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The presence of missing single-nucleotide polymorphism (SNP) genotypes is common in
genetic studies. For studies with low-density SNPs, the most commonly used approach
to dealing with genotype missingness is to simply remove the observations with missing
genotypes from the analyses. This naïve method is straightforward but is valid only when
the missingness is random. However, a given assay often has a different capability in geno-
typing heterozygotes and homozygotes, causing the phenomenon of “differential dropout”
in the sense that the missing rates of heterozygotes and homozygotes are different. In prac-
tice, differential dropout among genotypes exists in even carefully designed studies, such
as the data from the HapMap project and the Wellcome Trust Case Control Consortium.
Under the assumption of Hardy–Weinberg equilibrium and no genotyping error, we here
propose a statistical method to model the differential dropout among different genotypes.
Compared with the naïve method, our method provides more accurate allele frequency
estimates when the differential dropout is present. To demonstrate its practical use, we
further apply our method to the HapMap data and a scleroderma data set.

Keywords: allele frequency, EM algorithm, genotype, informative missingness, missing at random, single-
nucleotide polymorphism

INTRODUCTION
Even with the advancement of biological technologies, genotype
missingness is still common in practice. Genotype missingness
can be caused by damage or loss in performance of probes in
multiplexed genotyping platforms, or variation in DNA quality
or molecular effects. In fact, the presence of missing genotypes is
unavoidable in even carefully designed studies such as the HapMap
project (HapMap, 2005) and the genome-wide association study
(GWAS) by the Wellcome Trust Case Control Consortium (2007).

For studies with high-density single-nucleotide polymor-
phisms (SNPs), a popular approach to deal with genotype miss-
ingness is to impute missing genotypes before performing analyses
(Stephens and Scheet, 2005; Marchini et al., 2007; Yu and Schaid,
2007; Zhao et al., 2008; Calus et al., 2011; Daetwyler et al., 2011).
The majority of imputation methods utilize the information of
linkage disequilibrium (LD) between SNPs to reconstruct haplo-
types and to infer missing genotypes (Stephens and Scheet, 2005;
Marchini et al., 2007). However, for studies with low-density SNPs
or studies with a small number of SNPs, haplotype reconstruction
is difficult and genotype imputation can be problematic (Druet
et al., 2010; Zhang et al., 2011). In this situation, a commonly
used approach is to simply remove the observations with missing
genotypes from the analyses (Wu et al., 2006), referred to as “the
naïve method” hereinafter. This approach is simple and straight-
forward, but it may lead to biased estimates for allele frequencies
and reduced power for association analyses (Greenland and Finkle,
1995).

For the naïve method, estimates of allele frequencies will be
unbiased if genotypes are “missing at random” (MAR; Rubin,

1976). That is, given a locus, different genotypes are missing with
a same probability. However, the MAR assumption is unrealis-
tic even for some carefully designed studies such as the HapMap
(HapMap, 2005; Hao and Cawley, 2007) and the WTCCC data
(Wellcome Trust Case Control Consortium, 2007). Liu et al.
(2006) have shown that inappropriately making the assumption
of MAR can bias the estimates of haplotype frequencies and can
induce undesirable results such as inflated type-I error rates and/or
reduced power for haplotype association analyses (Liu et al., 2006).
Given LD between adjacent loci, Liu et al. (2006) proposed a gen-
eral model to infer haplotype frequencies, allowing informatively
missing genotype data. They showed that their general model pro-
vides more accurate estimates for haplotype frequencies than do
the methods with the assumption of MAR (Excoffier and Slatkin,
1995; Epstein and Satten, 2003), when the genotypes are miss-
ing informatively. This method has been proposed for modeling
bi-allelic loci such as SNPs (Liu et al., 2006) and for modeling
multi-allelic loci (Liu et al., 2009a) in haplotype analyses. However,
the model parameters of Liu et al. (2006, 2009a) become uniden-
tifiable when there is only one locus or there is no LD between the
multiple loci under study.

