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Robustness has been studied through the analysis of data sets, simulations, and a vari-
ety of experimental techniques that each have their own limitations but together confirm
the ubiquity of biological robustness. Recent trends suggest that different types of pertur-
bation (e.g., mutational, environmental) are commonly stabilized by similar mechanisms,
and system sensitivities often display a long-tailed distribution with relatively few pertur-
bations representing the majority of sensitivities. Conceptual paradigms from network
theory, control theory, complexity science, and natural selection have been used to under-
stand robustness, however each paradigm has a limited scope of applicability and there
has been little discussion of the conditions that determine this scope or the relationships
between paradigms. Systems properties such as modularity, bow-tie architectures, degen-
eracy, and other topological features are often positively associated with robust traits,
however common underlying mechanisms are rarely mentioned. For instance, many sys-
tem properties support robustness through functional redundancy or through response
diversity with responses regulated by competitive exclusion and cooperative facilitation.
Moreover, few studies compare and contrast alternative strategies for achieving robustness
such as homeostasis, adaptive plasticity, environment shaping, and environment track-
ing. These strategies share similarities in their utilization of adaptive and self-organization
processes that are not well appreciated yet might be suggestive of reusable building blocks
for generating robust behavior.
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INTRODUCTION
Life is able to withstand internal and external fluctuations at var-
ious frequencies and timescales. Genetic mutations, localized sto-
chastic fluctuations in molecular concentrations, loss of structural
integrity (e.g., trauma), infectious diseases, endogenous threats
such as cancer, temperature fluctuations, altered species inter-
actions, and regime shifts in the physical environment are just
some examples of these disturbances. Many biological systems
have an intrinsic capacity to maintain specific functions or traits
when exposed to particular perturbations and have thus been
described as being robust. Trait robustness is pervasive in biology
throughout at all organizational levels including protein folding,
gene expression, metabolic flux, physiological homeostasis, devel-
opment, organism survival, species persistence, and ecological
resilience (Holling, 2001; de Visser et al., 2003; Kitano, 2007).

Research into the mechanisms, trade-offs, and evolution of
robustness is changing our understanding of molecular, evolu-
tionary, and systems biology. To many biologists, robustness is
ubiquitous and essential because proteins, cells, biochemical net-
works, immune systems, organisms, and natural populations exist
within changing and sometimes novel conditions under which
the maintenance of satisfactory performance will determine per-
sistence or function. Evolutionary biologists are interested in
mutational robustness because it deconstrains evolution at the
molecular level (Cowen and Lindquist, 2005; Bloom et al., 2006;

McBride et al., 2008) and at other levels of biological organization
(Babajide et al., 1997; Aldana et al., 2007; Ciliberti et al., 2007; Wag-
ner, 2008; Whitacre and Bender, 2010a). Recent studies suggest
that mutational robustness is also important to the adaptive diver-
sification of populations because it allows cryptic genetic variation
(CGV) to accumulate in populations that can subsequently be
co-opted or exapted for rapid evolution in novel environments
(Hayden et al., 2011; Whitacre and Atamas, submitted). In sys-
tems biology, robustness provides a measure of model plausibility
because only an exceedingly small fraction of model instantia-
tions will display the robust expression patterns observed in real
biological networks. As a result, a model’s robustness provides
information that can guide the development of realistic biochem-
ical network simulations (Morohashi et al., 2002). Rare instances
of extreme fragility sometimes reveal insights into evolutionary
history, system function, and the performance–complexity–cost
trade-offs that are sometimes associated with robustness (Csete
and Doyle, 2004; Stelling et al., 2004a,b; Chandra et al., 2011). In
other cases, fragilities have little to do with the organism traits.
For instance, environmental changes such as habitat fragmenta-
tion and lost resources as well as ecological properties such as
food web structure can introduce large disturbances that cause
local extinctions yet do not reflect poorly on any particular
phenotype (Raup, 1992; Bak and Paczuski, 1995; Green et al.,
2000).
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BACKGROUND
Robustness arises in many aspects of gene expression from sin-
gle gene output, to expression patterns in a single cell (Li et al.,
2004), to expression patterns of differentiating cells during devel-
opment (Scharloo, 1991; von Dassow et al., 2000; Eldar et al.,
2002; Espinosa-Soto et al., 2004; Félix and Wagner, 2008). It is also
observed in large signaling networks (Barkai and Leibler, 1997;
Alon et al., 1999), metabolic networks (Edwards and Palsson, 2000;
Shinar and Feinberg, 2010), neural networks (Jahnke et al., 2009),
and in smaller biochemical networks involved in bacteria chemo-
taxis (Barkai and Leibler, 1997; Alon et al., 1999) and circadian
rhythm (Gonze et al., 2002). Table 1 provides a representative
sampling of the extensive literature that has been devoted to these
topics.

Robustness is studied using a patchwork of tools that each
have their own limitations. A growing number of studies develop
discrete agent-based simulation models – with component rela-
tionships defined by extant knowledge and parameters determined
from biological datasets – to evaluate robustness in silico. Simula-
tions can provide a systematic analysis of perturbations that might
be orders of magnitude too numerous to directly evaluate and it
can allow researchers to probe specific perturbations that are dif-
ficult to introduce in biological experiments. Simulations have
undoubtedly contributed to progress in systems biology, however
models must be used with a good understanding of their limita-
tions. Developing a good model is a challenging exercise because
it requires an accurate mapping between the digital genotype and

analog phenotype for a given level of phenotypic organization in
addition to an appropriate parameterization of the environmental
space (Savageau et al., 2009).

Simulation studies also generally assume an equivalence
between fitness and the stability of a phenotypic manifestation,
thus neglecting the contextual multi-functionality of many biolog-
ical networks and the importance of adaptive phenotypic plasticity
to the robustness of an organism fitness (see Pathways Toward
Robustness). The systematic characterization of the robust oper-
ating conditions for a function and the environmental cues that
drive transitions to alternative functions is an important open
problem in the study of systems robustness. Studies progressing
along these lines have so far estimated convex regions of envi-
ronmental conditions for which a functional output is stabilized.
Methods for this type of analysis include stochastic sampling of
robust parameter volumes, random walks in parameter space, and
use of models that facilitate an estimation of the boundaries of
robust parameter regions (Coelho et al., 2009).

Importantly, the number of degrees of freedom for model
development are often enormous, and many model instantiations
can generate similar behavior within specific environments (many
to one mapping), thus making model overfitting a serious prob-
lem and the scientific merit of any result greatly dependent on
experimental validation. Consequently, it is becoming common
practice to validate simulation results using a smaller set of biolog-
ical experiments that test unexpected or noteworthy predictions
from the model. Finally, all studies evaluate robustness by exposing

Table 1 | Robustness in different biological contexts.

