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We investigated the toxicity of soil samples derived from a former municipal landfill site
in the South of the Netherlands, where a bioremediation project is running aiming at
reusing the site for recreation. Both an organic soil extract and the original soil sample was
investigated using the ISO standardized Folsomia soil ecotoxicological testing and gene
expression analysis. The 28 day survival/reproduction test revealed that the ecologically
more relevant original soil sample was more toxic than the organic soil extract. Microar-
ray analysis showed that the more toxic soil samples induced gene regulatory changes in
twice as less genes compared to the soil extract. Consequently gene regulatory changes
were highly dependent on sample type, and were to a lesser extent caused by exposure
level. An important biological process shared among the two sample types was the detox-
ification pathway for xenobiotics (biotransformation I, II, and III) suggesting a link between
compound type and observed adverse effects. Finally, we were able to retrieve a selected
group of genes that show highly significant dose-dependent gene expression and thus
were tightly linked with adverse effects on reproduction. Expression of four cytochrome
P450 genes showed highest correlation values with reproduction, and maybe promising
genetic markers for soil quality. However, a more elaborate set of environmental soil sam-
ples is needed to validate the correlation between gene expression induction and adverse
phenotypic effects.
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INTRODUCTION
The focus of ecotoxicological research is aimed at understanding
toxicological phenomena in a variety of biota (Fent, 2004). Much
emphasis is placed on lab-controlled testing of single compounds
to address regulatory issues of chemical registration. However,
testing the toxicity of complex environmental samples such as
fresh water, river sediments, and natural soils remains challenging
for several reasons. One of the major problems is that chemical
analysis of pollutants in ecosystems often reveals an extensive list
of toxicants that are potentially hazardous. Although legislation
is based on the concept of concentration thresholds that must
not be exceeded to ensure that the site is safe, such analysis can-
not provide evidence for the real toxicological consequences of
complicated mixtures. One of the valuable tools to assess ecotox-
icological consequences of complex environmental mixtures is to
apply bioassays. In such assays, survival and reproduction is stud-
ied of model organisms (validated in international standard tests),
exposed to samples from the environment under controlled con-
ditions. However, identification of the compound(s) causing the
adverse effects among the potential list of compounds in a mixture
is challenging, due to the fact that the endpoints survival, growth,
and reproduction are not specific to the type of stress exerted on
the test animals. Traditional bioassays do not allow conclusions on
the nature of the chemicals causing the effects.

Transcriptional profiling seems to have important advantages
over traditional bioassays. Several recent studies provided evidence
that transcriptome profiles bear a signature of the type of pollution
(Owen et al., 2008; Nota et al., 2010). If combined with tradi-
tional endpoints, genomics analysis of exposed animals can link
adverse effects at the organismal level to mechanistic explanation.
However, up to now this is only exemplified for single-compound
exposures (van Straalen and Roelofs, 2008).

To simulate more realistic ecotoxicological scenarios, some
recent studies have investigated toxic effects at the gene regulatory
level of compounds presented in binary mixtures. For instance,
trinitrotoluene (TNT) mixed with an additional explosive trini-
trotriazacyclohexane (RDX) radically altered the gene expression
profile of the ecotoxicological model organism Eisenia fetida when
compared to single TNT exposure (Gong et al., 2007). While TNT
alone regulated 321 genes, the mixture decreased the count to
only three genes. These results implied a strong antagonistic effect
of RDX on gene expression induced by TNT. In contrast, mix-
ture toxicity studies with compounds proposed to have compara-
ble modes of action should generate comparable transcriptional
responses. Indeed, when Daphnia magna was exposed to two poly-
cyclic aromatic hydrocarbons (fluoranthene and pyrene) no clear
distinction could be made between the compounds, suggesting
similar molecular modes of action (Vandenbrouck et al., 2010).
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Furthermore, cluster analysis with both the single compounds
and the binary mixture treatments resulted in a separation of
treatments based on differences in toxic ratios rather than com-
ponent differences. However, the results were highly dependent
on the composition of the binary mixture. In any case, these lab-
controlled experiments suggest that transcriptomics may prove
valuable in determining the most toxic substances among complex
environmental samples.

Only few studies (restricted to aquatic samples and river sedi-
ments) have addressed gene regulatory consequences of exposure
to complex environmental samples. Menzel et al. (2009) stud-
ied exposure of nematodes to polluted and clean river sediments
and showed that several biological processes, such as oxidative
phosphorylation, xenobiotics, and development in response to
exposure to the most polluted samples. This demonstrates that
ecotoxicogenomics can be used to distinguish pollution levels in
river sediments. To our knowledge, such an approach has not yet
been applied to assess soil quality.