To overcome this limitation, we here propose a method to infer
allele frequencies by modeling SNP genotypes with informative
missingness. Studies have shown that for genotypes at one locus,
the missing rates among heterozygotes and homozygotes may dif-
fer from each other, because a given assay often has a different
capability in typing heterozygotes and homozygotes (Oliphant
et al., 2002; Matsuzaki et al., 2004; Hao and Cawley, 2007). This
phenomenon is called “differential dropout,” which exists in some
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real data sets such as the HapMap (2005) and the WTCCC data
(Wellcome Trust Case Control Consortium, 2007). Hao and Caw-
ley (2007) evaluated the impacts of differential dropout among
SNP genotypes on association tests, and they found that differen-
tial dropout can cause undesirable outcomes to association tests.
In this work, we show that differential dropout can bias the esti-
mates of allele frequencies if it is not taken into consideration.
To address this problem, we propose a statistical model to deal
with differential dropout among SNP genotypes. Our model can
generate accurate estimates for allele frequencies even when the
missingness is informative, and it can simultaneously estimate the
missing rates of homozygotes and heterozygotes. In addition, we
apply our method to the HapMap data and a scleroderma data set
to demonstrate its utility.

MATERIALS AND METHODS
MISSING DATA MODEL
Given a SNP with two alleles, A and B, there are three possible
genotypes (AA, BB, and AB). Studies have shown that homozy-
gotes and heterozygotes often have different dropout rates due to
various reasons such as today’s automated genotyping technolo-
gies (Oliphant et al., 2002; Allen et al., 2003; Kang et al., 2004;
Matsuzaki et al., 2004). Under the assumption of no genotyp-
ing error, Table 1 presents the probabilities of observing the three
genotypes and the missingness,given the true genotypes. We define
the missing rates of homozygotes and heterozygotes as follows:

αHom = Pr (O =??|T = AA or BB) ,

αHet = Pr (O =??|T = AB)

where “??” represents missingness in genotype, αHom is the miss-
ing rate of homozygotes (AA or BB), αHet is the missing rate
of heterozygotes (AB), T means True genotype, and O means
Observed genotype. Note that the assumption of MAR holds
when αHom= αHet (no differential dropout). However, differen-
tial dropout is a common phenomenon in real data (Hao and
Cawley, 2007), so we allow αHom 6= αHet in our model.

ESTIMATION OF ALLELE FREQUENCIES
Given a SNP with two alleles, A and B, there are four possible
outcomes when observing the genotypes (AA, ??, AB, and BB). As
shown by Table 1, the observed counts of the four categories are

Table 1 | Missing patterns for one SNP.

Observed/True AA ?? AB BB

AA 1− αHom αHom 0 0

BB 0 αHom 0 1− αHom

AB 0 αHet 1− αHet 0

Probability p1 p2 p3 p4

Count n1 n2 n3 n4

The first row lists the four possible outcomes of the observed genotypes, includ-

ing the three genotypes and the missingness (??).The first column lists the three

true genotypes. Each element in this table is the probability of observing some

genotype given the true genotype.

n1, n2, n3, and n4, respectively. A constraint among these four
observed counts is n1+ n2+ n3+ n4= n, where n is the total
number of subjects. The three unknown parameters that need
to be estimated are αHom, αHet, and pA, where pA is the frequency
of allele A. Under the assumption of no genotyping error and
the Hardy–Weinberg equilibrium (HWE) for the true genotype
distribution, the probability of observing genotype AA is

p1 = Pr (O = AA) = Pr (O = AA, T = AA)

= Pr (O = AA|T = AA) · Pr (T = AA)

= (1− αHom) · p2
A

Similarly, we have

p2 = Pr (O =??) = αHomp2
A + αHom

(
1− pA

)2

+ αHet2pA
(
1− pA

)
,

p3 = Pr (O = AB) = (1− αHet) 2pA
(
1− pA

)
, and

p4 = Pr (O = BB) = (1− αHom)
(
1− pA

)2
.