System Context Perturbation Robust property

Protein folding assisted by

chaperones

Cytosol Hydration shell, protein interactions,

temperature

Conformation dynamics

Circadian clock Drosophila (Gonze et al., 2002) Molecular noise Cycle period

Cell cycle Budding yeast (Li et al., 2004) Protein concentrations Protein concentration pattern

Signal transduction subnetwork Bacterial chemotaxis Biochemical parameters in silico (Barkai and

Leibler, 1997), in vivo (Alon et al., 1999)

Tumbling frequency

Metabolic subnetwork Escherichia coli simulation (436

metabolites and 736 reactions;

Edwards and Palsson, 2000)

48 central reaction pathways

(loss-of-function mutations in

enzyme-coding genes)

Metabolic flux ratios that are

optimal for growth

Gene regulatory network Cell nucleus Signaling, oxidative stress, chromatin

remodeling

Gene expression pattern

Multi-cellular development Drosophila (von Dassow et al., 2000;

Eldar et al., 2002)

Kinetic parameters Cell fate patterning

Arabidopsis (Espinosa-Soto et al.,

2004)

Kinetic parameters

Caenorhabditis elegans (Félix and

Wagner, 2008)

Molecular noise, environmental variation,

and loss-of-function gene mutations

Cell Escherichia coli (Isalan et al., 2008) Modified regulatory regions in genes Cell survival

Animal Tardigrade Temperature, pressure, hydration Animal survival

Deme/species Arabidopsis (Fu et al., 2009) 500,000 single nucleotide polymorphisms Transcript, protein, and

metabolite abundance
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a system, or a model of the system, to a small set of perturba-
tions. However because robustness is contingent on the pertur-
bations considered (see Box 1), caution is needed when making
generalizations that extend beyond the perturbations tested in a
study.

Studies introducing perturbations to actual biological networks
have employed a variety of techniques. For instance, a study by
Isalan et al. (2008) developed a method for evaluating the robust-
ness of cellular fitness toward modifications in genetic regulation.
They constructed 598 recombinations of promoters (including
regulatory regions) that were combined with copies of different
transcription factor genes in Escherichia coli and then added to
the wild-type genetic background. Isalan et al. found that 95%
of these modified gene interaction networks were tolerated by
the bacteria and some conferred selective advantages in particular
environments. While prior studies reported high robustness from
gene knockout in a number of genomically complex species, this
study provided the first evidence of high tolerance and evolvability
toward heritable regulatory modifications.

Other studies systematically evaluated robustness in situ. For
instance in a comprehensive study by Fu et al. (2009), they profiled
162 lines of Arabidopsis for variation in transcript, protein, and
metabolite abundance and found widespread genetic buffering
from expressed gene to complex phenotypic trait. The widespread
buffering of most of the 500,000 SNPs studied was accompanied
by only six quantitative trait loci (QTL) outliers that displayed rela-
tively large and system-wide phenotypic effects. In isolation, label-
ing these outliers as inconsequential artifacts seems reasonable,
however studies of gene expression (Featherstone and Broadie,
2002; Fu et al., 2009), the immune system (Kitano and Oda, 2006;
Stromberg and Carlson, 2006), protein chaperones (Rutherford
and Lindquist, 1998), metabolic networks (Stelling et al., 2002),
and circadian clocks (Stelling et al., 2004b) have similarly reported
that exceptionally robust biological systems often harbor rare yet
devastating fragilities (see Table 2). The theory of Highly Opti-
mized Tolerance proposes that these rare yet devastating fragilities
arise from fundamental trade-offs between robustness, complex-
ity, and performance (Carlson and Doyle, 2002). As discussed in

Box 1 Defining robustness.

As stated by Alderson and Doyle (2010), “a (property) of a (system) is robust if it is (invariant) with respect to a (set of perturbations).” The
conclusions from studying robustness will therefore depend on how each element in the square brackets is defined. An example of this
contingency is seen in the conditional existence of genetic neutrality. For instance, populations in their native habitat can harbor consider-
able genetic diversity with minor quantitative trait differences amongst individuals, i.e., the phenotype is largely robust to these particular
genetic variants. However, exposing the population to new environments can reveal phenotypic differences and a lower degree of observed
mutational robustness; a phenomenon known as CGV (Gibson and Dworkin, 2004). In other words, the mutational robustness apparent in
a population depends on the traits measured, the environments considered, and the genetic background.

Table 2 | Robust-yet-fragile properties at different levels of biological organization.

System Robustness Fragility

Heat shock protein Hsp90 Hsp90 confers protein conformational

robustness by assisting other proteins to fold

or refold into functionally relevant

conformations when temperatures are

elevated above physiological conditions

As a promiscuous buffering mechanism, the failure of Hsp90 acts

as an extreme point of fragility during development and can

negatively impact several morphological attributes (Rutherford and

Lindquist, 1998)

Tumbling frequency control in

bacterial chemotaxis signal

transduction networks (Barkai and

Leibler, 1997; Alon et al., 1999)

Highly robust to modifications in biochemical

parameters

Strongly sensitive to changes in network structure

Gene transcript, protein, and

metabolite abundance patterns in

Arabidopsis (Fu et al., 2009)

Strong genetic buffering across 500,000

SNPs

Six quantitative trait loci (QTL) outliers are also present that

display major and system-wide phenotypic effects.

Adaptive immune system in

vertebrates (Kitano and Oda, 2006)

Confers exceptional robustness against a

range of pathogens

Infection by HIV of CD4+ helper T cells eventually renders the

immune system highly vulnerable to opportunistic infections

(McCune, 2001)

Molecular mimicry between antigens and host cell protein

fragments can cause inappropriate activation of T cells and lead to

autoimmunity

Metabolic networks (Jeong et al.,

2000)

Robust toward variable nutrient conditions

and changes in enzyme activity

Sensitivity toward loss-of-function mutations in a small number of

specific enzyme-coding genes that influence a small set of

glycolytic fluxes (Edwards and Palsson, 2000)
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Section “Mechanisms,” such trade-offs might originate from the
organization of biological networks into bow-tie architectures.

CELL FATE PATTERNING
There is a long history of studying canalization in development
(e.g., Waddington, 1942; Scharloo, 1991), however some recent
studies of cell fate patterning also have important implications
to the study of robustness. In a study by von Dassow and col-
leagues, empirical observations were used to construct an ODE
model of the segment polarity network of Drosophila, which was
then validated by demonstrating that the model mimics several
aspects of network function. In analyzing the model, they reported
gene expression patterns that were robust to kinetic parame-
ters even when varied by an order of magnitude or more (von
Dassow et al., 2000). Unexpectedly, the network typically main-
tained key functional outputs even when values for all 48 model
parameters were selected randomly (within biologically plausible
ranges; von Dassow et al., 2000). Similar findings have since been
reported in models of Arabidopsis (Espinosa-Soto et al., 2004)
and in other biological networks, suggesting that evolution gen-
erally establishes networks with exceptional robustness toward
mutations.

Another study of cell fate patterning modeled developmental
patterning in Drosophila that is guided by morphogen gradi-
ents and feedback loops that buffer against fluctuations in gene
dosage and expression (Eldar et al., 2002). From studying con-
tributing factors in the model’s robustness, they predicted that
the gradient of a particular morphogen, bone morphogenic pro-
tein, would need to be buffered through the localized storage
of excess signaling molecules and they confirmed these model
predictions with biological experiments. The robustness of early
cell fate patterning has also been reported for several model
organisms. For instance in experiments reviewed in Félix and
Wagner (2008), the spatial pattern of vulval cell fates during
development in the nematode Caenorhabditis elegans is reported
as being highly robust to molecular noise, environmental vari-
ation, and loss-of-function gene mutations (Félix and Wagner,
2008) and interestingly, this patterning is largely conserved across
species within the family Rhabditidae despite large differences
in the mechanistic details that underly cell fate patterning for
each species (Félix and Wagner, 2008). As reviewed by Kirschner
and Gerhart (1998), numerous developmental traits have been
conserved across related species yet at the same time evolution
has been deconstrained to construct these traits through distinct
pathways.