In the present study we investigated the toxicity of soil samples
derived from a former municipal landfill site in the South of the
Netherlands, where a bioremediation project is running aiming at
reusing the site for recreation. Very recently, Legler et al. (2011)
investigated this complex environmental sample to study the sub-
stances that cause toxicity using effect-directed analysis. They
identified the presence of compounds (11H-benzo[b]fluorene,
9-methylacridine, 4-azapyrene, and 2-phenylquinoline) with pre-
viously unknown teratogenic toxicity in zebrafish. They concluded
that these compounds may have been missed by current soil
chemical quality assessment.

Here we present toxicogenomic data using the soil ecotoxico-
logical model organism Folsomia candida. We asked the question
whether an original soil sample exerts comparable toxic responses
in our soil ecotoxicological model when compared to the toxic
responses exerted upon exposure to the organic extract from that
soil (Legler et al., 2011). If this is the case, analysis of extracts will
have predictive power to estimate adverse effects in the field (Fent,
2004). To that end, the arthropods were exposed to an organic
soil extract and the original Vlagheide soil sample. Results from
a 28 day survival/reproduction test revealed differences in toxic-
ity between the organic extract and the ecologically more relevant
original soil sample. The more toxic soil samples induced gene
regulatory changes in twice as less genes compared to the soil
extract. Despite these differences several gene categories (biolog-
ical processes) were shared among the two samples. In addition,
a substantial number of genes were dependent on sample type
(soil or extract), potentially explaining the difference in toxicity.
Our results show that bioassays deploying functional genomics can
reveal crucial information on the nature of the toxicants. Further-
more, we argue that it is essential to include ecologically relevant
test organisms in order to properly assess the risk of environmental
samples.

MATERIALS AND METHODS
STUDY SITE
The Vlagheide municipal waste landfill site is located about
10 miles South-East from ‘s-Hertogenbosch, the Netherlands.
Haskoning B.V. sampled the site in October 2005 at depths varying

from 3 to 18 m. In total seven soil samples were taken and pooled,
sieved (mesh size 250 μm), homogenized, and freeze-dried to end
up as a composite sample of approximately 1 kg dry weight. In
order to retrieve an extract the sample was subjected to pres-
surized liquid extraction an accelerated solvent extraction (ASE)
apparatus (Dionex, ASE200, Sunnyvale, CA, USA) with a mixture
of acetone and dichloromethane in a 1:3 ratio. The extract was
then subjected to gel permeation chromatography (GPC) clean-
up with dichloromethane (Legler et al., 2011). An overview of
concentrations of persistent organic pollutants such as polychlo-
rinated biphenyls, polycyclic aromatic hydrocarbons, brominated
flame retardants, and organochlorine pesticides in the composite
sample have been published elsewhere (Legler et al., 2011). Sev-
eral metals were measured in three samples and were present at
variable levels depending on the depth of sampling. Mean concen-
trations of lead, cadmium, zinc, and copper were 1751, 29, 3060,
and 761 mg/kg soil respectively. A full overview of metal mea-
surements and soil parameters is given in datasheet Table S1 in
Supplementary Material.

ECOTOXICITY TEST
Treatments consisted of two separate dilution series, the first being
a series of diluted whole environmental Vlagheide soil, and the sec-
ond being a series of LUFA 2.2 reference soil spiked with the extract
derived from composite Vlagheide soil sample according to Droge
et al. (2006) using acetone as solvent.

For the 100% extract treatment, an extract derived from 100 g
(d.w.) Vlagheide soil was spiked-in 100 g (d.w.) LUFA 2.2 soil. For
the 100% soil treatment, we used sieved and freeze-driedVlagheide
soil. Using LUFA 2.2 soil for dilution, we employed a dilution fac-
tor of 2.5 to prepare five additional treatments within each series,
resulting in a 40, 16, 6.4, 2.56, and 0% dilution of both undiluted
extract and soil treatments. The control (0%) sample was 100%
LUFA 2.2 soil in case of the Soil sample dilution series, whereas the
control for the Extract dilutions was a solvent control consisting
of LUFA 2.2 soil including acetone (the solvent) in an identical
amount as was used for the extract dilution series. In this way
we were able to normalize for the effect of the solvent during the
spike-in procedure of the extract samples (Droge et al., 2006).