The observed-data likelihood is LOBS ∝ pn1
1 ·p

n2
2 ·p

n3
3 ·p

n4
4 , and

the log-likelihood is

lOBS ∝ n1
[
log (1− αHom)+ 2 log pA

]
+ n2 log

[
αHomp2

A + αHom
(
1− pA

)2
+ αHet2pA

(
1− pA

)]
+ n3

[
log (1− αHet)+ log 2+ log pA + log

(
1− pA

)]
+ n4

[
log (1− αHom)+ 2 log

(
1− pA

)]
.

Given the observed genotype distribution (n1, n2, n3, and n4)
and a constraint (n1+ n2+ n3+ n4= n), the three parameters
(αHom, αHet, and pA) are identifiable and can be estimated with
the expectation-maximization (EM) algorithm (Dempster et al.,
1977). In the Appendix, we show that these three parameters
are identifiable. Note that this method is developed under the
assumption of HWE and no genotyping error. With genotyping
errors, the model will become much more complicated (Liu et al.,
2009b). More parameters will be involved in the model and these
parameters (>3) will no longer be identifiable.

RESULTS
SIMULATION STUDY: ESTIMATION OF ALLELE FREQUENCIES
Following Hao and Cawley (2007), we define a differential dropout
ratio (DDR) as

rdrop =
αHet

αHom
,

where αHet and αHom are the missing rates of heterozygotes and
homozygotes, respectively. We simulated a SNP with a minor allele
frequency (MAF) of 0.1 and assumed HWE at this SNP. The over-
all genotype missing rates were set at 0.02, 0.05, 0.1, and 0.15,
respectively. The DDRs were specified at 0.25, 0.5, 1, 2.5, 5, and
10, respectively. The total sample size was set at 2,000. We com-
pared our method with the naïve method that simply removed
the observations with missing genotypes from the analyses. With
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1,000 replications, Figure 1 presents the box-and-whiskers plots
of the 1,000 estimates of allele frequencies. We can see that when
DDR= 1 (αHom= αHet, no differential dropout), both the naïve
method and our new method give unbiased estimates of allele
frequencies (in our simulation results, the medians and means
are very close). When DDR <1 or >1, the naïve method gives
biased estimates while the new method still generates unbiased
results. The more the DDR departs from 1, the more biased are
the estimates that the naïve method produces. This bias is espe-
cially prominent when the overall genotype missing rate is equal
to or larger than 0.05. We also simulated a SNP with MAF of 0.2,
and the result was very similar to that shown in Figure 1 (of course
the centers of the boxes changed to 0.2).

Although our method can improve the accuracy, the preci-
sion (inverse variance) of the allele frequency estimates is low-
ered. Therefore, when DDR= 1, the naïve method is superior
to our method, with consideration of both the accuracy and
the precision. This is expected because our method involves
more parameters (αHom, αHet, and pA) than does the naïve
method (pA), which lowers the precision of estimates in our
method.

SIMULATION STUDY: IMPACT OF HARDY–WEINBERG DISEQUILIBRIUM
To evaluate the sensitivity of our method to the assumption of
HWE, we performed a simulation study to examine the bias of
allele frequency estimates when the assumption of HWE does not
hold. The probabilities of the true genotype being AA, AB, and BB
can be represented as:

Pr (T = AA) = p2
A + pA

(
1− pA

)
f ,

Pr (T = AB) = 2pA
(
1− pA

) (
1− f

)
,

Pr (T = BB) =
(
1− pA

)2
+ pA

(
1− pA

)
f ,

where f is the fixation index (Weir, 1996; Wakefield, 2010), a mea-
sure of the departure from HWE. When f= 0, there is no departure
from HWE. The larger the departure of f from 0, the larger the
degree of HWD. When f is positive, the departure from HWE
results in excess homozygosity. When f is negative, the departure
from HWE results in excess heterozygosity. We simulated a SNP
with MAF of 0.1. The total sample size was set at 2,000. Following
the setting of fixation index when Chen and Kao (2006) examined
the sensitivity of their method to the assumption of HWE, we also