METABOLIC NETWORKS
Metabolic flux-balance analysis (FBA) is a standard technique for
estimating the maximum rate of biomass production for specific
nutrient inputs and has become a standard tool for estimating
metabolic network robustness toward the elimination of indi-
vidual chemical reactions. These eliminations correspond with
loss-of-function mutations in enzyme-coding genes and thus pro-
vide rough estimations of mutational robustness for this subset
of the genome. In Edwards and Palsson (2000) they use FBA to
study metabolic network models of E. coli K-12 comprised of 436
metabolites and 736 reactions. They evaluate the effects on cell

growth from individually eliminating 48 central reactions related
to glycolysis, the pentose phosphate pathway, and the tricarboxylic
acid cycle. They find that only seven of these reactions are essen-
tial to cell growth and that the ability to obtain optimal conditions
(i.e., the metabolic flux ratios that optimize biosynthetic demands
for growth) is robust toward large changes in flux for most of these
essential reactions although robustness diminishes quickly for per-
turbations in a few glycolytic fluxes (Edwards and Palsson, 2000).
Their computational predictions matched experimental data for
only 86% of cases, however Wagner (2005) has suggested that
there might be plausible explanations to account for some of these
discrepancies.

In a study by Smart et al. (2008) they use an alternative (topo-
logical) technique for estimating cascading failures in metabolic
network models of E. coli, Saccharomyces cerevisiae, Staphylococ-
cus aureus, and Methanosarcina barkeri. Perturbations involved the
complete removal of a single enzyme and its associated reactions
from a metabolic network,while network sensitivity was character-
ized by the extent that such perturbations can cause the“knockout”
of additional reactions. Metabolite viability was defined based on
a topological flux-balance (TFB) criterion, which requires that
each metabolite participate in at least one generating and one
consuming reaction. The study also defines two network motifs
that are important in the analysis; rigid clusters and non-rigid
branches. Rigid clusters correspond with non-branching meta-
bolic pathways, i.e., the loss of any single reaction in the pathway
causes all pathway metabolites to fail the TBF criterion. Non-rigid
branching motifs represent alternative (i.e., degenerate; Whitacre,
2010) reaction pathways and thus influence the boundaries of rigid
clusters. In Smart et al. (2008) they show that the rigid and branch-
ing motifs in metabolic networks are non-randomly organized
to reduce the presence of large rigid clusters and thereby reduce
the likelihood of large cascading failures. To demonstrate that
motif organization was a major contributor to network robust-
ness, they compare biological data sets to null models generated
by randomly switching pairs of edges in each metabolic network.
The development of suitable null models is an open research
topic and a very important one because the null model defines
the point of reference from which conclusions are drawn. In
the study by Smart et al. (2008), the null models are simple to
generate yet are able to randomize motif organizational struc-
ture while preserving important topological properties that would
otherwise act as potential confounding factors such as distribu-
tions of node degree, degree-in, degree-out, and in–out degree
correlations.

In a study by Stelling et al. (2002) they analyze the metabolic
network of E. coli using a “control-effective” flux analysis that
evaluates the extent that individual reaction pathways contribute
toward efficient and flexible operation of the entire network.
Using this analysis technique they were able to accurately predict
metabolic network phenotypes that are accessible through genetic
mutations. Although computationally more demanding, control-
effective flux analysis provides advantages over FBA because it
does not require linear and steady state approximations in order
to determine the optimal flux vector and importantly, it is able to
model the important contribution of pathway flexibility toward
the robustness of metabolic network outputs.
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OTHER BIOCHEMICAL NETWORKS
Robustness has been studied in a number of other biochemical
networks. In models of the cell cycle regulatory network of bud-
ding yeast for instance, the sequence of cellular states associated
with the cell cycle was determined to be a global attractor for the
dynamics of the network and is robust to perturbations in the
concentrations of most proteins (Li et al., 2004). Simple circadian
clock models for Drosophila have also been found to produce a
circadian rhythm that is highly robust toward stochastic noise
(Gonze et al., 2002). Simulation experiments on models of bacter-
ial chemotactic signal transduction networks have similarly found
that the key functionality of this signaling network (control of
tumbling frequency) is robust to biochemical parameters (Barkai
and Leibler, 1997); findings that were later confirmed in biological
experiments (Alon et al., 1999).

MECHANISMS
While a full accounting of biological robustness remains elusive;
both in terms of the mechanisms by which robustness is achieved
and the forces that have caused robustness to grow over evolution-
ary time, there has been progress in uncovering systems principles
that contribute to robustness across biological disciplines (Fontana
and Schuster, 1998; Kitami and Nadeau, 2002; Conant and Wagner,
2004; Wilhelm et al., 2004; Gómez-Gardenes et al., 2005; Braendle
and Félix, 2008; Félix and Wagner, 2008; Levin and Lubchenco,
2008; Szollosi and Derenyi, 2009). For instance, trait robustness
has been found to spontaneously arise from the presence of cou-
pled feedback loops within signaling and gene regulatory networks
(GRN). Similar forms of distributed robustness have been shown
to arise from the topological properties of mass-action networks
(Shinar and Feinberg, 2010) as well as in reentrant neural cir-
cuitry (Edelman, 1993) where local stability is further enhanced
when neural connections exhibit high inhibition:activation ratios
and moderate to fast synaptic response times (Jahnke et al., 2009).
Robustness is also sometimes attributed to modularity in RNA
and protein folding (Ancel and Fontana, 2000), to local environ-
ment shaping/control enacted by protein chaperones (Rutherford,
2000), and is supported indirectly from the stochasticity of dynam-
ics occurring during multi-cellular development (Kupiec, 1997) or
within a single cell’s interactome (Feinerman et al., 2008). Robust-
ness arising from local functional redundancy in genes and meta-
bolic pathways (Edelman and Gally, 2001; Ma and Zeng, 2003) can
also reappear as distributed forms of robustness at higher organi-
zational levels when degenerate pathways are organized into nested
bow-tie architectures (Ma and Zeng, 2003; Csete and Doyle, 2004)
and when degenerate ensembles are organized into buffering net-
works (Whitacre and Bender, 2010b). Robustness also commonly
arises from saturation effects as seen in the sensitivity of reac-
tion flux toward enzymes with high catalytic activity. Because of
the asymptotic relationship between metabolic flux and enzyme
activity (Figure 1), mutations that reduce enzyme activity typi-
cally have only a small influence on reaction flux (Meiklejohn and
Hartl, 2002). Such robustness can be compounded by the exis-
tence of multiple high activity enzymes positioned serially within
a metabolic pathway (Kacser and Burns, 1981, 1995).

At present it remains unclear how discipline-specific properties
relate to one another and whether more fundamental mechanisms

FIGURE 1 | Saturation kinetics: the hyperbolic relationship between

enzyme activity and reaction rate.

underpin robustness across these contexts. Although universal
mechanisms are difficult to uncover, many of these properties
share similarities in how they influence the generation and regula-
tion of system response options. In particular, and as highlighted
throughout this section, response options often take the form of
functional redundancy or response diversity, and the regulation
of responses typically arises through competitive exclusion or
cooperative facilitation.

