations, the AUCs of the genetic risk mod-
els based on the NBCs and the GRSs with a genotypic weights
are identical (Figure 3, left panel), and the predicted probabil-
ities are almost identical (Figure 3, right panel). The weighted
and unweighted GRS using an additive mode of inheritance have
lower AUCs demonstrating the loss of accuracy with assuming
additivity when some of the SNPs do not follow an additive
mode of inheritance. Of course if all SNPs do in fact follow
an additive model of the inheritance, the genotypic and addi-
tive prediction models would perform similarly. The trend of the
AUC shows that accuracy keeps increasing as true positive SNPs
are included in the model, and then declines when each classi-
fication model starts including false positive SNPs. The decline
is more evident for the case 1 GRS, while both weighted GRS
based on additive or genotypic associations appear to be more
robust.

DISCUSSION
One of the selling points of genome-wide association studies was
to discover genetic variants that are associated with increased sus-
ceptibility for disease and could be used for personalized diagnosis
and prognosis. Initial results published for example in Meigs et al.
(2008) and Paynter et al. (2010) however showed that genetic data
added limited predicted values to well established risk factors of
Type II diabetes and cardiovascular disease. These initial studies

FIGURE 3 | Results of simulation for replication set. The left hand
plot graphs the mean area under the ROC (AUC) versus the number
of SNPs in the prediction model. The colored lines refer to the AUC
of the NBC (black), the unweighted GRS from an additive model
(case 1, blue), the weighted GRS from an additive model (case 2,
green), and the weighted GRS from a genotypic model (case 3, red).

The maximum AUC occurs at 45 SNPs. The right hand plot graphs
the probability of the trait T given the weighted GRS (genotypic
model) on the y -axis versus the probability of disease given the SNP
profile estimated by NBC on the x -axis for a model containing 45
SNPs for one of the replicates. The right hand plot is similar across
the five replicates.
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limited the attention to those SNPs that reached genome-wide
significance and their effect was summarized into a GRS. Since
then, a growing body of literature has shown the increased value
of deeper mining of genome-wide association studies but inclu-
sion of large number of SNPs in genetic risk model has continued
to resort on GRSs (Cui, 2009; Goddard et al., 2009; Kooperberg
et al., 2009; Purcell et al., 2009; Yang et al., 2010; Chen et al., 2011;
Chibnik et al., 2011), while machine learning type methods con-
tinue to be rare regardless of some successful applications (Wei
et al., 2009; Okser et al., 2010; Kang et al., 2011b; Sebastiani et al.,
2012).

Our study shows that risk prediction based on a GRS is math-
ematically equivalent to risk prediction based on a NBC, when
the same SNPs with the same mode of inheritance are used in
the models. The equivalence is based on the fact that both models
essentially base the prediction on a weighted average of ORs of the
individual SNPs. While this equivalence establishes the validity of
methods based on the NBC for genetic risk prediction and we hope
will contribute to make this approach more popular in this field,
it also shows that contrary to what stated in Okser et al. (2010)
a NBC does not include interactions of SNPs but only additive
genetic effects. However, the directed graphical model underly-
ing a NBC can be extended to more general structures to include
interactions between genes and/or environmental risk factors by
maintaining the computations scalable to genome-wide genotype
data and even whole genome sequence data (Sebastiani and Perls,
2008).