FIGURE 1 |The box-and-whiskers plots of 1,000 estimates of
MAF, given MAF = 0.1. The different panels in the figure are arranged
so that the overall genotype missing rate (P.drop) is 0.02, 0.05, 0.1,
and 0.15 (from top to bottom) and the DDR (r.drop) is 0.25, 0.5, 1, 2.5,
5, and 10 (from left to right). A box is constructed with a median
(here, very close to the mean) and two quartiles (the first and the

third quartiles). The outliers are data points outside the range of (first
quartile −1.5× IQR, third quartile +1.5× IQR), where IQR is the
inter-quartile range (third quartile− first quartile). The end of the upper
whisker is the largest data point below the third quartile +1.5× IQR,
while the end of the lower whisker is the smallest data point beyond
the first quartile −1.5× IQR.
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evaluated the performance of our method with the fixation index f
of 0.1 and 0.2. Figures 2 and 3 present the box-and-whiskers plots
of the 1,000 estimates of allele frequencies when the fixation index
f= 0.1 and 0.2, respectively. We can see that our method leads to
an upward bias to the allele frequency estimates when f > 0, and a
downward bias when f < 0 (result not shown). Our method is not
very robust to the assumption of HWE. This is a caution when
applying this approach.

For each scenario in Figures 2 and 3, we also provided the
mean of the 1,000 P values of the exact test for HWE for the
1,000 replications. Using the observed counts of genotypes AA,
AB, and BB, the exact test for HWE (Wigginton et al., 2005)
was performed with the R package “Hardy–Weinberg” (Graf-
felman and Camarena, 2008). When the fixation index f= 0.2
(Figure 3), although our method leads to a large upward bias
to the allele frequency estimates, the P values of the exact test
for HWE are extremely small (<1.3× 10−4). Investigators pro-
vided with such significant results for the HWE tests should avoid
using our approach. Given the fixation index f= 0.1 (Figure 2),
the HWE tests may fail to give researchers an alarm when the over-
all genotype missing rate (P.drop) is large (0.15) and the DDR is

small (0.25). This is because a small DDR (<1) indicates a larger
missing rate for homozygotes than for heterozygotes, which dilutes
the excess homozygosity linking to a positive fixation index f. If,
unfortunately, the overall genotype missing rate (P.drop) is large
(here, 0.15), the dilution of excess homozygosity will be even more
pronounced. This inconsistency between the observed genotype
distribution and the true genotype distribution will induce a blind
spot of the HWE test. Nonetheless, overall, performing a HWE
test on the observed genotype distribution is a way to evaluate the
appropriateness of using our approach.

APPLICATION TO HAPMAP DATA
We further applied our method to the HapMap data (HapMap,
2005). We downloaded the chromosome 17 genotype data of the
45 Chinese and 44 Japanese released in October, 2005 (HapMap,
2005). We estimated the missing rates of homozygotes (αHom) and
the missing rates of heterozygotes (αHet) of these HapMap SNPs,
by using our method. After removing SNPs without missing geno-
types, we estimated the αHom’s and αHet’s of the remaining SNPs.
Figure 4 presents the histograms of the α̂′Hom and α̂′Het for the
Chinese and Japanese samples, respectively. We can see that the

FIGURE 2 |The box-and-whiskers plots of 1,000 estimates of
MAF, given MAF = 0.1 and the fixation index f = 0.1. The
different panels in the figure are arranged so that the overall
genotype missing rate (P.drop) is 0.02, 0.05, 0.1, and 0.15 (from

top to bottom) and the DDR (r.drop) is 0.25, 0.5, 1, 2.5, 5, and 10
(from left to right). Below each panel, we list the mean of the
1,000 P values of the exact test for Hardy–Weinberg equilibrium
for the 1,000 replications.
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FIGURE 3 |The box-and-whiskers plots of 1,000 estimates of
MAF, given MAF = 0.1 and the fixation index f = 0.2. The
different panels in the figure are arranged so that the overall
genotype missing rate (P.drop) is 0.02, 0.05, 0.1, and 0.15 (from

top to bottom) and the DDR (r.drop) is 0.25, 0.5, 1, 2.5, 5, and 10
(from left to right). Below each panel, we list the mean of the
1,000 P values of the exact test for Hardy–Weinberg equilibrium
for the 1,000 replications.