FUNCTIONAL REDUNDANCY AND RESPONSE DIVERSITY
Functional redundancy – multiple elements with similar func-
tions or similar effects on a trait –supports canalization during
development (Edelman and Gally, 2001), robustness toward loss-
of-function mutations (Wagner, 2005), and robustness toward
stochastic fluctuations. Functional redundancy does not require
identical (isomorphic) elements and instead often arises between
molecular species, developmental pathways, and organisms that
are redundant only within particular contexts (Edelman and Gally,
2001). In other words, the elements can be structurally unique and
only contingently similar in function: a property known as degen-
eracy (Edelman and Gally, 2001; see Figure 2). Due to structural
differences, degenerate components often harbor unique vulner-
abilities in their implementation of a functional role. Degeneracy
there by facilitates a natural form of bet-hedging that enables bio-
logical functions to be achieved in a variety of ways meaning for
instance that a targeted attack such as a specific inhibitor is less
likely to present a risk to all functionally related components at
once (Tian et al., 2011). For example in glioblastoma cancers, ther-
apies targeting the EGF receptor are thwarted by the co-activation
of alternate receptor tyrosine kinases (RTK) that have partial
functional overlap with the EGF receptor (and are therefore degen-
erate), but are not targeted by the specific EGF receptor inhibitor
(Huang et al., 2007; Stommel et al., 2007). In S. cerevisiae, the
adhesins gene family expresses proteins that typically play unique
roles during development, yet can perform each other’s functions
when expression levels are altered (Guo et al., 2000). Such context-
dependent similarity in functions/traits among diverse units of
an ensemble, and, reciprocally, context-dependent dissimilarity of
redundant units, is common in biology. It can be observed at the
molecular and cellular levels of gene regulation, in proteins of
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FIGURE 2 | Biological components such as proteins, complexes, circuits,

and pathways, often display a range of closely related functions. Some of
these functions sometimes partially overlap with other components, i.e., they
are degenerate. This is illustrated using bi-functional components that are

either (purely) redundant, i.e., perfectly identical in functional capabilities, or
degenerate, i.e., diverse in their bi-functionality while also having overlap in
one of their functions (partial redundancy). Node shading indicates a
functional role that is invoked within a particular environmental context.

every functional class (e.g., enzymatic, structural, or regulatory;
Atamas, 2005), in protein complex assemblies (Kurakin, 2009);
also in ontogenesis (see Newman, 1994, p. 14), the nervous system
(Edelman and Gally, 2001), metabolic pathways (Csete and Doyle,
2004), and in cell signaling (Ozaki and Leonard, 2002). In short,
degeneracy is a common and basic contributor to regulatory and
structural robustness.

FEEDBACK AND REGULATORY COMPLEXITY
Activation and inhibition are basic regulatory interactions that
influence the robustness of almost any quantitative trait. Under-
lying these interactions are simple physical processes including
competitive exclusion (e.g., competition for binding sites, foraging
competition amongst species) and cooperative facilitation (e.g.,
regulated recruitment of molecular species, facilitative species–
species interactions). The activation of single regulatory effects
is often dependent upon local conditions (e.g., the presence of
a competitor or inducing factor, the scarcity of a resource). The
large numbers of distinct, contextually active, regulatory effects
make it impossible to reduce the origins of trait robustness into
simple sets of independent processes despite the rather simple
mechanistic origins of biological robustness.

Some studies have however attempted to decompose system
behavior and reveal modular control circuits of biological robust-
ness. The study of bacterial chemotaxis has become a popular
model system in the search for rational regulatory control par-
adigms that can account for the robustness of a biochemical
network. For instance, in Levchenko and Iglesias (2002) they
report evidence that the robustness of eukaryotic cells in follow-
ing chemo-attractant gradients arises through a simple positive
feedback controller. A related study investigated models of bacte-
rial chemotaxis signal transduction networks (Barkai and Leibler,
1997) and it was later predicted that the observed robustness in
tumbling frequency control under continued stimulation is the
result of an integral feedback control system that is embedded
in the biological network (Yi et al., 2000). Integral feedback is a
basic control method that is seen for instance in the well-studied
PID (proportional, integral, derivative) controller. While integral

feedback provides a valid explanation for the robustness of their
model (Barkai and Leibler, 1997), upon closer examination, it was
later argued by Stelling et al. (2004a) that much of the robustness
of the real network is instead conferred through nested and par-
tially overlapping feedback loops that are not easily deconstructed
into isolated, single reference point, controllers.

In contrast to research programs that attempt to decon-
struct biological robustness, others have studied system properties
that promote the emergence of robustness through a system’s
self-organization. Robust regulatory control can spontaneously
emerge in networks of positively and negatively reinforcing regu-
latory interactions with several studies reporting widespread links
between robustness and regulatory complexity (Kauffman, 1969,
1993; Siegal and Bergman, 2002; Martin and Wagner, 2008). For
instance, in simulations of GRN, Siegal and Bergman (2002) found
gene expression patterns became more robust as the number of
regulatory connections in the network is randomly increased. This
and other studies have shown that robustness can emerge in GRN
models without direct selection for robustness, thus suggesting
that the origins of trait robustness could preclude their fitness
benefits and their selective conservation in evolution.

Early studies by Kauffman (1969, 1993) investigated simi-
lar questions surrounding complexity, robustness, and evolvabil-
ity using random Boolean network models of gene regulation.
In these models, Kauffman (1990) found that network stability
improves if the average number of regulatory factors is increased
for each gene or if regulatory interactions become more redun-
dant, thereby providing one plausible explanation for positive
associations between regulatory complexity and robustness. From
a related perspective, it has been proposed that the contingency
of regulatory effects within dense regulatory networks results
in numerous weak associations that together stabilize biologi-
cal networks. Such diffuse regulatory control has been proposed
to explain stable flux patterns in metabolic networks (Csermely,
2004), meta-stable organization of protein interaction networks
(Whitacre and Bender, 2010b) as well as cohesion in social net-
works (Granovetter, 1973) and ecosystems (McCann et al., 1998;
Berlow, 1999).
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The role of regulatory complexity is also arguably observed in
the relationship between physiological homeostasis and the inte-
gration of biological subsystems within the body. For instance,
multiple organ dysfunction syndrome (MODS) – a leading cause
of death in intensive care units –causes widespread inflamma-
tion in locations that are remote from the initial inciting event.
Studies have found that patients with MODS have increased
regularity in physiological time series measurements (e.g., elec-
trocardiogram signals), which is likely to reflect a decoupling in
the cross-regulation of organ systems (Buchman, 2002). Similar
decoupling of organs has been found to occur from severe brain
injury, aging, and during septic shock where decoupling is also
reversed during recovery (Buchman, 2002).

In the examples discussed, regulatory control is distributed
amongst many genes, enzymes, circuits, and pathways where the
modification of one regulating factor is compensated for by other
contingently activated factors of roughly similar effect. In other
words, there is partial redundancy or degeneracy within these dis-
tributed control networks. Simulations have suggested that this
degeneracy may widely contribute to the robustness of regulatory
network expression patterns (Tononi et al., 1999; Csermely, 2004;
Whitacre and Bender, 2010b, in press).