Figure 4 shows some ways to extend NBCs for risk pre-
diction to include population ancestry, as well as genetic and
non-genetic effects that may be missed by test for marginal asso-
ciations. Figure 4A describes a directed acyclic graph (DAG) with
one parent node (T ) and two children nodes (X 1 and X 2) that
may represent SNPs. The DAG describes the conditional inde-
pendence of X 1 and X 2 given T. This type of DAG with one
root node and multiple conditionally independent children rep-
resents a NBC (Sebastiani and Abad-Grau, 2007). The DAG in
Figure 4B extends the NBC in Figure 4A with an additional node
X 3 that is marginally independent of T, but conditionally depen-
dent on T given X 2. In the context of genetic risk modeling, the
node X 3 could represent a non-genetic risk factor that is asso-
ciated with a trait T only in specific genetic backgrounds (the
node X 2). The DAG in Figure 4C includes an additional node
X 4 that is conditionally independent of all other nodes given
X 1. This additional node may represent a gene × gene interac-
tion that is induced by linkage disequilibrium. Note that both
DAGS in Figures 4B,C would give the same classification score
for T, because of the independence of T from X 4 given X 1. So,
the DAG in Figure 4C would be useful for a better explana-
tion of the biology rather than improving genetic risk prediction.
Finally, the DAG in Figure 4D extends the DAG in Figure 4B by
adding a link from T to X 3. The inclusion of this link makes the
node X 3 marginally dependent of T and interaction between X 2

and X 3 changes the classification score compared to the DAG in
Figure 4B.

In addition, and most importantly, the fact that all variables in
a DAG are random provides a sound framework for marginal and

FIGURE 4 | Examples of directed acyclic graph (DAG). All nodes are
random variables and the DAG represents Markov properties of marginal
and conditional independence (Lauritzen and Sheehan, 2004). In particular,
the global Markov property states that a node is independent of all other
nodes in the DAG given its parent nodes, its children nodes and additional
parents of its children (Lauritzen and Sheehan, 2004). In addition, two
nodes are marginally independent when they have no directed joining paths
after their children are dropped. Therefore, the nodes X 1 and X 2 in the DAG
in (A) are conditionally independent given T. The DAG in (B) adds the node
X 3 to the NBC in (A). This additional node is marginally independent of T
but conditionally dependent on T given X 2. The DAG in (C) includes an
additional node X 4 that is conditionally independent of all other nodes given
X 1. Finally, the DAG in (D) extends the DAG in (B) by adding a link from T to
X 3 so that X 3 and T are marginally dependent.

conditional inference. For example, a genetic risk model based
on a DAG can be used for predicting the outcome of a sub-
ject by marginalizing out unobserved variables (Solovieff et al.,
2011).

Our analysis is limited to binary outcomes, but we expect that
similar results hold when the outcome to be predicted is a quan-
titative trait that follows a normal distribution. Furthermore, our
analysis shows that linear transformations of a GRS do not impact
predictive accuracy, and similarly, that the predictive accuracy of
a NBC cannot be changed by a choice of prior for T. Improving
the accuracy can be accomplished by selection of the most pre-
dictive SNP and by choosing alternative weights to calculate the
GRS. There is no obvious similar choice for a NBC. However, a
closely related approach that we used in Sebastiani et al. (2012)
to improve the predictive accuracy is to use ensemble of nested
NBCs. Finally, the machine learning community has developed
many feature selection algorithms for building classifiers (Hastie
et al., 2009) that, by the equivalence proved in this paper, may
prove to be useful to generate better genetic risk models.
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APPENDIX
DERIVATION OF PROPERTY 3

k∑
i=1

log
p(T |Si)/(1 − p(T |Si)

p(T |Si = AA)/(1 − p(T |Si = AA))
>

τ − γ0

γ1
⇒ classify as T

if and only if

k∑
i=1

log

(
p(T |Si)

1 − p(T |Si)

)
−

k∑
i=1

log

(
p(T |Si = AA)

1 − p(T |Si = AA)

)
>

τ − γ0

γ1
⇒ classify as T

if and only if

k∑
i=1

log

(
p(T |Si)

1 − p(T |Si)

)
>

τ − γ0

γ1
+

k∑
i=1

log

(
p(T |Si = AA)

1 − p(T |Si = AA)

)
⇒ classify as T

if and only if

k∑
i=1

log

(
p(T |Si)

1 − p(T |Si)

)
> log(λ)

where log(λ) = τ − γ0

γ1
+

k∑
i=1

log

(
p(T |Si = AA)

1 − p(T |Si = AA)

)

and τ = γ0 − γ1

k∑
i=1

log

(
p(T |Si = AA)

1 − p(T |Si = AA)

)
+ γ1 log(λ)
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