Preparation of the test soils and experimental set-up was done
following the standard ISO protocol 11267 (ISO, 1999), with four
biologically replicated test jars per treatment. The standard ISO
test procedure for inhibition of reproduction after 28 days was fol-
lowed. In parallel, we exposed 10 animals in each of four biological
replicate jars per treatment, for 4 days on top of a compressed layer
of test soil. These arthropods were snap frozen in liquid nitrogen
immediately after exposure so that total RNA could be isolated
(see below) for subsequent Microarray and QPCR analysis.

A logistic model was fitted to estimate toxicity end points no-
effect concentration (NOEC) and a significant sublethal decrease
in reproduction (DiR) for extract samples and soil samples of 50%
(further deduced as DiR).

RNA PREPARATION, AMPLIFICATION, LABELING, AND HYBRIDIZATION
Samples (Lufa control, NOEC; sublethal effects DiR) were sub-
jected to RNA extraction using the SV Total RNA Isolation System
(Promega) according to the manufacturer’s instructions. Agilent
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RNA Spike-In Kit (Agilent Technologies) was used to prepare Spike
A Mix and Spike B Mix in order to normalize the hybridiza-
tion measurements. Approximately, 50 ng input of total RNA
was used for amplification and labeling with Agilent’s Low Input
Quick Amp Labeling Kit. The RNA was reverse transcribed into
cDNA and treated with a T7 RNA polymerase to incorporate
cyanine 3- or cyanine 5-labeled CTPs in the synthesized cRNA,
which was purified with RNeasy (Qiagen) and quality controlled
using spectrophotometric measurements on a NanoDrop 2000
(Thermo scientific). Hybridization of 8 × 15 K format microar-
ray slides was performed with 300 ng cyanine 3-labeled cRNA and
300 ng cyanine 5-labeled cRNA according to manufacturer’s pro-
tocol (Agilent). The design of the microarray is described by Nota
et al. (2009) and details can be found under Gene Expression
Omnibus (GEO) platform number GPL7150. A replicate refer-
ence design was used (Figure 1) so that each treatment sample was
competitively hybridized against a control sample (Lufa 2.2). The
design included dye-swapped biological replicates. Two slides of
the 8 × 15 K Agilent microarray platform, containing 5069 unique
gene probes in triplicate, was used for soil samples and extract
samples (Figure 1). Hybridization was performed at 65˚C for 17 h
rotating at 10 rpm in an incubator. Following the hybridization,
the slides were washed using Gene Expression wash buffers and
scanned on an Agilent DNA Microarray Scanner. The microarray
scan images were preprocessed with Feature Extraction software
(version 10.5.1.1.) and the obtained Fold changes were subjected
to further statistical analyses. The data was submitted to NCBI’s
GEO and can be retrieved under accession number GSE37154.

MICROARRAY DATA ANALYSIS
Statistical analysis of microarray data was performed using the
Limma package in R environment (version 2.13.0, Wettenhall
and Smyth, 2004). The data were normalized to account for dye
bias with the global loess method and the significance of gene

FIGURE 1 | Hybridization scheme for gene expression analysis. On each
of the arrays, a test sample (NOEC or DiR) of either Soil or Extract is
hybridized against a control sample (Lufa 2.2 for Soils; acetone spiked-in
Lufa 2.2 for extracts). Green Cy-3, Red Cy-5.

expression was verified for each of the soil and extract dataset by a
modified t -test using Bayesian statistics two-way analysis of vari-
ance (ANOVA) with factors sample type and treatment as main
factors. All calculated probabilities were corrected for multiple
testing using Benjamini and Hochberg’s false discovery rate proce-
dure at the level of p < 0.05 (Benjamini and Hochberg, 1995). Each
probe was assigned a mean log2 expression ratio and an adjusted
p-value. Gene annotation was performed in R using a Blast2go
script. Subsequently, a GO term Enrichment Analysis was per-
formed by applying the TopGO algorithm on significant gene lists
(Alexa et al., 2006; de Boer et al., 2011a) to assess which biologi-
cal processes, molecular functions, and cellular components were
mostly affected. The TIGR MultiExperiment Viewer (TIGR Mev
version 4.6.2; Saeed et al., 2006) was used to perform cluster analy-
sis in order to define groups of genes that share common patterns
of expression. Hierarchical clustering was done using Euclidean
distance and average linkage method. Heat maps were used to
represent the data. A general linear model was used to investigate
the interaction between factors affecting the variability in the data
with the factors Sample type (Extract or Soil), treatment (NOEC
or DiR), and the Sample X Treatment interaction according to
de Boer et al. (2011a). Finally, a Principal Component Analysis
(PCA) in TIGR Mev allowed the identification of factors that most
contribute to the variability in the data.