ROBUST ARCHITECTURES
Several network structural motifs and statistical topological prop-
erties have been reported to be positively associated with the
robustness of biological networks. The attention of the scientific
community has been particularly drawn toward evidence that the
organization of biological systems into a scale-free network (SFN)
is a major contributor to biological robustness (Kitano, 2002).
Concisely stated, SFN are networks in which the degree distribu-
tion of node connectivity can be approximated by a power law. A
number of studies have reported the presence of SFN in biological
networks with follow-up studies suggesting that this topological
feature is significant to structural robustness or integrity. Integrity
is measured by the proportion of nodes that remain members of
a single connected network after the removal of a single node and
its associated links. Assuming that a network is static, it can be
proven that the integrity of a SFN is robust to the loss of ran-
domly selected nodes, which typically have low connectivity, yet is
fragile to the removal of highly connected hubs. Thus it was spec-
ulated that the robust-yet-fragile (RYF) nature of many biological
systems (see Background) might originate from their SFN topol-
ogy. Because SFN topologies can emerge in protein interaction
networks using gene duplication and divergence algorithms (Solé
et al., 2002; Pastor-Satorras et al., 2003), it thus would seem plausi-
ble that RYF is a basic feature of life and has a partly non-adaptive
origin, e.g., in the neutral evolution of genome complexity (Force
et al., 2005; Lynch, 2007).

A number of studies using abstract models have claimed that
a SFN topology will improve the efficiency of technological sys-
tems such as power grids and communication networks, increase
the spread of ideas and diseases in a society, and provide robust-
ness to biological networks (but also, see Alderson and Doyle,
2010). For instance, in Featherstone and Broadie (2002) the so
called “gene expression network” (network where gene interac-
tions are defined based on whether the loss of one gene’s function

influences the expression of another gene) in yeast meets the con-
ditions of a scale-free topology, which arguably explains the high
levels of phenotypic robustness (>95%) that they observed in
yeast subjected to single point mutations. A somewhat related
study found that protein–protein interaction networks are also
scale-free and importantly, that there generally exists a positive
association between the degree of a protein (i.e., its promiscuity)
and the phenotypic effects from mutating the gene expressing that
protein (Jeong et al., 2001).

Metabolic networks meet the conditions of a scale-free topol-
ogy (Jeong et al., 2000) and also display a power law distribution
of reaction fluxes where the most connected metabolites tend to
have the greatest flux (Almaas et al., 2004). However, subsequent
analysis has found that metabolic networks also exhibit a mod-
ular hierarchical structure (Ravasz et al., 2002) that is possibly
better described as being “scale-rich,” i.e., most topological fea-
tures are unique to specific levels of system granularity (Tanaka,
2005). Instead of being random instances of gene duplication and
divergence (Solé et al., 2002; Pastor-Satorras et al., 2003) or “rich
get richer” paradigms of SFN evolution (Barabási and Albert,
1999), biological networks instead appear to consist of unique
SFN representations that are notable for the abundance of so
called “nested bow-ties” (Ma and Zeng, 2003; Csete and Doyle,
2004) with RYF features that are unique to each systems con-
text. Bow-tie architectures are increasingly being described as an
important contributor to network robustness and interestingly are
replete with structural manifestations of functional redundancy
and degeneracy (Tieri et al., 2010).

A bow-tie architecture – where many inputs are fed into a cen-
tral core that is the unutilized to produce many distinct outputs – is
believed to contribute to the robustness of many biological net-
works and may provide an alternative explanation for the rare yet
devastating fragilities of biological systems (see Figure 3) (Csete
and Doyle,2004). In metabolism, the bow-tie architecture provides
a formal description of the large “fan in” of catabolized nutri-
ents that produce a small number of activated carriers (e.g., ATP,
NADH) and precursor metabolites (the“knot”of the bow-tie), that
then “fan out” in the synthesis of numerous building blocks (e.g.,
nucleotides, sugars, amino acids) and eventually larger macromol-
ecules. This architecture provides exceptional robustness toward
variable nutrient inputs through the many degenerate metabolic
pathways that can be used to produce a few common building
blocks (Csete and Doyle, 2004). As a simple example of this degen-
eracy, glucose metabolism can take place by either glycolysis or the
pentose phosphate pathway. Although these pathways can substi-
tute for each other if necessary, the sum of their metabolic effects
is not the same (Sauer et al., 2004).

The core of the bow-tie architecture is generally seen as its
Achilles heel: if sufficiently perturbed or hijacked for alternative
uses then catastrophic failure is likely (Ma and Zeng, 2003; Csete
and Doyle, 2004). On the other hand, creating such catastrophic
perturbations is not easy. Core components can be synthesized
with great flexibility at high levels of flux and the hypothetical
modification or removal of dynamically constructed core com-
ponents may require multiple enzymatic modifications or large
perturbations. In Isalan et al. (2008) for instance, E. coli sur-
vival was surprisingly robust to the addition of new regulatory
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FIGURE 3 | Bow-tie network architecture of metabolism (reprinted from Csete and Doyle, 2004) and the immune system (reprinted from Kitano and

Oda, 2006).

regions in practically all hubs of the scale-free bacterial gene regu-
latory network. For nested bow-ties in the immune system (Tieri
et al., 2010), even the targeted attack of the CD4+ cell hubby HIV
requires a large and sustained assault before the system degrades to
an immune-compromised state. One reason that points of fragility
are still fairly robust is that they are regulated and protected from
damaging disturbances by strategies that utilize environmental
regulation, homeostatic regulation, steric inhibition, and others
(see Pathways Toward Robustness). However once a network is
successfully hijacked, as seen for instance in cancerous tumors, the
resulting maladaptive state may inherit pre-existing robust mech-
anisms and acquire additional robust attributes that are difficult
to reverse or destroy (Kitano, 2004a).

CONCEPTUALIZING ROBUST SYSTEM DYNAMICS
On the fringes (or forefront) of biological sciences, there has been
progress in understanding the theoretical basis by which robust-
ness evolves and emerges. In theory, robustness is high when there
exists a sufficient repertoire of actions to counter perturbations
(Ashby’s Law of Requisite Variety; Ashby, 1964) and when a sys-
tem’s memory, regulatory organization, or structural bias will elicit
particular responses to particular perturbations that stabilize the
measured trait (e.g., see Heylighen and Joslyn, 2001). Biological
responses are not deterministically bijective (i.e., characterized by
a one-to-one mapping between perturbation and response) and
instead proceed through a concurrent stochastic process that can
sometimes be conceptualized as exploratory behavior but in other
cases is more accurately described as a process of self-organization
(Kirschner and Gerhart, 1998).

EXPLORATORY BEHAVIOR
Exploratory behavior reliably transforms pseudo-random vari-
ations into robust end states. To do this, exploratory behavior
involves repeated selection over a repertoire of subsystem states

that are each elaborations of previously selected states. Exploratory
behavior thus requires one subsystem or process that generates
options and another subsystem that selects options that are to
be retained and expanded upon. Selection may occur through
activation and reinforcement of options (positive selection) or
inhibition and constraint of options (negative selection). In addi-
tion to genetic evolution, there are a variety of biological systems
that exhibit this type of exploratory behavior (Kirschner and
Gerhart, 1998).