missing rates of heterozygotes are generally larger than the miss-
ing rates of homozygotes (DDR > 1), for both the Chinese and
Japanese samples. Hao and Cawley (2007) used the Affymetrix
genotypes that present no evidence of DDR as benchmark to
obtain an estimate of rdrop as 1.73 in the HapMap data. With
our method, we estimate rdrop as 1.81 and 1.97 for the Chinese
and Japanese samples, respectively.

Figure 5 shows the interval of point estimate ±standard error
of missing rate for each HapMap SNP on chromosome 17. If
we approximate the confidence intervals of missing rates with
point estimates ±2× standard errors, all SNPs have overlapped
confidence intervals of missing rates for homozygotes and for het-
erozygotes. For these SNPs, the missing rates for homozygotes
and for heterozygotes are not significantly different. This is not
unexpected given the small sample sizes of the HapMap data
(∼45).

APPLICATION TO SCLERODERMA DATA
Scleroderma is a chronic autoimmune disease characterized by
skin thickening and vascular abnormalities. Scleroderma has an
estimated prevalence of 250 patients per million in the United

States (Adnan, 2008). There are two main subtypes of scleroderma:
diffuse scleroderma and limited scleroderma (Nikpour et al.,
2010). The studied data set contains genetic and clinical infor-
mation collected from the Scleroderma Family Registry and DNA
Repository at the University of Texas Health Science Center at
Houston (Baugh et al., 2002; Wu et al., 2006). The majority of
subjects are white Caucasians. Therefore, we only include the 655
white Caucasians into the analysis. Among the 655 subjects, 160
were diagnosed with diffuse scleroderma, 266 subjects with lim-
ited scleroderma, and the remaining 229 subjects were healthy
controls. A G/C SNP at position −173 (rs755622) in the 5′ pro-
moter region of migration-inhibitory factor (MIF) was genotyped
for each of the 655 subjects. Among the 655 subjects, 15 sub-
jects were missing at SNP rs755622 (MIF− 173 SNP), including
1 (0.63%) patient with diffuse scleroderma, 12 (4.51%) patients
with limited scleroderma, and 2 (0.87%) controls. We selected the
limited scleroderma patient group (to be the case group) and the
control group for the two-sample analysis.

First, we applied the naïve method to the data, by simply
removing the subjects with missing genotypes from the analy-
sis. The MAFs in the case and control groups are 12.6 and 18.5%,
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FIGURE 4 | Histograms of missing rates for homozygotes and heterozygotes in the HapMap Chinese and Japanese samples.

respectively. The P value of Fisher’s exact test for allelic association
is 0.012. Then we applied our method to the data. Based on the
observed genotype distribution (AA, ??, AB, and BB), the MAFs
in the case and control groups are estimated as 12.1 and 18.4%,
respectively. The Fisher’s exact test for allelic association yields a
P value of 0.007. Given a significance level of 0.05, both the naïve
method and our method suggest an association of the MIF− 173
SNP with scleroderma. Our method gives very similar results with
the naïve method. This is expected because the missing rates of
genotypes are not high in this example. However, our method pro-
vides stronger evidence for the association of the MIF− 173 SNP
with scleroderma that was recently confirmed by a study based
on a large European population (Bossini-Castillo et al., 2011).
The role of the MIF− 173 SNP in scleroderma deserves further
investigation.