QUANTITATIVE PCR ANALYSIS
Quantitative PCR (QPCR) was performed using a selected group
of genes according to de Boer et al. (2011b) on a Biomark HD sys-
tem (Fluidigm). Information on gene description and PCR primer
sequence can be found in Table 2 of the results section. Quan-
titative analyses of cycle threshold (C t) values were performed
with the software package Genex Light 4.3.5 (Multi ID analy-
sis) according to de Boer et al. (2011b). First, the three technical
replicates were averaged over each sample. Efficiency corrections
were applied on the mean C t values using PCR efficiency values
previously established and published by de Boer et al. (2011b).
Subsequently, gene expression values were assessed relative to an
internal reference by normalization with the geometric mean of
the housekeeping genes SDHA and YWAZ (de Boer et al., 2009).
Finally, the Log2 transformed normalized gene expression values
were subjected to statistical analysis in SPSS version 17 (IBM).
Linear regression was applied to assess dose-dependency. The
residuals were tested for normality using a Kolmogorov–Smirnov
test. A one-way ANOVA was applied to test whether expression
values were significantly different between sample type (Extract
or Soil).

RESULTS
ECOTOXICITY TEST
The effects of the original soil from the landfill and its extract on
reproduction of Folsomia candida were assessed in an ISO stan-
dardized 28 days toxicity test. Figure 2 shows the dose-response
curves resulting from exposure to Soil (blue) and Extract (red)
samples. The different shapes of the lines clearly indicate a differ-
ence in toxicity between the two kinds of samples. The original soil
samples show a clearer dose-dependence and appear to be more
toxic compared to the organic extracts.
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The NOEC and the 50% DiR were deduced for each sample
type and a spike-in concentration of 6.4% was taken as NOEC for
both Extract and Soil exposures. Furthermore, DiR was observed
at 100% spike-in Extract, whereas 16% of spiked-in Soil concen-
tration did not significantly deviate from the 50% DiR estimated
by the logistic model for Soil toxicity and was thus taken for further
investigations at the molecular level.

MICROARRAY ANALYSIS
Figure 3 shows the number of genes that were differentially
expressed in response to toxic exposure in Soil and Extract samples.
Regarding the Soil exposure 109 genes were significantly regulated
in response to both NOEC and DiR concentration, of which 76
were up-regulated and 33 were down-regulated. Moreover, 354
genes were only regulated at the NOEC level and 521 genes were
only regulated at the DiR level. Intriguingly, exposure to Extracts
caused differential expression of an increased amount of genes as
compared to Soil exposure. As much as 1581 genes were signifi-
cantly regulated in response to both NOEC and DiR, of which 747
were up-regulated and 834 down-regulated. Moreover, 613 genes

FIGURE 2 | Effect of soil and extract on reproduction of F. candida. Red
dots indicate the number of F. candida juveniles in the jars after 28 days
exposure to six dilutions of soil samples. Blue dots indicate the number of
juveniles retrieved after 28 days exposure to dilutions of extract samples.
The lines indicate the dose–response curves derived from a logistic model.
x -Axis, Log2 transformed spiked-in concentrations; y -axis, percentage
reproduction scaled to the control samples (set at 100%).

FIGURE 3 | Venn diagrams showing the number of genes responding

to NOEC and DiR levels of toxicants in the Soil exposure (A) and in

Extract exposure (B).

were only regulated at NOEC level and 536 exclusively regulated
at DiR level in the Extracts.

Subsequently, the two-way ANOVA with factors Sample type
(Extract or Soil) and Treatment (NOEC or DiR) was applied to
identify genes only affected by Sample type or Treatment, and to
assess whether genes exerted a Sample X Treatment interaction. In
total 1929 were affected onle by Sample type (Soil, Extract), while
396 genes were exclusively regulated by Treatment (NOEC, DiR).
In addition, 400 genes showed a significant Sample x Treatment
interaction. Heat maps of significantly regulated genes for these
three factors are represented in Supplementary data.

Table 1 shows the Gene Ontology terms for biological processes
enriched in the significant gene lists for treatment, sample type,
and the interaction.

Some of the biological processes that were differentially affected
by different treatments (low and high level of exposure) are
lipid metabolism, response to nutrient level, response to chem-
ical stimulus. The exposure to contaminated samples had a strong
impact on 368 genes in both kinds of samples (soil and extract).
Glucosyl glucuronosyl transferases (Fcc00734, biological process
“lipid metabolism”) and superoxide dismutase (Fcc01344, biolog-
ical process “response to nutrient level”), for example, were both
affected by the exposure, being differentially expressed in response
to different toxic levels.