Immune system
During positive/negative selection of immature T cells in the
thymus, immature thymocytes stochastically recombine gene seg-
ments involved in the expression of alpha and beta chains of the T
cell receptor (TCR) resulting in a large variety of possible TCR
affinities. The thymus selects from this repertoire using apop-
totic checkpoints that utilize both positive and negative selection
processes. Positive thymic selection allows cell maturation in only
a subset of thymocytes that meet TCR-driven activation require-
ments for effective scanning of antigen presenting cell surfaces.
Negative selection in the thymus prevents cell maturation of thy-
mocytes that are inappropriately activated by endogenous protein
fragments. After maturation, subsequent rounds of selection are
also imposed on mature cytotoxic T cells through the adaptive
immune response. In particular, positive selection activates a small
set of the T cell repertoire based on recognition of foreign anti-
gens and co-activation by regulatory T cells, resulting in the clonal
expansion of a small set of activated cells (see Figure 4). The result
of these stages of variation and selection is typically a repertoire of
immune cells that as a group are highly robust at recognizing the
presence of dangerous pathogens (Whitacre et al., 2012).

Microtubule spindle formation
During morphogenesis of the microtubule (MT) cytoskeleton,
spindle MTs bind to the kinetochores of chromosomes and
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FIGURE 4 |Thymic selection ofT cells. Immature T cells (called
thymocytes) enter the thymic cortex and undergo differentiation. During
this time TCR re-arrangement occurs until an active TCR is expressed along
with both the CD4 and CD8 co-receptors. Those thymocytes that have a
functional TCR and survive commit to a single positive (SP) state (SP
thymocytes express either CD4 or CD8, but not both), and migrate to the
thymic medulla. Here, SP thymocytes systematically scan medullary thymic
epithelial cells and dendritic cells presenting self-peptides in their MHC
molecules. During the SP thymocyte stage, any thymocyte that expresses
a TCR that has an above threshold affinity to self-peptides undergoes
apoptosis and dies. Surviving thymocytes eventually exit the thymus and
enter the periphery as mature, naïve T cells. Positive and negative selection
is determined by TCR affinity to their peptide/MHC ligand. Once a TCR is
expressed on the cell surface it immediately begins interacting with MHC
molecules presenting self-peptides. Functional TCR’s generate a basal
signal output that, although insufficient to cross the activation threshold, is
still necessary for thymocyte survival. TCR’s that cannot recognize
peptide/MHC complexes ultimately die by neglect. Surviving thymocytes
then migrate to the thymic medulla where they are exposed to self-antigen.
Any TCR that reacts with a self-peptide with too high of an affinity will
induce T cell activation and apoptosis. Only thymocytes with a functional
TCR, which is competent to trigger low-level signaling but does not cross
the activation threshold to self-peptides, is positively selected and
permitted to exit the thymus. Modified from Whitacre et al. (2012).

mediate chromosome segregation toward spindle poles. Location
of the chromosomes by MT takes place through an exploratory
process involving stochastic polymerization and depolymerization
of MT in random directions, with spindle directions (positively)
selected in instances where MT fortuitously interacts with a kineto-
chore and is stabilized by surface proteins. This exploratory process
robustly achieves a functional end state under different initial
arrangements, different numbers of chromosomes, and different
morphologies of the cell (Kirschner and Gerhart, 1998).

Other examples of exploratory behavior supporting robust-
ness can be found throughout biology, for instance: in cellular
differentiation, proliferation, and apoptosis during development;
chemotaxis and cell motility; the formation of neural connections
and vascular growth during development (Edelman, 1987); behav-
ioral adaptation in complex species such as predator avoidance,
habitat tracking, and adaptive foraging; adaptive social behaviors
such as ant foraging, the honey bee “waggle dance,” and termite
nest building; and the somatic evolution of cancer cells during the
development of therapy resistance (Tian et al., 2011).

SELF-ORGANIZATION AND EMERGENCE
Functional robustness is achieved through system responses that
are invoked by environmental cues. In some cases, the process of
response development can be modeled as an exploratory process

that is akin to Darwinian evolution or as a simple feedback con-
trol loop. In other cases, it is difficult to clearly distinguish between
the elements being varied in the system and the elements impos-
ing selection over the repertoire of variant states. Instead, many
components both influence and respond to their local microen-
vironment, each regulating the other and together forming an
emergent response to environmental perturbations that cannot
be neatly decomposed into a conceptually simple controller or
exploratory search paradigm. When robustness arises in such a
manner, systems theorists generally refer to the system as being
self-organized or say that the system exhibits emergent prop-
erties, i.e., stable properties spontaneously arise without a clear
selection process that matches stochastic variations with environ-
mental cues. While every robust expression pattern in biology
can be classified as involving one or a combination of adaptive
and self-organizing paradigms, the intuitive relationships between
these paradigms discussed here are rarely if ever mentioned in the
literature.

Self-organization of robust expression patterns is observed
in all complex biological networks including gene expression,
signaling networks, and metabolism. While many studies focus
attention on small molecular circuits where feedback loops are
easily defined, at the system level these feedback loops cannot
be decomposed to reveal a logical conceptualization of system
dynamics. For many biological systems, exploratory and self-
organizing processes interact at different organizational levels of
the system. In microtubule spindle formation for instance, regu-
latory recruitment between macromolecules drives microtubule
assembly (self-organization) and less frequent acts of positive
activation by the local environment (selection) determine those
microtubules that remain and are elaborated upon. Self-assembly
combined with less frequent external positive/negative selection
is common in the dynamic construction and deconstruction of
many molecular assemblies, temporary scaffolding structures, and
cellular compartments (Kirschner and Gerhart, 1998). While envi-
ronmental cues often initiate assembly or provide stimulation that
prevents disassembly, the actual assembly process involves numer-
ous regulatory actions distributed throughout the system and thus
is best described as a process of self-organization.

PATHWAYS TOWARD ROBUSTNESS
For the viability of an organism to be robust, it would seem that
the phenotype needs to be regulated. In some cases, this requires
maintaining trait stability despite variability of the environment
(e.g., developmental canalization in multi-cellular eukaryotes;
Waddington, 1942, 1953), while in others it requires the adap-
tation of traits toward a modified environment, e.g., adaptive
phenotypic plasticity (see Figure 5) (Kitano, 2004b; Pfennig et al.,
2010). Although rarely discussed, phenotypic regulation is not the
only means by which robustness can be achieved. Alternatively,
organisms and biological subsystems can exert influence on their
surroundings to reduce exposure to damaging perturbations or to
track resources that are relevant to system function. Here I dis-
cuss underlying similarities between four different strategies for
achieving robustness: (1) adaptive phenotypic plasticity (modi-
fying traits); (2) homeostasis (enforcing trait stability); (3) envi-
ronment shaping (modifying the environment); (4) environment
tracking (enforcing environment stability).
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FIGURE 5 | Four responses to environmental stress: regulate

the environment so fragilities are not accessed/revealed; move

to new environments where performance can be maintained;

adapt system response to the environment in order to robustly

maintain traits or adapt traits in order to preserve organism

fitness.

FIGURE 6 | Homeostasis and adaptive phenotypic plasticity: different

perspectives of a similar phenomena.