DISCUSSION
The presence of missing genotypes is common in genetic data. For
studies with low-density SNPs, the most commonly used approach
for dealing with genotype missingness is to simply remove the
observations with missing genotypes from the analyses (Wu et al.,
2006). This naïve method is valid only when there is no differ-
ential dropout among genotypes. However, in practice, a given

assay often has a different capability in typing heterozygotes and
homozygotes. Differential dropout among genotypes (a type of
informative missingness) is detectable even in data from some
carefully designed studies such as the HapMap (HapMap, 2005;
Hao and Cawley, 2007) and the WTCCC projects (Wellcome Trust
Case Control Consortium, 2007). Although the issue of informa-
tively missing genotypes has been investigated in case-parent study
design (Allen et al., 2003; Chen, 2004) and in haplotype data analy-
ses (Liu et al., 2006, 2009a), there is no investigation of this issue
on one locus for samples of unrelated individuals.

In this work, we propose a statistical method to estimate allele
frequencies and missing rates of heterozygotes and homozygotes,
under the assumption of HWE. We perform simulations to com-
pare our method with the naïve method in the estimation of allele
frequencies. Under HWE, our method gives accurate estimates for
MAFs, with or without differential dropout among genotypes. The
naïve method generates accurate estimates for MAFs only when
there is no differential dropout among genotypes. We further apply
our method to the HapMap data, and obtain similar estimates of
DDRs to that estimated by Hao and Cawley (2007) with extra
data . In addition, we analyze a scleroderma data set (Baugh et al.,
2002; Wu et al., 2006) to show the practical use of our method. In
contrast to Hao and Cawley (2007), we do not need to genotype
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FIGURE 5 | Missing rates for homozygotes and heterozygotes in the HapMap Chinese and Japanese samples. Each interval presents the point estimate
±standard error of missing rate for homozygotes or for heterozygotes of a SNP.

the sample with another gene chip and assume it as the ground
truth in order to estimate the DDR. To the best of our knowledge,
our method is the only statistical method to handle differential
dropout among genotypes on one locus for samples of unrelated
individuals.

Despite these merits, there are some limitations in our method.
First, although the estimates of MAFs are unbiased under HWE,
the precision of the estimates is lowered because our method
involves more parameters in the estimation process. There-
fore, when there is no differential dropout among genotypes
(DDR= 1), the naïve method may perform better than our
method, considering both the accuracy and precision of the esti-
mates. Second, our method relies on the assumption of HWE
in the true genotype distribution. Although the true genotype
distribution is unknown, one way to evaluate the appropriateness

of using our approach is to perform a HWE test on the observed
genotype distribution.

In this work, we focus on the estimation of allele frequencies,
which is an important issue in epidemiological studies (Taioli et al.,
2004). A future direction would be to evaluate the performance of
our method and the naïve method on association testing.
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APPENDIX
The identifiability of the three model parameters (αHom, αHet, and
pA)

For the model shown in Table 1, we assume that none of p1, p2,
p3, and p4 are zero. We have

p1 = Pr (O = AA) = (1− αHom) · p2
A (A1)

p2 = Pr (O =??) = αHomp2
A + αHom

(
1− pA

)2

+ αHet2pA
(
1− pA

)
(A2)

p3 = Pr (O = AB) = (1− αHet) 2pA
(
1− pA

)
(A3)

p4 = Pr (O = BB) = (1− αHom)
(
1− pA

)2
(A4)

Define C =
√

p1
p4
=

pA
(1−pA)

. Then we have pA =
C

1+C =
√

p1
√

p1+
√

p4
.

From (A3), we have

αHet = 1−
p3

2pA
(
1− pA

) = 1−
p3

2
(

C
1+C

) (
1

1+C

)
= 1−

p3
(√

p1 +
√

p4
)2

2
√

p1p4
.

Similarly, from (A1), we have

αHom = 1−
p1

p2
A

= 1−
p1

C2

(1+C)2

= 1−
p1(1+ C)2

C2

= 1− p4(1+ C)2
= 1−

(√
p1 +

√
p4
)2

.

The three parameters (αHom, αHet, and pA) are thus all
identifiable.
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