On the other side, other biological processes were found to
be affected mainly by the difference in sample type: 1929 genes
showed different responses between soil and extract samples.
These genes are referable to biological processes such as RNA
processing, biosynthetic processes, translation, and translational
elongation. For instance, isopenicillin-N -synthetase (Fcc00057),
translation initiation factor (Fcc00062), and ribosomal proteins
(Fcc00498, Fcc00410) were differentially affected by the exposure
in soil and extract samples.

Figure 4 shows an acyclic graphs resulting from the enrichment
analysis referring to biological processes affected in the context of
the interaction between sample type and level of exposure. The
most significant ones are lipid metabolic processes (such as fatty
acid metabolism and fatty acid oxidation), cellular biosynthetic
processes, organic acid metabolic processes, regulation of body
fluid, vascular development, and response to wounding.

Some significant genes were found to respond to the toxic expo-
sure in either kind of sample type, at both high and low levels
of exposure. Up-regulation of heat-shock proteins (Fcc05793),
ubiquitins (Fcc02887), biotransformation enzymes (Fcc01651,
Fcc04073, Fcc5260), and components of the antibiotic biosyn-
thetic pathway (Fcc00057, Fcc00170, Fcc05968) was observed.
On the contrary, hedgehog, antimicrobial genes, and molecular
chaperones were down-regulated.

A PCA was then performed in order to explore how the two
factors affect each other and to identify prevalent expression pro-
files among samples. Figure 5 is the output of the PCA and shows
that the 58% of the variation in the data can be explained by the
two factors sample type and exposure level.

QUANTITATIVE PCR ANALYSIS
From the microarray analysis it became apparent that some
genes show a dose-dependent regulation in response to both soil

Frontiers in Genetics | Toxicogenomics May 2012 | Volume 3 | Article 85 | 4

http://www.frontiersin.org/Genetics
http://www.frontiersin.org/Toxicogenomics
http://www.frontiersin.org/Toxicogenomics/archive


Roelofs et al. Transcriptomics of an environmental soil sample

Table 1 | Gene Ontology (GO) terms for biological processes that are over represented in the lists of significant transcripts and their P -values as

obtained using the R package topGO (Alexa et al., 2006).

GO ID GO term p Value # in GO term # Significant

TREATMENT

GO:0006629 Lipid metabolic process 1.78e-06 173 30

GO:0009605 Response to external stimulus 3.80e-07 103 23

GO:0009991 Response to extracellular stimulus 5.02e-07 36 13

GO:0031667 Response to nutrient level 9.71e-08 32 13

GO:0042221 Response to chemical stimulus 0.00052 207 28

GO:0007584 Response to nutrients 1.57e-06 23 10

SAMPLETYPE

GO:0006996 Organelle organization 0.150994 292 126

GO:0042254 Ribosome biogenesis 0.000193 56 36

GO:0006364 RNA processing 0.000367 38 26

GO:0009058 Biosynthetic process 0.002262 363 170

GO:0009059 Macromolecule biosynthetic process 0.003222 180 90

GO:0006412 Translation 4.86e-05 128 73

GO:0006414 Translational elongation 6.04e-06 28 23

INTERACTION

GO:0044249 Cellular biosynthetic process 0.001781 210 24

GO:0019395 Fatty acid oxidation 0.001658 15 5

GO:0006629 Lipid metabolic process 2.77e-05 173 25

GO:0001944 Vasculature development 0.000117 26 8

Treatment, No-Effect Concentration (NOEC) versus Decrease in Reproduction (DiR); Sample type, Extract versus Soil; Interaction, Treatment X Sample Type.