HOMEOSTASIS AND ADAPTIVE PHENOTYPIC PLASTICITY
Organisms often respond to changing conditions by changing
their own states; both those externally expressed (i.e., phenotype)
and those internal to the organism, in order to maintain fitness
(Figure 6). In either case, a regulated response is guided by infor-
mation from the environment to stabilize or modify traits in a
manner that robustly preserves viability of the organism under
changing conditions. Homeostasis – the stabilizing regulation of
internal states – preserves traits through regulatory responses and
actions that buffer internal stresses through the altered usage of
internal components. Adaptive phenotypic plasticity, on the other
hand, preserves fitness through regulated responses that modify
higher level traits to match a changing environment. Homeosta-
sis and adaptive phenotypic plasticity thus reflect the same basic
phenomena viewed from different perspectives (see Figure 6).

Plasticity is a generic property of phenotypic expression that
derives from the phenotype’s dependency on the environment.

The more specific term adaptive plasticity is reserved for genet-
ically evolved regulation of phenotypic change (e.g., physio-
logical, behavioral) that supports organism survival under a
transient stress or altered environment. Adaptive plasticity can
also sometimes support survival through reduced functionality, as
illustrated in the remarkable behavior of microscopic tardigrades.
By transitioning to a nearly suspended metabolic state (Crowe
and Crowe, 2000), tardigrades can persist for years under tremen-
dous extremes in temperature (−200, 150˚C; Jönsson et al., 2008),
pressure (0, 1200 atm; Seki and Toyoshima, 1998; Jönsson et al.,
2008), dehydration (Guidetti and Jönsson, 2002), and direct solar
radiation (Jönsson et al., 2008).

Adaptive phenotypic plasticity is prevalent in biological net-
works. Many networks contribute to multiple functions that only
benefit to fitness in specific environmental contexts. Thus a net-
work’s contribution to organism fitness can depend on its ability
to reliably transition between distinct functions depending on
context. This is seen in small inducible-catabolic and repressible-
biosynthetic circuits (Wall et al., 2004) and in various threshold-
activated functions involving genetic switches, activation potential
in neurons, and analog-to-digital signal processing (Harding and
Hancock, 2008).

Context-dependent changes in function are also important to
networks involved in multi-cellular development. For instance,
the Hox gene network plays an important role in patterning of
the main anteroposterior body axis and also in the patterning
of the vertebrate limb. The network is presented with differ-
ent regulatory inputs within these different embryonic regions,
resulting in distinct gene expression outputs that influence cell
development differently in the two contexts. Similarly, Drosophila
segment polarity genes (e.g., wingless, engrailed, hedgehog) con-
tribute to early segmentation but also play important roles later
in the development of the fly’s wing. As a further demonstra-
tion of adaptive plasticity in segment polarity networks, Ingolia
(2004) demonstrated that the robustness of cell pattern forma-
tion in Drosophila relies on so called bistability ; the ability of gene

Frontiers in Genetics | Systems Biology May 2012 | Volume 3 | Article 67 | 10

http://www.frontiersin.org/Genetics
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive


Whitacre Biological robustness

expression to exhibit multiple stable expression states that emerge
depending on the local environment and history of the cell. In
short, the robustness of development relies on the robustness of
a small number of gene expression states (homeostasis) as well as
the context-dependent transition between these expression states
(adaptive plasticity).

In a study of a gene regulatory network model, Martin and Wag-
ner (2008) examined whether the robustness of distinct functions
is constrained in multi-functional networks. Although increasing
the number of functions for a network was found to exponen-
tially constrain the number of viable network architectures, they
found that the robustness of one network function was gener-
ally uncorrelated with the robustness of another. At least for the
experimental conditions tested, Martin and Wagner demonstrated
that network structures with multiple highly robust functions
could readily be discovered through a process of gradual evolu-
tion. For other in silico studies, analyzing results to account for the
interplay between homeostasis and adaptive plasticity remains an
unresolved challenge (see Background).

ENVIRONMENT TRACKING
Movement within the environment alters the perturbations a sys-
tem is exposed to and can improve robustness, e.g., by avoiding
dangerous conditions or reliably acquiring important resources.
More generally, environment tracking can help to ensure that
suitable phenotype-environment pairings are preserved. Common
forms of environmental tracking include chemotaxis, migration,
seed dispersal, predator avoidance (Kondoh, 2007), and adap-
tive foraging (Kondoh, 2003). Evolution can also facilitate envi-
ronment tracking through changes to life history traits such as
the timing of reproduction (e.g., seasonal flowering and seeding
times), hibernation, and the duration of development (Hamrick
and Godt, 1996).

ENVIRONMENT REGULATION/SHAPING
Robustness is typically discussed as occurring through regulation
of the phenotype. However many biological systems also regulate
their environments in ways that influence the types and frequen-
cies of perturbations experienced and thus the robustness of these
systems. For instance, many species actively shape their envi-
ronments through niche construction (Odling-Smee et al., 1996;
Day et al., 2003), environment simplification (West-Eberhard,
2003, 2005), behavioral and genetic coevolution (Agrawal, 2001),
parental inheritance (Jablonka et al., 1995; Uller, 2008), and
cultural inheritance (Dawkins, 1983; Dennett, 1995). The abil-
ity to create environmental conditions when needed instead of
depending on the environment has a direct influence on the range
of viable habitats but is rarely discussed as a mechanism for achiev-
ing biological robustness. While humans are the most remarkable
users of environment shaping, the extent that this occurs in other
species is impressive (Laland and Sterelny, 2006). Transformation
of the environment is so important in biology and evolution that
Dawkins devoted a popular science book to this topic and dubbed
such phenomenon as the extended phenotype (Dawkins, 1999).

Environment shaping occurs at the molecular level as well.
One well-studied example of environment shaping is seen in pro-
tein chaperones and particularly, the heat shock protein Hsp90
(Rutherford and Lindquist, 1998; Rutherford, 2003). Heat shock

proteins assist other proteins to fold or refold into functionally
relevant conformations when temperatures are elevated above
physiological conditions and thus confer protein conformational
robustness. Studies on Drosophila and Arabidopsis have shown
that Hsp90 also contributes to phenotypic robustness and canal-
izes a broad range of morphological attributes (Rutherford and
Lindquist, 1998). However, while Hsp90 suppresses phenotypic
variation under normal conditions, its function can be over-
whelmed by environmental stress resulting in a substantial sub-
sequent loss of phenotypic robustness. As an important buffering
mechanism, the failure of this component thus acts as an extreme
point of fragility during development.

Environment shaping often involves physical changes to the
environment that alter the accessibility of system vulnerabilities
as is seen in niche construction activities such as nest building. At
the molecular level, steric inhibition prevents certain ligands from
docking to the active site of a macromolecule while membrane
structures throughout the body prevent dangerous molecules and
pathogens from perturbing internal networks.

The four pathways described in this section can be related to
one another by their usage of exploratory and self-organizing
paradigms discussed in the previous section. With environment
tracking, heterogeneity in the environment is sampled and selected
through an exploratory process. Adaptive phenotypic plasticity
involves self-organized responses to environmental change that
were previously selected and genetically assimilated through evo-
lution. In other words, relatively rapid self-organization within an
organism’s lifetime is shaped slowly over time through exploratory
genetic evolution. Similarly, homeostasis constitutes a prototypi-
cal self-organization process that is selectively modified over long
periods of time based on the benefits and costs to organism fitness.
Environment shaping extends control beyond system boundaries
using behaviors that are either learned in a lifetime (exploratory)
or evolved over generations.

DISCUSSION
Insights into biological robustness may also be important out-
side of biology. At the moment, control engineers optimize system
homeostasis using PID controllers and Kalman filters while design
engineers design systems with well controlled environments that
avoid damaging perturbations or that include fail-safe protection
against catastrophic failure. In organization science and manufac-
turing, operational variability is minimized using frameworks that
systematically reduce endogenous variability such as six sigma.
These heuristics and control-theoretic principles are successful
within predictable environmental conditions, however they are
considerably less successful in volatile environments that occa-
sionally introduce novel stresses. Novel stresses are by definition
not predictable, thus the flexibility needed to achieve robustness
cannot be entirely pre-specified based on the anticipation of future
stresses: a common assumption in engineering and organization
science. Instead, properties such as flexibility, response diversity,
and functional redundancy must emerge on demand or arise
through adaptive processes that do not require foresight. Alterna-
tively, if flexibility only arises in the places where designers perceive
future need, then a system’s ability to accommodate novel design
conditions will be limited by the designer’s foresight, e.g., their
ability to predict plausible future environments. These challenges
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Table 3 | System classes where components (agents) are multi-functional and have functions that can partially overlap with other agents.

Agent System Environment Control Agent tasks

Vehicle type Transportation fleet Transportation network Centralized command and control Transporting goods, pax

Force element Defense force Structure Future scenarios Strategic planning Missions

Person Organization Marketplace Management Job roles

Deme Ecosystem Physical environment Self-organized Resource usage and creation

Gene product Interactome Cell Self-organized and evolved Energetic and steric interactions

Antigen Immune system Antibodies and host proteins Immune learning Recognizing foreign proteins

Degeneracy is observed in each case through the conditional similarity of functional capabilities. Modified from Whitacre and Bender (2010b).

of adaptive robustness are becoming increasingly important to
engineers due to the growing number of technological domains
where volatility and novel disturbances cannot be avoided (Craw-
ford, 1992; Millson et al., 1992; Griffin, 1993; Page, 1993; Bettis
and Hitt, 1995; Walter, 2005; Waldner, 2008).

Insights into the emergent and exploratory robustness of bio-
logical systems are being studied within non-biological domains
with the goal of translating some of these concepts into new engi-
neering design principles. As highlighted throughout this review,
degeneracy is a common source of robustness across different
biological disciplines. Degeneracy is also a system property that
can be clearly articulated and defined for any system comprising
functionally versatile elements (Figure 2; Table 3). Because these
requirements transcend biological contexts, several research pro-
grams have begun exploring how the degeneracy concept can be
translated into design principles for the realization of more flexible
and resilient systems in non-biological disciplines (Randles et al.,
2010; Whitacre et al., 2010, in press; Frei and Whitacre, in press).
For instance, in defense capability simulations, it has been shown
that fleets of military field vehicles with high degeneracy in task
capabilities can improve operational robustness within anticipated
mission scenarios yet at the strategic level provide exceptional
design and organizational adaptability for responding to unan-
ticipated challenges (Bender and Whitacre, 2011; Whitacre et al.,
in press). Other studies have looked at how the degeneracy con-
cept can be used in the design of more flexible manufacturing and
assembly systems (Frei and Whitacre, in press), the design of more
flexible behaviors in swarm robotics (Whitacre and Bender, in
press), and for improving the performance of population-based
dynamic optimization algorithms (Whitacre et al., 2010). Oth-
ers are using the concept to understand the requisite conditions
for embodied (Fernandez-Leon, 2011) and simulated artificial
life (Mendao et al., 2007; Kerkstra and Scha, 2008; Clark et al.,
2011).

CONCLUSION
Robustness is a ubiquitous feature of biological networks. A num-
ber of fields have contributed to our understanding of robustness
including control theory, network theory, complexity science, and
evolution. With the wide range of tools and principles used to
probe biological robustness, it has been difficult to determine how
these concepts relate to each another. This review has attempted to
integrate studies of robustness in systems biology with an emphasis
on systems principles that transcend specific disciplines and that
might be fundamental to the robustness of biological networks.

According to Ashby’s Law of requisite variety, the variety of
system responses provides an upper limit on the variety of con-
ditions toward which a system can be robust. This upper limit
is not necessarily an active constraint however because many
natural perturbations can be suppressed by the same response,
i.e., the perturbations are congruent (see Meiklejohn and Hartl,
2002; de Visser et al., 2003; Lehner, 2010). Ashby’s Law for-
malizes a well-known rule of robustness; namely that different
perturbations often require different counter responses. In addi-
tion to response variety, robustness also requires the regulation
of responses in order to achieve compatibility with each per-
turbation encountered (e.g., see Heylighen and Joslyn, 2001).
For systems that display exploratory behavior, the generation
of variety and the regulation of variety occurs in mostly sepa-
rate subsystems. One subsystem generates new elaborations of
its previous self (e.g., heritable variants) while the other sub-
system imposes positive or negative selection on the variants
expressed, thereby dictating what manifestations of phenotypic
expression are elaborated upon. When the variety of perturba-
tions and responses is greatly restricted, e.g., each arises over a
single dimension, and when there is a single reference point for
stability, it sometimes becomes possible to conceptualize robust-
ness using feedback control models. However it is more often
the case that robustness cannot be modeled by either control-
theoretic or adaptive paradigms and instead emerges through a
process of self-organization. A self-organizing process differs from
adaptive behavior in that the system cannot be neatly decom-
posed into distinct sets of components responsible for generating
and regulating responses. Instead, components mutually influ-
ence and respond to their local microenvironment. Considerable
research has been devoted toward uncovering system principles
that explain how robustness becomes distributed over a self-
organizing interconnected system. This article has proposed that
many of these systems properties are related to basic mecha-
nisms involving functional redundancy, response diversity, and
degeneracy.

Robustness involves a matching between system and environ-
ment. Distinct pathways for achieving this matching are differen-
tiated in this review based on whether regulated changes take place
in the system or the environment. The four pathways described –
homeostasis, adaptive phenotypic plasticity, environment track-
ing, and environment shaping – can also be distinguished by
the manner in which adaptive and self-organizing processes are
integrated to achieve robustness. As highlighted throughout this
review, adaptive and self-organizing processes both contribute to
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the robustness of many biological networks. Multi-scale models
that can capture both adaptive and self-organizing processes would
provide an important technological step forward in simulation-
based research, however research on this topic has only just begun
within the context of abstract artificial life models, e.g., (Whitacre
et al., 2010, in press; Jin and Meng, 2011; Meng et al., 2011). Formal
models and methods for analyzing both homeostasis and adaptive

plasticity are also lacking and their development would repre-
sent an important milestone. Achieving this milestone requires
new efficient methods for systematically probing and character-
izing attractor basins (of a system’s phenotypic expression) along
with the efficient and systematic exploration of perturbations (i.e.,
environmental cues) that are responsible for initiating adaptive
transitions between phenotypic attractors.
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