and extract. For instance, CYP6N4v1 (Fcc01651) transcription,
significantly increased two fold with increasing exposure level.
We therefore decided to assay this gene using a QPCR assay
in all extract- and soil sample concentrations (expression data
are provided in datasheet Table S2 in Supplementary Material).
Figure 6 shows CYP6N4v1 expression as all exposure levels in
extract (Figure 6A) and soil (Figure 6B) samples. The QPCR
profiles significantly correlated with the dose-dependent induc-
tion as observed in the microarray data (Spearman’s Rho 0.74,
p < 0.05). Linear regression analysis of expression level with expo-
sure showed a highly significant (p < 0.001) correlation between
CYP6N4v1 gene expression induction and increased exposure
level (extract R = 0.89; soil R = 0.92), while the residuals did not
significantly differ from normal distribution (data not shown).
Subsequently, we decided to assay more genes related to bio-
transformation, previously identified by de Boer et al. (2011b)
(expression data are provided in datasheet Table S2 in Supple-
mentary Material). They are summarized in Table 2. Interest-
ingly, transcriptional activation of three additional cytochrome
P450s (CYP6N3v1, CYP2P3, CYP9/6) showed highly significant
correlations with both extract and soil concentration. Particu-
larly, CYP6N3v1 gene activation showed the highest correlation
(R = 0.99, extract Figure 6C; R = 0.96, soil Figure 6D) with
increased exposure levels (Table 2), despite the fact that this gene
did not show dose-dependent transcriptional activation in the
microarray experiment. This was probably due to detection limi-
tations of the microarray technology, because the hybridization
intensities were not above background levels. Moreover, alco-
hol dehydrogenase, deoxynucleoside kinase, transcription factor
CCCTC-binding protein, phosphoserine amino transferase, and

haloacid dehalogenase-like hydrolase showed highly significant
dose-dependent transcriptional regulation (Table 2).

Finally we identified nine genes that showed a significant (one-
way ANOVA, p < 0.02) sample type effect. Among these, the gene
ubiquitin ligase E3 alpha (Fcc06380) indicated an increased gen-
eral stress–response in soil samples. Also, developmental processes
were increasingly affected due to the increased transcriptional acti-
vation of crossveinless-2 BMP binding protein (Fcc04834) and
LMBR1 domain containing 2 (Fcc03839, associated with hedgehog
transcriptional regulation). Although, direction of regulation (up-
or down-regulation) was in concordance between the QPCR data
and microarray data for most of the genes, we could be confirmed
significant sample type-specific regulation for LMBR1 domain
containing 2, ABC transporter (Fcc06002), Laminin A (Fcc00086).
To conclude, we were able to indentify and confirm treatment
specific and sample type specified gene expression assays by con-
sidering both (microarray and QPCR) gene expression analysis
platforms.

DISCUSSION
Here we presented a full ecotoxicogenomics assessment of a
complex environmental sample and identified large differences
between the unprocessed, ecologically more relevant, raw soil, and
an organic total extract. The extract samples showed a clearly
different level of toxicity when compared with the original soil
sample. As such, extract samples may have only weak predictive
power to estimate the actual toxicity status in the field. The soil
sample is highly contaminated with organic micropollutants such
as polychlorinated biphenyls, organochlorine pesticides, and one
brominated flame retardant (Legler et al., 2011). Heavy metals
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FIGURE 4 | Acyclic graph resulting from the Enrichment Analysis and

showing the biological processes mostly affected by an interaction

between sample type (Soil, Extract) and treatment (NOEC, DiR).

Increasing coloring toward red represents increasing significance levels. Each
sphere contains GO ID, description, significance level, and ratio regulated:
total genes in GO ID.

are also elevated in the soil sample, including lead, copper, cad-
mium, and zinc. The exact chemical composition of the extract is
not known, however due to the nature of the organic extraction
procedure, metals are expected to be removed from the extract
(Hubert et al., 2000). Moreover, microarray analysis generated
important mechanistic information that can explain this discrep-
ancy in toxicological effects. In combination with the QPCR data,
we can conclude that developmental processes, fatty acid metab-
olism, and defense processes are adversely affected depending on
which sample type was analyzed. Indeed, most of the genes (1929)
were regulated in response to sample type. This is reflected in

the PCA graph (Figure 5) where the first principle component
explaining 42% of the variance divides the samples into either
Extract or Soil. As much as 395 genes showed treatment-specific-
regulation. Among them are genes (CYP6N4v1) that show a highly
significant dose-dependent transcriptional activation, which was
confirmed by QPCR analysis. Such genes may proof invaluable as
genetic markers for soil pollution assessment.

ECOLOGICAL RELEVANCE
The ISO standardized Folsomia test resulted in a consistent differ-
ence in toxicity between soil samples and organic extracts, with
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FIGURE 5 | Distribution of the samples in the space defined by

two main components (axis) resulting from a Principal

Component Analysis. The labels indicate the sample type;
ENOEC, extract no-effect concentration; SNOEC, soil no-effect

concentration; EDiR extract 50% decrease in reproduction; SDiR
soil 50% decrease in reproduction. The localization of the points in
the space suggests that these two factors are mainly responsible
for the distribution of the data.

the former being much more toxic than the latter. This confirms
the concern raised in earlier reports that toxicity tests based on
extracts may generate uncertain levels of protection due to the
fact that they do not address bioavailability of the original sample
(Fent, 2004). The reason for this result could lie in differences in
the availability of the toxic compounds between the original land-
fill soil and the natural soil spiked with the organic extracts, or in
the loss of some of these substances during the extraction proce-
dure. The extraction method using acetone/dichloromethane does
not remove all toxic compounds; therefore it is likely that part of
the soil toxicity is due to polar substances such as hydrophilic
xenobiotic compounds and/or heavy metals.

MOLECULAR MECHANISMS
A considerable difference was found between the two kinds of
samples, concerning the number of genes affected by the exposure.
This is in accordance with a recently published survey of ecotoxi-
cogenomics studies by Van Straalen and Feder (2012), who showed
that in most studies expression profiles at sublethal toxic effects of
10% DiR (EC10) and EC50 cluster together, while the main differ-
ences can be observed between sample type. Soil samples evoked
gene regulatory changes in more than one order of magnitude
fewer genes than the extract samples although we aimed to assess
the two sample types at similar toxicity levels (NOEC and DiR of
around 50% reduced reproduction). Due to the steepness of the
logistic model through the soil toxicity data we may have chosen
a soil sample that exerts more toxic effects than the DiR in Extact,
although DiR in Soil did not significantly deviate from 50% DiR
deduced from the logistic model. It is worth to mention that Nota
et al. (2009) studied the effects of phenanthrene on F. candida and

also found a smaller number of differentially expressed genes in
response to high toxic concentration. Very recently, we obtained a
similar result in a toxicogenomic study assessing stress–responses
in F. candida exposed to the anti inflammatory drug Diclofenac
(Roelofs et al. unpublished data). The explanation for this drop in
transcriptional regulation needs further investigation. We specu-
late that higher toxic levels induce intense detoxification responses
in the organisms, thus leaving less energy for other less essen-
tial processes, although Timmermans et al. (2009) showed that
increased desiccation stress strongly increased the number of up-
and down-regulated genes.

Some interesting biological processes were influenced by the
exposure to contaminated samples. The GO term “lipid metabolic
process” includes the chemical reaction and pathways involving
all kinds of lipids. It is the biological process most significantly
affected in this study. Within living systems, polar lipids have a
fundamental structural role, being the main constituents of bio-
logical membranes. Furthermore, apolar lipids act as a reserve of
energy. Lipid metabolism is regulated in order to ensure the correct
balance between degradation and synthesis of lipids, according to
the needs of the cells and of the whole organism. When facing
environmental stress, an organism will activate a series of stress–
response mechanisms in order to face the new conditions. These
processes require energy and this might explain the changes in
lipid metabolism suggested by the gene expression pattern. In fact,
within this GO term category, we found a series of significant genes
linked to lipid metabolism and transport. For example, Enoyl-CoA
hydratase was found to be up-regulated in response to toxicant
exposure: this enzyme is very efficient in metabolizing fatty acids
to produce acetyl CoA and energy (Agnihotri and Liu, 2003), so
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FIGURE 6 | Linear regression of gene expression as deduced from the

QPCR measurements. (A) CYP6N4v1 expression in response to Extracts; (B)

CYP6N4v1 expression in response to Soils; (C) CYP6N3v2 expression in

response to Extracts. (D) CYP6N3v2 expression in response to Soils. X-axis,
Log2 transformed spiked-in concentrations. Y-axis, Log2 normalized gene
expression.

it might be up-regulated in order to sustain the energy-requiring
processes. On the other side, fatty acid desaturase, that causes
increase of unsaturated bonds in fatty acids of membranes (Los
and Murata, 1998), was found to be down-regulated, probably
because the double bonds in fatty acids are a target of oxida-
tive stress. Another interesting biological process is “response to
wounding,” which includes any process resulting from a stimulus
indicating damage of the organism. Within this group we found,
for example, hedgehog, a developmentally active transcription fac-
tor that plays a vital role during early embryonic stages (Tabata and
Kornberg, 1994). The hedgehog signaling pathway is intimately
linked to cell growth and differentiation, so this protein could
also be involved in the healing response. Vascular development
is another significantly affected biological process. Springtails do
not have a vascular system; thus it is difficult to translate this
biological process to an invertebrate response. In fact, in this cat-
egory we find hypoxia-inducible factor, a transcription factor that
responds to changes in the level of available oxygen and medi-
ates responses to hypoxia (Jiang et al., 1996). Furthermore, matrix
metalloproteinase are represented in this category. This family of
enzymes hydrolyze components of the extracellular matrix and
play a central role in many biological processes, such as embryo-
genesis, normal tissue remodeling, wounding, etc (Nagase and
Woessner, 1999). When investigating the single genes that fall into

a GO term, it is interesting to notice that many of them are actu-
ally annotated to more than one term, and this in fact can be
seen as a reflection of the number of interconnections that exist
between different kinds of stress–responses. For example, within
the context of lipid metabolism, a series of genes are annotated that
are responding to different kinds of stress: glucosyl glucuronosyl
transferases (involved in phase II metabolism of xenobiotics), glu-
tathione S transferases, CYP450, catalases, dismutases, and other
gene products found, by other authors, to be associated to oxidative
stress or exposure to toxicants.

Some significant genes were found to both high and low levels
of exposure in either kind of sample, soil and extract. Heat-shock
proteins, that are part of the general stress–response and have
a chaperone function (Feder and Hofmann, 1999), were always
found to be up-regulated. A similar result was observed for ubiq-
uitins, regulatory proteins that are involved in the degradation
of damaged or unneeded proteins (Glickman and Ciechanover,
2002). An increase in expression of enzymes responsible for bio-
transformation and detoxification reactions was also observed
in all cases of exposure. Mono-oxygenases such as cytochrome
P450 for phase I, conjugation enzymes for phase II and ABC
transporters for phase III were all found to be significantly up-
regulated in contaminated samples compared to the control ones.
These enzymes are responsible for the detoxification of organic
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compounds, so their induction is expected in case of exposure to
organic xenobiotic substances (Xu et al., 2005). Interestingly, two
components of the antibiotic biosynthetic pathway were found
to be up-regulated in soil samples: aminoadipyl–cysteinyl–valine
synthetase and isopenicillin-N -synthetase. Cathepsins, a family of
proteases that break apart other proteins and might play a role
in apoptosis, also resulted overexpressed, in the extract samples.
Hedgehog was down-regulated following exposure to the envi-
ronmental samples, so the stress caused by toxic exposure is likely
to influence important signaling pathways and therefore the cor-
rect development of the organism. Some antimicrobial genes were
also found to be down-regulated after exposure, suggesting that
pollution might adversely affect the insect immune system and
increase its susceptibility to invading pathogens. Finally, down-
regulation of genes coding for proteins with a folding function is
likely to affect directly or indirectly important cellular structures
and functions.

In conclusion the microarray experiment shows that transcrip-
tomics data can add relevant information on the nature of the
compounds that cannot be recovered by traditional bioassays. We
showed this in a recent study on aged copper contamination in an
agricultural field (de boer et al., 2012). In this case, the patterns
of gene expression suggest that the adverse biological effect of
Vlagheide soil is partly due to organic compounds inducing xeno-
biotic metabolism. These compounds remain active after solvent
extraction and induce a similar set of genes compared to the intact
soil samples. However, the dose-dependence of the extracts is less
clear maybe due to altered bioavailability. In addition to organic
compounds, toxicity of the field soils is also due to polar com-
ponents. Heavy metals would be the most likely factor, because
elevated levels were measured at the Vlagheide site. However, we
did not recover gene expression profiles indicative of specific sin-
gle metals, as in the study of Nota et al. (2010). This might be

due to interactive effects of metal mixtures in field soils, as also
described by Nota et al. (2010). Finally our study illustrates that
it is essential to link transcriptomics bioassays to traditional eco-
toxicity tests, because only in this way can the exposure levels
applied in gene expression studies linked to defined phenotypic
effects.

Finally, we demonstrate that a number of QPCR assays exert
a wide dynamic range of transcript quantification activated in
a dose-dependent manner. This dynamic range can be observed
around important endpoint such as the NOEC and 50% DiR. This
opens the possibility to link gene expression levels to adverse effects
at the organismal level. Such molecular bioassays may become
very useful in future soil quality testing, because they are fast and
diagnostic for the type of toxicity. Future work will focus on thor-
ough validation of selected gene expression assays using a wide
range of environmental soil samples containing different classes
of compounds.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at:
http://www.frontiersin.org/Toxicogenomics_/10.3389/fgene.2012.
00085/abstract

Table S1 | Measurement of metals and soil parameters in three Vlagheide

samples.

Table S2 | Log2 normalized gene expression values from biological

replicates in the QPCR assays.

SampleTypeSign, heat map significant genes factor SampleType (extract

or soil).

TreatmentSign, heat map significant genes factor Exposure level (NOEC or

DiR).

InteractionSign, heat map significant genes SampleType ×Treatment

interaction.
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